Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28512
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李學智(Hsueh-Jyh Li)
dc.contributor.authorShun-Chang Loen
dc.contributor.author羅勳章zh_TW
dc.date.accessioned2021-06-13T00:10:28Z-
dc.date.available2007-07-31
dc.date.copyright2007-07-31
dc.date.issued2007
dc.date.submitted2007-07-26
dc.identifier.citation[1] G. J. Foschini and M. J. Gans. “On Limits of Wireless Communications in a Fading Environment When Using Multiple Antennas,” IEEE Wireless Personal Communication, Vol. 6, pp.311-335, 1998.
[2] C. Chuah, D.N.C. Tse, J. M. Kahn, R.A. Valenzuela. “Capacity scaling in mimo wireless systems under correlated fading,” IEEE Transactions on Information Theory, 48:637-650, 2002.
[3] Kai Yu, Bengtsson. M, Ottersten. B, McNamara. D, Karlsson. P, and Beach. M., “Modeling of wide-band MIMO radio channels based on NLoS indoor measurements”, Vehicular Technology, IEEE Transactions on Volume 53, Issue 3, May 2004 Page(s):655-665.
[4] Liang Dong; Hosung Choo; Heath, R.W., Jr. ; Hao Ling, “Simulation of MIMO channel capacity with antenna polarization diversity”, Wireless Communi- cations, IEEE Transactions on Volume 4, Issue 4, July 2005 Page(s):1869-1873.
[5] D. S. Shiu, G. J. Foschini, M. J. Gans, and J. M. Kahn, “Fading correlation and its effect on the capacity of multielement antenna system”, IEEE Trans. Commun., vol. 48, pp. 502-513, Mar. 2000.
[6] Erceg, V. Sampath, H. Catreux-Erceg, S., “Dual-polarization versus single-polarization MIMO channel measurement results and modeling”, Wireless Communications, IEEE Transactions on Volume 5, Issue 1, Jan. 2006 Page(s):28 – 33.
[7] http://grouper.ieee.org/groups/802/11/, '802.11 TGn.'
[8] T. S. Rappaport, “Wireless communications: Principles and Practices”, Prentice Hall, 2nd edition, 2002.
[9] S. R. Saunders, Antennas and Propagation for Wireless Communication systems, John Willy & Sons, 1999.
[10] Y. Xin, G. B. Giannakis, “High-Rate Space-Time Layered OFDM”, IEEE Communications Letters, Vol. 6, No.5, May 2002.
[11] Z. Liu, Y. Xin, G. B. Giannakis, “Space-Time-Frequency Coded OFDM Over Frequency-Selective Fading Channels”, IEEE Transactions on Signal Processing, Vol. 50, No.10, Oct 2002.
[12] 'IEEE 802.11a Standard.'
[13] 'Further Higher-Speed Physical Layer Extension in the 2.4GHz Band, Draft IEEE 802.11g Standard.'
[14] R. V. Nee, G. Awater, M. Morikura, and H. Takanashi, 'New high rate wireless LAN standards,' IEEE Commun. Mag., vol. 37, pp. 82-88, 1999
[15] A. V. Zelst, R. V. Nee, and G. A. Awater, 'Space division multiplexing for OFDM systems,' in Proc. IEEE Veh. Technol. Conf., 2000, pp.1070-1074.
[16] W. C. Jake, “Microwave mobile communications”, Wiley, 1974.
[17] Liang-Chen Kuo and Huey-Ru Chuang, 'A 2.4GHz Polarization-Diversity Printed Dipole-Antenna with Integrated Balun and Polarization-Switching Circuit for Wireless LAN Applications,' 2002 Asia-Pacific Microwave Conference (APMC), Kyoto, Japan, Dec. 2002.
[18] W. C. Y. Lee and S. Y. Yeh, “Polarization Diversity System for Mobile Radio”, IEEE Transactions on Communications, Vol. 20, pp. 912-922, Oct. 1972.
[19] R. G. Vaughan, “Polarization Diversity in Mobile Communications”, IEEE Transactions on Vehicular Technology, Vol. 39, No. 3, Aug. 1990.
[20] C. H. Yu, “Channel Characteristics and Transmission Performance for Various MIMO Schemes,” thesis in Graduate Institute of Communication Engineering. Taipei: Nation Taiwan University, 2003.
[21] J. P. Kermoal, L. Schumacher, K. I. Pedersen, P. E. Morgensen, and F. Frederiksen, “A stochastic MIMO radio channel model with experimental validation,” IEEE J. Sel. Areas Commun., vol.20, no.6, pp.1211-1226, Aug. 2002.
[22] R. U. Nabar., H. Bolcskei, V. Erceg, D. Gesbert, and A. J. Paulraj, “Performance of multiantenna signaling techniques in the presence of polarization diversity,” IEEE Trans. Signal Process., vol.50, no.10, pp. 2553-2562, Oct. 2002.
[23] V. Jungnukel, V. Pohl, and C. von Helmolt, “Capacity of MIMO Systems with closely spaced antennas,” in Proc. IEEE Vehicular Technology Conf., Birmingham, 2002. chapter 3.2
[24] Joseph S. Colburn, Yahya Rahmat-Samii, Michael A. Jensen, Gregory J. Pottie, “Evaluation of Personal Communications Dual-Antenna Handset Diversity Performance,” IEEE transactions on vehicular technology, vol. 47, no. 3, August 1998
[25] P. Soma, D. S. Baum, V. Erceg, R. Krishnamoorthy, and A. J. Paulraj, “Analysis and modeling of multiple-input multiple-output (MIMO) radio channel based on outdoor measurements conducted at 2.5 GHz for fixed BWA applications,” in Proceeding of IEEE International Conference on Communications, pp. 272-276, 2002.
[26] C. Shannon, “A mathematical theory of communication,” Bell Labs Technical Journal, vol. 27, pp. 379-423,623-656, July and October 1948.
[27] D. Gesbert, M. Shafi, D. shan Shiu, P. J. Smith, and A. Naguib, “From theory to practice: an overview of MIMO space-time coded wireless systems,” IEEE J. Select. Areas Commun., vol. 21, no. 3, pp. 281-302, Apr. 2003.
[28] A. Paulraj, R. Nabar, and D. Gore, Introduction to Space-Time Wireless Communication. Cambridge ; New York : Cambridge University Press, 2005.
[29] I. E. Telatar, “Capacity of multi-antenna gaussian channels,” Office of fficial Pubilications of the European Communities, AT&T Bell Labs., Tech. Rep. BL0112170-950615-07TM, 1995.
[30] P. H. Chuang, “Transmit Diversity Block Coding for OFDM System,” Master Thesis, National Taipei University of Technology, Taipei, Taiwan, 2002.
[31] H. Yang, “A road to future broadband wireless access: MIMO-OFDM-dased air interface,” Bell Labs Syst. Tech. J., vol. 1, pp. 41-59, Autumn 1996.
[32] R. D. Murch and K. B. Letaief, “Antenna systems for broadband wireless access,” IEEE Commun. Mag., vol. 40, pp. 76-83, Apr. 2002.
[33] C. C. Wang, “Joint Design of Reliability-Based Hybrid ARQ and Adaptive Modulation / Coding in MIMO-OFDM systems”, Master Thesis, National Chiao Tung University, Hsinchu, Taiwan, 2006.
[34] C. C. Liu, “The Performance of STBC-VBLAST with Interference Cancellation and Channel Estimation Errors,” Master Thesis, National Taipei University of Technology, Taipei, Taiwan, 2006
[35] A. van Zelst, R. van Nee, and G. A. Awater, “Space division multiplexing (SDM) for OFDM systems,” in Proc. IEEE Veh. Techonol. Conf., May 2000, pp. 1070-1074.
[36] X. Li, H. Huang, G. J. Foschini, and R. A. Valenzuela, “Effects of iterative detection and deconding on the performance of BLAST,” in Proc. IEEE Global Telecommun. Conf., vol. 2, pp.1061-1066.
[37] R. van Nee and R. Prasard, OFDM for Wireless Multimedia Communications. Norwell, MA: Artech House, 2000.
[38] A. V. Zelst, T. C. W. Schenk, “Implementation of a MIMO OFDM-Based Wireless LAN System,” IEEE Transactions on Signal Processing, vol. 52, No. 2, Feb 2004.
[39] D. Tse, and P. Viswanath, Fundamentals of Wireless Communication, New York: Cambridge University Press, 2005.
[40] G. J. Foschini, “Layered space-time architecture for wireless communication in a fading environment using multi-element antennas,” Bell Labs Tech. J., vol. 1, no. 2, pp. 41-59, 1996.
[41] P. W. Wolniansky, G. J. Foschini, G. D. Golden, and R. A. Valenzuela, “V-BLAST: An Architecture for Realizing Very High Data Rates Over the Rich-Scattering Wireless Channel,” in proc. ISSSE, pp.295-300, Sept. 29-Oct. 2, 1998.
[42] E. Zacarias, BLAST Architectures, postgraduate course in radio communication, Helsinki University of Technology, Helsinki, Finland, 2004.
[43] J. Benesty, Y. Huang, and J. Chen, “A Fast Recursive Algorithm for Optimum Sequential Signal Detection in a BLAST System,” IEEE Trans. Signal Processing, vol. 51, pp.1722-1730, July 2003.
[44] J. R. Tzeng, “Semi-Soft Decision VBLAST Detection Algorithm for Spatial Multiplexing System,” Master Thesis, National Taiwan University, Taipei, Taiwan, 2002.
[45] J. I. Smith, “A Computer Generated Multipath Fading Simularion for Mobile Radio,” IEEE Transactions on Vehicular Technology, vol. 3, pp. 39-40, 1975.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28512-
dc.description.abstract在本論文中,我們使用四種極化分集技術並探討在多輸入多輸出系統之通道特性和傳輸效能。目前一般多輸入多輸出系統的天線設置方法,是在傳送與接收兩端皆採用垂直極化。然而,正交極化具有好的隔離效果,在室內的環境下,傳送與接收兩端天線都採用對稱的正交極化方式,通道容量會比傳統上的極化方式來得高。
依據量測的資料,我們分析與討論影響通道容量的參數,包括特徵值與相關係數等,另外還提出一種新的方法來分析通道容量,此法針對不同的極化型態並考慮天線的接收功率和極化的影響。數值分析結果證明,這個通道容量分析方法會非常貼近實際室內環境的通道容量。
在無線通訊系統中,結合正交分頻多工與多輸入多輸出的系統在頻率選擇衰落(frequency-selective fading)通道的環境下能提升資料傳輸速率。VBLAST是一種藉由使用多根天線傳送來得到高速傳輸速率的空間多工架構。我們使用下一世代無線網路的規格(IEEE 802.11n)的通道模型作為模擬的通道。當傳輸天線的數量增加,不同天線間互相干擾的情況會變嚴重;此外,在相關性通道內,干擾消除的動作沒辦法表現良好。因此,增加天線數量可以提升系統效能,但在相關性通道下卻不盡然。
zh_TW
dc.description.abstractIn this thesis we have discussed four polarization diversity antenna configurations of MIMO schemes in their channel characteristics or transmission performance. For a general MIMO system, we usually use vertically co-polarized antenna arrays at both transmitter and receive ends. However, we know that using cross-polarized antenna scheme symmetrically in both ends; the capacity is higher than conventional antenna polarization scheme under the indoor environment due to the high isolation between orthogonal polarizations.
According to measurement data, we analyze and discuss some factors that can affect the channel capacity, like eigenvalues and correlation coefficients etc. Besides, we also propose a novel analysis method of channel capacity including the normalization received power and polarization effect for different polarization schemes. Simulation results show that our proposed analysis method is close to the realistic measurement of the indoor environment.
The combination of MIMO signal processing with OFDM is regarded as a promising solution for enhancing the data rates of wireless communication systems operating in frequency-selective fading environments. VBLAST is a spatial multiplexing scheme and can provide huge data rate by using multiple antennas. Channel model adopted by next-generation WLAN standard (IEEE 802.11n) is used in our simulation. In the correlated channel, the interference cancellation cannot work well when more antennas are used. Consequently, using more antennas cannot guarantee the higher performance in the correlated channel.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T00:10:28Z (GMT). No. of bitstreams: 1
ntu-96-R94942040-1.pdf: 1563054 bytes, checksum: f211cb8087af3f789cb19978e6cc7f0f (MD5)
Previous issue date: 2007
en
dc.description.tableofcontentsContents
Abstract I
Contents III
List of Figures VII
List of Tables XI
Chapter1 Introduction 1
1.1 Motivation 1
1.2 Organization of the Thesis 3
Chapter2 Indoor Channel Properties and Channel Modeling 5
2.1 Introduction 5
2.2 Doppler Effect for Indoor Channel Model 7
2.3 Parameters of Multipath Channels 9
2.3.1 Coherent Bandwidth and Coherent Time 10
2.4 Diversity Techniques 12
2.4.1 Space Diversity 13
2.4.2 Polarization Diversity 15
Chapter3 Correlation Properties and Capacity for MIMO Radio Channel 17
3.1 Introduction 17
3.2 Spatial Correlation Property of MIMO system 18
3.3 Effect of Different Polarization Combinations on MIMO system 20
3.4 Basic Concept of MIMO System 22
3.4.1 Channel Model 22
3.4.2 Subchannel Correlations 23
3.4.3 Channel Capacity 25
3.4.3.1 SISO System Capacity 25
3.4.3.2 SIMO and MISO System Capacity 25
3.4.3.3 MIMO System Capacity with Equal Power 27
3.5 Experiment Description 28
3.5.1 Measurement Setup 29
3.5.2 Measurement Environment 30
3.5.3 Antenna Configuration 32
3.6 Measured Data Analysis and Results 33
3.6.1 Experiment for Different Polarization 33
3.6.2 Eigenvalue, Subchannel Correlation and Capacity Analysis 34
3.6.3 Proposed Channel Capacity Analysis 40
Chapter4 Comparison of Polarization Diversity MIMO Schemes under OFDM Modulation 47
4.1 Introduction 47
4.2 MIMO-OFDM 48
4.2.1 Introduction 48
4.2.2 Concept and Technique of OFDM 49
4.2.3 Concept and Technique of MIMO 52
4.2.4 MIMO-OFDM System Description and Signal Model 54
4.3 V-BLAST system 59
4.3.1 Introduction 59
4.3.2 System Model 60
4.3.3 ZF-VBLAST Detection Algorithm 61
4.3.4 MMSE-VBLAST Detection Algorithm 63
4.4 Simulator of Narrowband and Wideband Fading Channel 64
4.5 Simulation Results and Analysis 66
4.5.1 Simulation Setup 67
4.5.2 Simulation with Model A 69
4.5.3 Simulation with Model B 70
Chapter 5 Conclusion 75
Reference 79
Publication of the author 85
dc.language.isoen
dc.subject通道量測zh_TW
dc.subject相關函數多輸入多輸出通道容量zh_TW
dc.subject多輸入多輸出zh_TW
dc.subject正交分頻多工zh_TW
dc.subjectOrthogonal Frequency Division Multiplexing (OFDM)en
dc.subjectMIMO capacityen
dc.subjectcorrelation functionen
dc.subjectchannel measurementen
dc.subjectMultiple-Input Multiple-Output (MIMO)en
dc.title室內環境下極化分集多輸入多輸出系統之通道模型與量測分析zh_TW
dc.titlePolarization Diversity MIMO Channel Modeling and Measurements Analysis for Indoor Environmentsen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林丁丙(Ding-Bing Lin),蘇炫榮(Hsuan-Jung Su),林信標(Hsin-Piao Lin),李啟民(Chi-Min Li)
dc.subject.keyword多輸入多輸出,正交分頻多工,通道量測,相關函數多輸入多輸出通道容量,zh_TW
dc.subject.keywordMultiple-Input Multiple-Output (MIMO),Orthogonal Frequency Division Multiplexing (OFDM),channel measurement,correlation function,MIMO capacity,en
dc.relation.page83
dc.rights.note有償授權
dc.date.accepted2007-07-30
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
1.53 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved