請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28512
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李學智(Hsueh-Jyh Li) | |
dc.contributor.author | Shun-Chang Lo | en |
dc.contributor.author | 羅勳章 | zh_TW |
dc.date.accessioned | 2021-06-13T00:10:28Z | - |
dc.date.available | 2007-07-31 | |
dc.date.copyright | 2007-07-31 | |
dc.date.issued | 2007 | |
dc.date.submitted | 2007-07-26 | |
dc.identifier.citation | [1] G. J. Foschini and M. J. Gans. “On Limits of Wireless Communications in a Fading Environment When Using Multiple Antennas,” IEEE Wireless Personal Communication, Vol. 6, pp.311-335, 1998.
[2] C. Chuah, D.N.C. Tse, J. M. Kahn, R.A. Valenzuela. “Capacity scaling in mimo wireless systems under correlated fading,” IEEE Transactions on Information Theory, 48:637-650, 2002. [3] Kai Yu, Bengtsson. M, Ottersten. B, McNamara. D, Karlsson. P, and Beach. M., “Modeling of wide-band MIMO radio channels based on NLoS indoor measurements”, Vehicular Technology, IEEE Transactions on Volume 53, Issue 3, May 2004 Page(s):655-665. [4] Liang Dong; Hosung Choo; Heath, R.W., Jr. ; Hao Ling, “Simulation of MIMO channel capacity with antenna polarization diversity”, Wireless Communi- cations, IEEE Transactions on Volume 4, Issue 4, July 2005 Page(s):1869-1873. [5] D. S. Shiu, G. J. Foschini, M. J. Gans, and J. M. Kahn, “Fading correlation and its effect on the capacity of multielement antenna system”, IEEE Trans. Commun., vol. 48, pp. 502-513, Mar. 2000. [6] Erceg, V. Sampath, H. Catreux-Erceg, S., “Dual-polarization versus single-polarization MIMO channel measurement results and modeling”, Wireless Communications, IEEE Transactions on Volume 5, Issue 1, Jan. 2006 Page(s):28 – 33. [7] http://grouper.ieee.org/groups/802/11/, '802.11 TGn.' [8] T. S. Rappaport, “Wireless communications: Principles and Practices”, Prentice Hall, 2nd edition, 2002. [9] S. R. Saunders, Antennas and Propagation for Wireless Communication systems, John Willy & Sons, 1999. [10] Y. Xin, G. B. Giannakis, “High-Rate Space-Time Layered OFDM”, IEEE Communications Letters, Vol. 6, No.5, May 2002. [11] Z. Liu, Y. Xin, G. B. Giannakis, “Space-Time-Frequency Coded OFDM Over Frequency-Selective Fading Channels”, IEEE Transactions on Signal Processing, Vol. 50, No.10, Oct 2002. [12] 'IEEE 802.11a Standard.' [13] 'Further Higher-Speed Physical Layer Extension in the 2.4GHz Band, Draft IEEE 802.11g Standard.' [14] R. V. Nee, G. Awater, M. Morikura, and H. Takanashi, 'New high rate wireless LAN standards,' IEEE Commun. Mag., vol. 37, pp. 82-88, 1999 [15] A. V. Zelst, R. V. Nee, and G. A. Awater, 'Space division multiplexing for OFDM systems,' in Proc. IEEE Veh. Technol. Conf., 2000, pp.1070-1074. [16] W. C. Jake, “Microwave mobile communications”, Wiley, 1974. [17] Liang-Chen Kuo and Huey-Ru Chuang, 'A 2.4GHz Polarization-Diversity Printed Dipole-Antenna with Integrated Balun and Polarization-Switching Circuit for Wireless LAN Applications,' 2002 Asia-Pacific Microwave Conference (APMC), Kyoto, Japan, Dec. 2002. [18] W. C. Y. Lee and S. Y. Yeh, “Polarization Diversity System for Mobile Radio”, IEEE Transactions on Communications, Vol. 20, pp. 912-922, Oct. 1972. [19] R. G. Vaughan, “Polarization Diversity in Mobile Communications”, IEEE Transactions on Vehicular Technology, Vol. 39, No. 3, Aug. 1990. [20] C. H. Yu, “Channel Characteristics and Transmission Performance for Various MIMO Schemes,” thesis in Graduate Institute of Communication Engineering. Taipei: Nation Taiwan University, 2003. [21] J. P. Kermoal, L. Schumacher, K. I. Pedersen, P. E. Morgensen, and F. Frederiksen, “A stochastic MIMO radio channel model with experimental validation,” IEEE J. Sel. Areas Commun., vol.20, no.6, pp.1211-1226, Aug. 2002. [22] R. U. Nabar., H. Bolcskei, V. Erceg, D. Gesbert, and A. J. Paulraj, “Performance of multiantenna signaling techniques in the presence of polarization diversity,” IEEE Trans. Signal Process., vol.50, no.10, pp. 2553-2562, Oct. 2002. [23] V. Jungnukel, V. Pohl, and C. von Helmolt, “Capacity of MIMO Systems with closely spaced antennas,” in Proc. IEEE Vehicular Technology Conf., Birmingham, 2002. chapter 3.2 [24] Joseph S. Colburn, Yahya Rahmat-Samii, Michael A. Jensen, Gregory J. Pottie, “Evaluation of Personal Communications Dual-Antenna Handset Diversity Performance,” IEEE transactions on vehicular technology, vol. 47, no. 3, August 1998 [25] P. Soma, D. S. Baum, V. Erceg, R. Krishnamoorthy, and A. J. Paulraj, “Analysis and modeling of multiple-input multiple-output (MIMO) radio channel based on outdoor measurements conducted at 2.5 GHz for fixed BWA applications,” in Proceeding of IEEE International Conference on Communications, pp. 272-276, 2002. [26] C. Shannon, “A mathematical theory of communication,” Bell Labs Technical Journal, vol. 27, pp. 379-423,623-656, July and October 1948. [27] D. Gesbert, M. Shafi, D. shan Shiu, P. J. Smith, and A. Naguib, “From theory to practice: an overview of MIMO space-time coded wireless systems,” IEEE J. Select. Areas Commun., vol. 21, no. 3, pp. 281-302, Apr. 2003. [28] A. Paulraj, R. Nabar, and D. Gore, Introduction to Space-Time Wireless Communication. Cambridge ; New York : Cambridge University Press, 2005. [29] I. E. Telatar, “Capacity of multi-antenna gaussian channels,” Office of fficial Pubilications of the European Communities, AT&T Bell Labs., Tech. Rep. BL0112170-950615-07TM, 1995. [30] P. H. Chuang, “Transmit Diversity Block Coding for OFDM System,” Master Thesis, National Taipei University of Technology, Taipei, Taiwan, 2002. [31] H. Yang, “A road to future broadband wireless access: MIMO-OFDM-dased air interface,” Bell Labs Syst. Tech. J., vol. 1, pp. 41-59, Autumn 1996. [32] R. D. Murch and K. B. Letaief, “Antenna systems for broadband wireless access,” IEEE Commun. Mag., vol. 40, pp. 76-83, Apr. 2002. [33] C. C. Wang, “Joint Design of Reliability-Based Hybrid ARQ and Adaptive Modulation / Coding in MIMO-OFDM systems”, Master Thesis, National Chiao Tung University, Hsinchu, Taiwan, 2006. [34] C. C. Liu, “The Performance of STBC-VBLAST with Interference Cancellation and Channel Estimation Errors,” Master Thesis, National Taipei University of Technology, Taipei, Taiwan, 2006 [35] A. van Zelst, R. van Nee, and G. A. Awater, “Space division multiplexing (SDM) for OFDM systems,” in Proc. IEEE Veh. Techonol. Conf., May 2000, pp. 1070-1074. [36] X. Li, H. Huang, G. J. Foschini, and R. A. Valenzuela, “Effects of iterative detection and deconding on the performance of BLAST,” in Proc. IEEE Global Telecommun. Conf., vol. 2, pp.1061-1066. [37] R. van Nee and R. Prasard, OFDM for Wireless Multimedia Communications. Norwell, MA: Artech House, 2000. [38] A. V. Zelst, T. C. W. Schenk, “Implementation of a MIMO OFDM-Based Wireless LAN System,” IEEE Transactions on Signal Processing, vol. 52, No. 2, Feb 2004. [39] D. Tse, and P. Viswanath, Fundamentals of Wireless Communication, New York: Cambridge University Press, 2005. [40] G. J. Foschini, “Layered space-time architecture for wireless communication in a fading environment using multi-element antennas,” Bell Labs Tech. J., vol. 1, no. 2, pp. 41-59, 1996. [41] P. W. Wolniansky, G. J. Foschini, G. D. Golden, and R. A. Valenzuela, “V-BLAST: An Architecture for Realizing Very High Data Rates Over the Rich-Scattering Wireless Channel,” in proc. ISSSE, pp.295-300, Sept. 29-Oct. 2, 1998. [42] E. Zacarias, BLAST Architectures, postgraduate course in radio communication, Helsinki University of Technology, Helsinki, Finland, 2004. [43] J. Benesty, Y. Huang, and J. Chen, “A Fast Recursive Algorithm for Optimum Sequential Signal Detection in a BLAST System,” IEEE Trans. Signal Processing, vol. 51, pp.1722-1730, July 2003. [44] J. R. Tzeng, “Semi-Soft Decision VBLAST Detection Algorithm for Spatial Multiplexing System,” Master Thesis, National Taiwan University, Taipei, Taiwan, 2002. [45] J. I. Smith, “A Computer Generated Multipath Fading Simularion for Mobile Radio,” IEEE Transactions on Vehicular Technology, vol. 3, pp. 39-40, 1975. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28512 | - |
dc.description.abstract | 在本論文中,我們使用四種極化分集技術並探討在多輸入多輸出系統之通道特性和傳輸效能。目前一般多輸入多輸出系統的天線設置方法,是在傳送與接收兩端皆採用垂直極化。然而,正交極化具有好的隔離效果,在室內的環境下,傳送與接收兩端天線都採用對稱的正交極化方式,通道容量會比傳統上的極化方式來得高。
依據量測的資料,我們分析與討論影響通道容量的參數,包括特徵值與相關係數等,另外還提出一種新的方法來分析通道容量,此法針對不同的極化型態並考慮天線的接收功率和極化的影響。數值分析結果證明,這個通道容量分析方法會非常貼近實際室內環境的通道容量。 在無線通訊系統中,結合正交分頻多工與多輸入多輸出的系統在頻率選擇衰落(frequency-selective fading)通道的環境下能提升資料傳輸速率。VBLAST是一種藉由使用多根天線傳送來得到高速傳輸速率的空間多工架構。我們使用下一世代無線網路的規格(IEEE 802.11n)的通道模型作為模擬的通道。當傳輸天線的數量增加,不同天線間互相干擾的情況會變嚴重;此外,在相關性通道內,干擾消除的動作沒辦法表現良好。因此,增加天線數量可以提升系統效能,但在相關性通道下卻不盡然。 | zh_TW |
dc.description.abstract | In this thesis we have discussed four polarization diversity antenna configurations of MIMO schemes in their channel characteristics or transmission performance. For a general MIMO system, we usually use vertically co-polarized antenna arrays at both transmitter and receive ends. However, we know that using cross-polarized antenna scheme symmetrically in both ends; the capacity is higher than conventional antenna polarization scheme under the indoor environment due to the high isolation between orthogonal polarizations.
According to measurement data, we analyze and discuss some factors that can affect the channel capacity, like eigenvalues and correlation coefficients etc. Besides, we also propose a novel analysis method of channel capacity including the normalization received power and polarization effect for different polarization schemes. Simulation results show that our proposed analysis method is close to the realistic measurement of the indoor environment. The combination of MIMO signal processing with OFDM is regarded as a promising solution for enhancing the data rates of wireless communication systems operating in frequency-selective fading environments. VBLAST is a spatial multiplexing scheme and can provide huge data rate by using multiple antennas. Channel model adopted by next-generation WLAN standard (IEEE 802.11n) is used in our simulation. In the correlated channel, the interference cancellation cannot work well when more antennas are used. Consequently, using more antennas cannot guarantee the higher performance in the correlated channel. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T00:10:28Z (GMT). No. of bitstreams: 1 ntu-96-R94942040-1.pdf: 1563054 bytes, checksum: f211cb8087af3f789cb19978e6cc7f0f (MD5) Previous issue date: 2007 | en |
dc.description.tableofcontents | Contents
Abstract I Contents III List of Figures VII List of Tables XI Chapter1 Introduction 1 1.1 Motivation 1 1.2 Organization of the Thesis 3 Chapter2 Indoor Channel Properties and Channel Modeling 5 2.1 Introduction 5 2.2 Doppler Effect for Indoor Channel Model 7 2.3 Parameters of Multipath Channels 9 2.3.1 Coherent Bandwidth and Coherent Time 10 2.4 Diversity Techniques 12 2.4.1 Space Diversity 13 2.4.2 Polarization Diversity 15 Chapter3 Correlation Properties and Capacity for MIMO Radio Channel 17 3.1 Introduction 17 3.2 Spatial Correlation Property of MIMO system 18 3.3 Effect of Different Polarization Combinations on MIMO system 20 3.4 Basic Concept of MIMO System 22 3.4.1 Channel Model 22 3.4.2 Subchannel Correlations 23 3.4.3 Channel Capacity 25 3.4.3.1 SISO System Capacity 25 3.4.3.2 SIMO and MISO System Capacity 25 3.4.3.3 MIMO System Capacity with Equal Power 27 3.5 Experiment Description 28 3.5.1 Measurement Setup 29 3.5.2 Measurement Environment 30 3.5.3 Antenna Configuration 32 3.6 Measured Data Analysis and Results 33 3.6.1 Experiment for Different Polarization 33 3.6.2 Eigenvalue, Subchannel Correlation and Capacity Analysis 34 3.6.3 Proposed Channel Capacity Analysis 40 Chapter4 Comparison of Polarization Diversity MIMO Schemes under OFDM Modulation 47 4.1 Introduction 47 4.2 MIMO-OFDM 48 4.2.1 Introduction 48 4.2.2 Concept and Technique of OFDM 49 4.2.3 Concept and Technique of MIMO 52 4.2.4 MIMO-OFDM System Description and Signal Model 54 4.3 V-BLAST system 59 4.3.1 Introduction 59 4.3.2 System Model 60 4.3.3 ZF-VBLAST Detection Algorithm 61 4.3.4 MMSE-VBLAST Detection Algorithm 63 4.4 Simulator of Narrowband and Wideband Fading Channel 64 4.5 Simulation Results and Analysis 66 4.5.1 Simulation Setup 67 4.5.2 Simulation with Model A 69 4.5.3 Simulation with Model B 70 Chapter 5 Conclusion 75 Reference 79 Publication of the author 85 | |
dc.language.iso | en | |
dc.title | 室內環境下極化分集多輸入多輸出系統之通道模型與量測分析 | zh_TW |
dc.title | Polarization Diversity MIMO Channel Modeling and Measurements Analysis for Indoor Environments | en |
dc.type | Thesis | |
dc.date.schoolyear | 95-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林丁丙(Ding-Bing Lin),蘇炫榮(Hsuan-Jung Su),林信標(Hsin-Piao Lin),李啟民(Chi-Min Li) | |
dc.subject.keyword | 多輸入多輸出,正交分頻多工,通道量測,相關函數多輸入多輸出通道容量, | zh_TW |
dc.subject.keyword | Multiple-Input Multiple-Output (MIMO),Orthogonal Frequency Division Multiplexing (OFDM),channel measurement,correlation function,MIMO capacity, | en |
dc.relation.page | 83 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2007-07-30 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
顯示於系所單位: | 電信工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-96-1.pdf 目前未授權公開取用 | 1.53 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。