Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥學專業學院
  4. 藥學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28528
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李水盛
dc.contributor.authorYi-Shan Linen
dc.contributor.author林憶珊zh_TW
dc.date.accessioned2021-06-13T00:11:00Z-
dc.date.available2009-08-08
dc.date.copyright2007-08-08
dc.date.issued2007
dc.date.submitted2007-07-27
dc.identifier.citation1. Flora of Taiwan, 2nd ed.477-484, Editorial Committee of the Flora of Taiwan, Taipei, Taiwan. (1996)
2. Tomita, M. & Kozuka, M. On the Alkaloids of Machilus thunbergii Sieb. et Zucc.. Journal of the pharmaceutical society of Japan 84, 362-365 (1964).
3. Shimomura, H., Sashida, Y. & Oohara, M. Lignans from Machilus-Thunbergii. Phytochemistry 26, 1513-1515 (1987).
4. Shimomura, H., Sashida, Y. & Oohara, M. Lignans from Machilus-Thunbergii. Phytochemistry 27, 634-636 (1988).
5. Karikome, H., Mimaki, Y. & Sashida, Y. A Butanolide and Phenolics from Machilus-Thunbergii. Phytochemistry 30, 315-319 (1991).
6. Miyazawa, M. et al. Suppression of the SOS-inducing activity of Trp-P-1 and aflatoxin B1 by Meso-dihydroguaiaretic acid from Machilus thunbergii in the Salmonella typhimurium TA1535/pSK1002 umu test. Bioscience Biotechnology and Biochemistry 62, 1425-1427 (1998).
7. Yu, Y.U. et al. Antioxidant lignans from Machilus thunbergii protect CCl4-injured primary cultures of rat hepatocytes. Journal of Pharmacy and Pharmacology 52, 1163-1169 (2000).
8. Li, G. et al. Melanin biosynthesis inhibitors from the bark of Machilus thunbergii. Biological & Pharmaceutical Bulletin 26, 1039-1041 (2003).
9. Ma, C.J., Sung, S.H. & Kim, Y.C. Neuroprotective lignans from the bark of Machilus thunbergii. Planta Medica 70, 79-80 (2004).
10. Li, G. et al. Lignans from the bark of Machilus thunbergii and their DNA topoisomerases I and II inhibition and cytotoxicity. Biological & Pharmaceutical Bulletin 27, 1147-1150 (2004).
11. Park, B.Y. et al. Increase of caspase-3 activity by lignans from Machilus thunbergii in HL-60 cells. Biological & Pharmaceutical Bulletin 27, 1305-1307 (2004).
12. Komae, H. & Hayashi, N. Terpenes from Actinodaphne, Machilus and Neolitsea Species. Phytochemistry 11, 1181-& (1972).
13. Komae, H. & Hayashi, H. Phytosterols of Trunks of Lindera-Obtusiloba. Phytochemistry 11, 1182-& (1972).
14. Lu, S.T. Studies on the Alkaloids of Formosan Louraceous Plants.Ⅱ. Alkaloids of Machilus kusanoi Hayata. (2). The Isolation of dl-Coclaurine. Journal of the pharmaceutical society of Japan 83, 19-21 (1963).
15. Tomita, M., Lu, S.T. & Lan, P.K. Alkaloids of Formosan Louraceous Plants.Ⅳ. Alkaloids of the several Machilus genus plants. Journal of the pharmaceutical society of Japan 85, 588-593 (1965).
16. Tomita, M., Yang, T.H.& Lu, S.T. Studies on the Alkaloids of Formosan Louraceous Plants.Ⅰ. Alkaloids of Machilus kusanoi Hayata. (1). The Isolation of L-(-)-N-Norarmepavin. Journal of the pharmaceutical society of Japan 83, 15-18 (1963).
17. Tsai, I.L., Chen, J.H., Duh, C.Y. & Chen, I.S. Cytotoxic neolignans from the stem wood of Machilus obovatifolia. Planta Medica 66, 403-407 (2000).
18. Cheng, M.J., Tsai, I.L., Lee, S.J., Jayaprakasam, B. & Chen, I.S. Steryl epoxide, secobutanolide and butanolides from the stem wood of Machilus zuihoensis. Phytochemistry 66, 1180-1185 (2005).
19. Cheng, M.J. et al. Chemical and cytotoxic constituents from the stem of Machilus zuihoensis. Helvetica Chimica Acta 85, 1909-1914 (2002).
20. Tsai, I.L., Chen, J.H., Duh, C.Y. & Chen, I.S. Cytotoxic neolignans and butanolides from Machilus obovatifolia. Planta Medica 67, 559-561 (2001).
21. Takaoka, D., Watanabe, K. & Hiroi, M. Studies on Lignoids in Lauraceae .2. Studies on Lignans in Leaves of Machilus-Japonica Sieb Et Zucc. Bulletin of the Chemical Society of Japan 49, 3564-3566 (1976).
22. Gonzalezcoloma, A., Escoubas, P., Mizutani, J. & Lajide, L. Insect Growth-Inhibitors from Machilus-Japonica. Phytochemistry 35, 607-610 (1994).
23. Komae, H. & Hayashi, N. Terpenic Constituents from Machilus-Japonica. Phytochemistry 10, 3311-& (1971).
24. Martin, A.E. & Montgomery, P.A. Acarbose: An alpha-glucosidase inhibitor. American Journal of Health-System Pharmacy 53, 2277-2290 (1996).
25. Puls, W., Keup, U., Krause, H.P., Thomas, G. & Hoffmeister, F. Glucosidase Inhibition - New Approach to Treatment of Diabetes, Obesity, and Hyperlipoproteinemia. Naturwissenschaften 64, 536-537 (1977).
26. Bischoff, H. Pharmacology of Alpha-Glucosidase Inhibition. European Journal of Clinical Investigation 24, 3-10 (1994).
27. Grotewold, E. The Science of Flavonoids, 1st ed. 1-4 , Springer, USA. (2006).
28. Heijnen, C.G.M., Haenen, G., van Acker, F.A.A., van der Vijgh, W.J.F. & Bast, A. Flavonoids as peroxynitrite scavengers: the role of the hydroxyl groups. Toxicology in Vitro 15, 3-6 (2001).
29. Chun, O.K., Kim, D.O. & Lee, C.Y. Superoxide radical scavenging activity of the major polyphenols in fresh plums. Journal of Agricultural and Food Chemistry 51, 8067-8072 (2003).
30. Mira, L. et al. Interactions of flavonoids with iron and copper ions: A mechanism for their antioxidant activity. Free Radical Research 36, 1199-1208 (2002).
31. Cheng, I.F. & Breen, K. On the ability of four flavonoids, baicilein, luteolin, naringenin, and quercetin, to suppress the fenton reaction of the iron-ATP complex. Biometals 13, 77-83 (2000).
32. Williams, R.J., Spencer, J.P.E. & Rice-Evans, C. Flavonoids: Antioxidants or signalling molecules? Free Radical Biology and Medicine 36, 838-849 (2004).
33. Spencer, J.P.E., Rice-Evans, C. & Williams, R.J. Modulation of pro-survival Akt/protein kinase B and ERK1/2 signaling cascades by quercetin and its in vivo metabolites underlie their action on neuronal viability. Journal of Biological Chemistry 278, 34783-34793 (2003).
34. Spencer, J.P.E. et al. Contrasting influences of glucuronidation and O-methylation of epicatechin on hydrogen peroxide-induced cell death in neurons and fibroblasts. Free Radical Biology and Medicine 31, 1139-1146 (2001).
35. Hou, Z., Lambert, J.D., Chin, K.V. & Yang, C.S. Effects of tea polyphenols on signal transduction pathways related to cancer chemoprevention. Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis 555, 3-19 (2004).
36. Lambert, J.D. & Yang, C.S. Mechanisms of cancer prevention by tea constituents. Journal of Nutrition 133, 3262S-3267S (2003).
37. Wang, P.H. & Lee, S.S. Polar chemical constituents from Phoebe formosana. Journal of the Chinese Chemical Society 46, 215-219 (1999).
38. Oyama, K. & Kondo, T. Total synthesis of apigenin 7,4 '-di-O-beta-glucopyranoside, a component of blue flower pigment of Salvia patens, and seven chiral analogues. Tetrahedron 60, 2025-2034 (2004).
39. Lee, S.S., Chang, S.M. & Chen, C.H. Chemical constituents from Alseodaphne andersonii. Journal of Natural Products 64, 1548-1551 (2001).
40. Lee, S.S., Wang, J.S. & Chen, K.C.S. Chemical-Constituents from the Roots of Zizyphus-Jujuba Mill Var Spinosa .1. Journal of the Chinese Chemical Society 42, 77-82 (1995).
41. Salvador, M.J. et al. Isolation and HPLC quantitative analysis of antioxidant flavonoids from Alternanthera tenella Colla. Zeitschrift Fur Naturforschung C-a Journal of Biosciences 61, 19-25 (2006).
42. Kim, J.H. et al. The isolation and antioxidative effects of vitexin from Acer palmatum. Archives of Pharmacal Research 28, 195-202 (2005).
43. Lin, C.M. et al. Isovitexin suppresses lipopolysaccharide-mediated inducible nitric oxide synthase through inhibition of NF-kappa B in mouse macrophages. Planta Medica 71, 748-753 (2005).
44. Wang, Y.M. et al. Depletion of intracellular glutathione mediates butenolide-induced cytotoxicity in HepG2 cells. Toxicology Letters 164, 231-238 (2006).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28528-
dc.description.abstract在本研究中,一開始依據活性測試結果為導向之分離 (bioassay-guided separation),尋找對甲型葡萄糖水解酶(α-glucosidase)有抑制作用的化合物。選定樟科楨楠屬植物大葉楠Machilus japonica Sieb. & Zucc. var. kusanoi (Hayata) Liao (Lauraceae)葉部為研究目標,首先將酒精萃取物,經極性劃分為二氯甲烷、乙酸乙酯、正丁醇和水可溶四部分,並針對正丁醇可溶部分進行研究。但發現活性部分不強且成分散置,因此以一般方法進行正丁醇可溶部分之成分研究,經分離得到八個屬於類黃酮成分的化合物:2'-O-α-L-Rhamnopyranosyl isovitexin (1),2'-O-α-L-Rhamnopyranosyl vitexin (2),Apigenin 4'-O-β-D-glucopyranoside (3),化合物4,化合物5,化合物6,Quercetin-3-O-β-D-galactoside (7)和Quercetin-3-O-β-D-glucoside (8)。其中化合物1到6屬於黃酮 (flavones),而化合物7和8則屬於黃酮醇 (flavonols),化合物4、5、6則為新架構天然物。
這一系列化合物對α-glucosidase的抑制效果並不理想,前六個化合物中,僅化合物3、5、6在100 μg/mL呈現強弱不一的抑制活性,抑制百分比依序為64.7%、18.7%及93.7%,然而在10 μg/mL濃度時皆無活性。
zh_TW
dc.description.abstractGuided by bioassay against α-glucosidase, the active constituents of the leaves extract of Machilus japonica Sieb. & Zucc. var. kusanoi (Hayata) Liao (Lauraceae) were investigated in this study. Several attempts were made to concentrate the active fractions from this approach. However, it was found that the activity was not strong in each fraction. Then, the aim of this study turned to the separation of chemical constituents of the polar fractions via various chromatographic techniques. The effects led to the identification of eight compounds, 2'-O-α-L-rhamnopyranosyl isovitexin (1), 2'-O-α-L-rhamnopyranosyl vitexin (2), apigenin 4'-O-β-D-glucopyranoside (3), compound (4), compound (5), compound (6), quercetin-3-O-β-D-galactoside (7) and quercetin-3-O-β-D-glucoside (8). Compounds 1-6 belong to flavones and compounds 7-8 belong to flavonols. In addition, compounds 4-6 are disclosed to be new natural products, possessing a novel skeleton.
These compounds exhibit weak inhibitory activity against α-glucosidase. Of these compounds tested (1-6), compounds 3, 5 and 6 exhibit 64.7 %, 18.7 % and 93.7 % of inhibitory activity, respectively, at a concentration level of 100 μg/mL; but no activity was obsevered for each compound at 10 μg/mL level.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T00:11:00Z (GMT). No. of bitstreams: 1
ntu-96-R94423026-1.pdf: 7261796 bytes, checksum: fe6c06a9dd522f693c769d5cc1628439 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents總目錄
口試委員會審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
目錄 I
流程圖目錄 Ⅱ
表目錄 Ⅱ
圖目錄 Ⅲ
參考文獻 86
附圖 93

目錄
壹、序論 1
1-1研究目的 1
1-2植物簡介 3
1-3 Machilus屬植物成分之文獻回顧 4
1-4 α-Glucosidase inhibitors簡介 17
1-5 類黃酮成分簡介 19
1-5-1 命名 19
1-5-2 生物活性 21
貳、實驗儀器與材料 22
2-1理化性質測定儀器 22
2-2成分分離之儀器及材料 22
2-3 試劑與溶媒 23
2-4 甲型葡萄糖水解酶之活性試驗 (α-Glucosidase assay) 所用試劑與儀器 24
參、實驗結果與討論 25
3-1 活性導向分離條件探索 25
3-2 類黃酮成分之分離及結構解析 30
3-2-1 2'-O-α-L-Rhamnopyranosyl isovitexin (1)之結構解析 32
3-2-2 2'-O-α-L-Rhamnopyranosyl vitexin (2)之結構解析 38
3-2-3 Apigenin 4'-O-β-D-glucopyranoside (3)之結構解析 42
3-2-4 化合物4之結構解析 45
3-2-5 化合物5之結構解析 51
3-2-6 化合物6之結構解析 55
3-2-7 化合物4 ~ 6之可能生合成途徑 60
3-2-8 Quercetin-3-O-β-D-galactoside (7)之結構解析 61
3-2-9 Quercetin-3-O-β-D-glucoside (8)之結構解析 64
3-3 化合物1-6活性測試結果 67
3-4 一系列同分異構物分離之困難點討論 68
3-5 結論 70
肆、實驗部分 71
4-1 甲型葡萄糖水解酶之活性試驗 (α-Glucosidase assay) 71
4-1-1 原理 71
4-1-2 酵素活性單位 71
4-1-3 實驗方法 71
4-2大葉楠葉部成分之萃取與分離 74
4-3 化合物分離 75
4-3-1 活性導向部分的分離 76
4-3-2 2'-O-α-L-Rhamnopyranosyl isovitexin (1)的分離和2'-O-α-L-Rhamnopyranosyl vitexin (2)的分離 78
4-3-3 Apigenin 4'-O-β-D-glucopyranoside (3)的分離 79
4-3-4 化合物4的分離 79
4-3-5 化合物5的分離 80
4-3-6 化合物6的分離 80
4-3-7 Quercetin-3-O-β-D-galactoside (7)和Quercetin-3-O-β-D-glucoside (8)的分離 81
4-3-8 化合物1-8之物理數據 82
流程圖目錄
Scheme 1. The possible biosynthetic pathway of compounds 4 ~ 6. 60
Scheme 2. The principle of α-glucosidase assay. 71
Scheme 3. Fractionation of EtOH extract of Machilus kusanoi Hayata. 74
Scheme 4. Separation process of compounds 1-8 from n-BuOH soluble fraction. 75
表目錄
Table 1. Chemical constituents from the Machilus plants (Lauraceae) 4
Table 2. α-glucosidase inhibitors in clinical use. 17
Table 3. 1H (400 MHz) and 13C NMR (100 MHz) data and HMBC correlation of compound 1 (CD3OD) 37
Table 4. 1H (400 MHz) and 13C NMR (100 MHz) data and HMBC correlation of compound 2 (CD3OD) 41
Table 5. 1H (400 MHz)and 13C NMR (50 MHz) of compound 3 (CD3OD) and the reported data for apigenin 4'-O-β-D-glucopyranoside and 43
Table 6. 1H (400 MHz) and 13C NMR (100 MHz) data and HMBC correlation of compound 4 (CD3OD) 49
Table 7. 1H (400 MHz) and 13C NMR (100 MHz) data and HMBC correlation of compound 5 (CD3OD) 53
Table 8. 1H (400 MHz) and 13C NMR (100 MHz) data and HMBC correlation of compound 6 (CD3OD) 58
Table 9. 1H (400 MHz) and 13C NMR (50 MHz) of compound 7 (CD3OD) and 62
the reported data for quercetin-3-O-β-D-galactoside (C5D5N, 400 MHz) 62
Table 10. 1H (400 MHz) and 13C NMR (100 MHz) of compound 8 (CD3OD) and the reported data for quercetin-3-O-β-D-glucoside (CD3OD, 400 MHz) 65
Table 11. Separation result of compounds 1 and 2 by Sephadex LH-20 [MeOH-H2O system]. 68
圖目錄
Figure 1. 大葉楠Machilus japonica Sieb. & Zucc. var. kusanoi (Hayata) Liao (Lauraceae) 2
Figure 2. Structure of α-glucosidase inhibitors in clinical use. 18
Figure 3. 1H-NMR assignment for compound 1 (CD3OD, 400 MHz) 34
Figure 4. 13C-NMR assignment for compound 1 (CD3OD, 100 MHz) 35
Figure 5. Key NOESY correlations of compound 1 (CD3OD, 400 MHz) 35
Figure 6. Key COSY correlations of compound 1 (CD3OD, 400 MHz) 36
Figure 7. Key HMBC correlations of compound 1 (CD3OD, 400 MHz) 36
Figure 8. 1H-NMR assignment for compound 2 (CD3OD, 400 MHz) 39
Figure 9. 13C-NMR assignment for compound 2 (CD3OD, 100 MHz) 39
Figure 10. Key COSY correlations of compound 2 (CD3OD, 400 MHz) 40
Figure 11. Key HMBC correlations of compound 2 (CD3OD, 400 MHz) 40
Figure 12. 1H-NMR assignment for compound 3 (CD3OD, 400 MHz) 44
Figure 13. 13C-NMR assignment for compound 3 (CD3OD, 50 MHz) 44
Figure 14. 1H-NMR assignment for compound 4 (CD3OD, 400 MHz) 47
Figure 15. 13C-NMR assignment for compound 4 (CD3OD, 100 MHz) 47
Figure 16. Key COSY correlations of compound 4 (CD3OD, 400 MHz) 48
Figure 17. Key NOESY correlations of compound 4 (CD3OD, 400 MHz) 48
Figure 18. Key HMBC correlations of compound 4 (CD3OD, 400 MHz) 50
Figure 19. 1H-NMR assignment for compound 5 (CD3OD, 400 MHz) 52
Figure 20. 13C-NMR assignment for compound 5 (CD3OD, 100 MHz) 52
Figure 21. Key HMBC correlations of compound 5 (CD3OD, 400 MHz) 54
Figure 22. 1H-NMR assignment for compound 6 (CD3OD, 400 MHz). 56
Figure 23. 13C-NMR assignment for compound 6 (CD3OD, 100 MHz) 56
Figure 24. Key COSY correlations of compound 6 (CD3OD, 400 MHz) 57
Figure 25. Key NOESY correlations of compound 6 (CD3OD, 400 MHz) 57
Figure 26. Key HMBC correlations of compound 6 (CD3OD, 400 MHz) 59
Figure 27. 1H-NMR assignment for compound 7 (CD3OD, 400 MHz) 63
Figure 28. 13C-NMR assignment for compound 7 (CD3OD, 50 MHz) 63
Figure 29. 1H-NMR assignment for compound 8 (CD3OD, 400 MHz) 66
Figure 30. 13C-NMR assignment for compound 8 (CD3OD, 100 MHz) 66
Figure 31. HPLC sepectrum of Fr. D-2-12 69
Figure 32. 96孔微量測試盤上各組測試樣品的排列情形 73
Figure 33. CD spectra of compounds 1, 2 and 3 (MeOH)…………………………..94
Figure 34. CD spectra of compounds 4, 5 and 6 (MeOH).…………………………..95
Figure 35. CD spectra of compounds 7 and 8 (MeOH).……………………………..96
Figure 36. UV spectra of compounds 1, 2 and 3 (MeOH). ………….……………... 97
Figure 37. UV spectra of compounds 4, 5 and 6 (MeOH). ………….……………....98
Figure 38. UV spectra of compounds 7 and 8 (MeOH). ………….………………....99
Figure 39. IR spectra of compounds 4, 5 and 6. …………….…….………………..100
Figure 40. MS and MS/MS spectra of compound 1 (MeOH). ..……………………101
Figure 41. MS and MS/MS spectra of compound 2 (MeOH)…………………...….102
Figure 42. MS and MS/MS spectra of compound 3 (MeOH)…………………...….103
Figure 43. MS and MS/MS spectra of compound 4 (MeOH)…………………...….104
Figure 44. MS and MS/MS spectra of compound 5 (MeOH)………………...….....105
Figure 45. MS and MS/MS spectra of compound 6 (MeOH)...………………...…..106
Figure 46. MS and MS/MS spectra of compound 7 (MeOH)…………………...….107
Figure 47. MS and MS/MS spectra of compound 8 (MeOH).. ..………………...…108
Figure 48. 1H-NMR spectrum of compound 1 (CD3OD, 400 MHz). …………...…109
Figure 49. 13C-NMR spectrum of compound 1 (CD3OD, 100 MHz). ……………..110
Figure 50. COSY spectrum of compound 1 (CD3OD, 400 MHz). ………….......….111
Figure 51. NOESY (1) spectrum of compound 1 (CD3OD, 400 MHz). ………..….112
Figure 52. NOESY (2) spectrum of compound 1 (CD3OD, 400 MHz). ………..….113
Figure 53. HMQC (1) spectrum of compound 1 (CD3OD, 400 MHz). …………....114
Figure 54. HMQC (2) spectrum of compound 1 (CD3OD, 400 MHz). ……..……..115
Figure 55. HMQC (3) spectrum of compound 1 (CD3OD, 400 MHz). ……..…......116
Figure 56. HMBC (1) spectrum of compound 1 (CD3OD, 400 MHz). ………….....117
Figure 57. HMBC (2) spectrum of compound 1 (CD3OD, 400 MHz). ……..……...118
Figure 58. HMBC (3) spectrum of compound 1 (CD3OD, 400 MHz). …………….119
Figure 59. 1H-NMR spectrum of compound 2 (CD3OD, 400 MHz). …………..….120
Figure 60. 13C-NMR spectrum of compound 2 (CD3OD, 100 MHz). ………..……121
Figure 61. COSY (1) spectrum of compound 2 (CD3OD, 400 MHz). ………….….122
Figure 62. COSY (2) spectrum of compound 2 (CD3OD, 400 MHz). ………….….123
Figure 63. COSY (3) spectrum of compound 2 (CD3OD, 400 MHz). ………..……124
Figure 64. HMQC (1) spectrum of compound 2 (CD3OD, 400 MHz). ………..…..125
Figure 65. HMQC (2) spectrum of compound 2 (CD3OD, 400 MHz). …………....126
Figure 66. HMQC (3) spectrum of compound 2 (CD3OD, 400 MHz). …………....127
Figure 67. HMBC (1) spectrum of compound 2 (CD3OD, 400 MHz). ………..…...128
Figure 68. HMBC (2) spectrum of compound 2 (CD3OD, 400 MHz). ………..…...129
Figure 69. HMBC (3) spectrum of compound 2 (CD3OD, 400 MHz). ………..…...130
Figure 70. 1H-NMR spectrum of compound 3 (CD3OD, 400 MHz). ………..…….131
Figure 71. 13C-NMR spectrum of compound 3 (CD3OD, 50 MHz). ………..…..…132
Figure 72. 1H-NMR spectrum of compound 4 (CD3OD, 400 MHz). ………..….....133
Figure 73. 13C-NMR spectrum of compound 4 (CD3OD, 100 MHz). ………..…....134
Figure 74. COSY (1) spectrum of compound 4 (CD3OD, 400 MHz). ………..…....135
Figure 75. COSY (2) spectrum of compound 4 (CD3OD, 400 MHz). ………..…....136
Figure 76. COSY (3) spectrum of compound 4 (CD3OD, 400 MHz). ………..…....137
Figure 77. NOESY (1) spectrum of compound 4 (CD3OD, 400 MHz). ………..….138
Figure 78. NOESY (2) spectrum of compound 4 (CD3OD, 400 MHz). ……….…..139
Figure 79. HMQC (1) spectrum of compound 4 (CD3OD, 400 MHz). ………..…..140
Figure 80. HMQC (2) spectrum of compound 4 (CD3OD, 400 MHz). ………..…..141
Figure 81. HMQC (3) spectrum of compound 4 (CD3OD, 400 MHz). ……………142
Figure 82. HMQC (4) spectrum of compound 4 (CD3OD, 400 MHz). ………..…..143
Figure 83. HMBC (1) spectrum of compound 4 (CD3OD, 400 MHz). ………..…..144
Figure 84. HMBC (2) spectrum of compound 4 (CD3OD, 400 MHz). ……………145
Figure 85. HMBC (3) spectrum of compound 4 (CD3OD, 400 MHz). ………..…..146
Figure 86. HMBC (4) spectrum of compound 4 (CD3OD, 400 MHz). ………..…..147
Figure 87. HMBC (5) spectrum of compound 4 (CD3OD, 400 MHz). ………..…..148
Figure 88. 1H-NMR spectrum of compound 5 (CD3OD, 400 MHz). ………..….....149
Figure 89. 13C-NMR spectrum of compound 5 (CD3OD, 50 MHz). ………..…......150
Figure 90. COSY (1) spectrum of compound 5 (CD3OD, 400 MHz). ………..……151
Figure 91. COSY (2) spectrum of compound 5 (CD3OD, 400 MHz). ………..…....152
Figure 92. NOESY spectrum of compound 5 (CD3OD, 400 MHz). ………..……...153
Figure 93. HMQC spectrum of compound 5 (CD3OD, 400 MHz). ………..……....154
Figure 94. HMBC spectrum of compound 5 (CD3OD, 400 MHz). ………..……....155
Figure 95. 1H-NMR spectrum of compound 6 (CD3OD, 400 MHz). …………..….156
Figure 96. 13C-NMR spectrum of compound 6 (CD3OD, 100 MHz). ………..…....157
Figure 97. COSY (1) spectrum of compound 6 (CD3OD, 400 MHz). ………..……158
Figure 98. COSY (2) spectrum of compound 6 (CD3OD, 400 MHz). ………..……159
Figure 99. NOESY spectrum of compound 6 (CD3OD, 400 MHz). ………..……...160
Figure 100. HMQC spectrum of compound 6 (CD3OD, 400 MHz). ……..……......161
Figure 101. HMBC (1) spectrum of compound 6 (CD3OD, 400 MHz). ……..….....162
Figure 102. HMBC (2) spectrum of compound 6 (CD3OD, 400 MHz). ……..….....163
Figure 103. 1H-NMR spectrum of compound 7 (CD3OD, 400 MHz). ……..……...164
Figure 104. 13C-NMR spectrum of compound 7 (CD3OD, 50 MHz). …..…..….….165
Figure 105. 1H-NMR spectrum of compound 8 (CD3OD, 400 MHz). ……..….…..166
Figure 106. 13C-NMR spectrum of compound 8 (CD3OD, 100 MHz). ……………167
dc.language.isozh-TW
dc.subject活性測試zh_TW
dc.subject類黃酮zh_TW
dc.subject大葉楠zh_TW
dc.subject楨楠屬zh_TW
dc.subject樟科zh_TW
dc.subject甲型葡萄糖水解&#37238zh_TW
dc.subjectbioassayen
dc.subjectα-glucosidaseen
dc.subjectflavonolen
dc.subjectflavoneen
dc.subjectLauraceaeen
dc.subjectMachilus japonica Sieb. & Zucc. var. kusanoi (Hayata) Liaoen
dc.title大葉楠類黃酮成分之研究zh_TW
dc.titleStudy on the Flavonoid Constituents of Machilus japonica
Sieb. & Zucc. var. kusanoi (Hayata) Liao
en
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳春雄,林雲蓮,徐鳳麟
dc.subject.keyword活性測試,甲型葡萄糖水解&#37238,樟科,楨楠屬,大葉楠,類黃酮,zh_TW
dc.subject.keywordbioassay,α-glucosidase,Machilus japonica Sieb. & Zucc. var. kusanoi (Hayata) Liao,Lauraceae,flavone,flavonol,en
dc.relation.page167
dc.rights.note有償授權
dc.date.accepted2007-07-30
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥學研究所zh_TW
顯示於系所單位:藥學系

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
7.09 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved