請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28492完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳光禎 | |
| dc.contributor.author | Yu-Jia Liang | en |
| dc.contributor.author | 梁育嘉 | zh_TW |
| dc.date.accessioned | 2021-06-13T00:09:52Z | - |
| dc.date.available | 2008-07-30 | |
| dc.date.copyright | 2007-07-30 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-27 | |
| dc.identifier.citation | [1] R. G. Gallager, “A perspective on multiaccess channels,” IEEE Trans. on Information Theory, pp. 124 – 142, March 1985
[2] D. Bertsekas and R. G. Gallager, Data Networks. Prentice Hall, 2nd edition, 1992 [3] L. KLeinrock, F. A. Tobagi, ”Packet switching in radio channels: part I – carrier sense multiple-access modes and their throughput-delay characteristics”, IEEE Trans. on Comm., Vol. 23, No 12, Dec. 1975 [4] J. S. Meditch, Chin-tau A. Lea, “Stability and optimization of the CSMA and CSMA/CD channels”, IEEE Trans. on Comm., Vol. 31, No. 6, 1983 [5] C.S. Chang, K.C. Chen, M.Y. You, J.F. Chang, “Guaranteed quality-of-service wireless access to ATM networks,” IEEE Journal on Selected Areas in Communications, Vol. 15, No. 1, PP. 106 – 118, Jan. 1997 [6] K. C. Chen, “Medium Access Control of Wireless LANs for Mobile Computing”, IEEE Networks, September/October 1994, pp. 50-63. [7] K.C. Chen, C.H. Lee, “RAP- A novel medium access control protocol for wireless data networks,” Proc. IEEE GLOBECOM’93, Vol. 3, pp. 1713-1717, Houston, 1993 [8] K.C. Chen, C.H. Lee, “Group randomly addressed polling for multicell wireless data networks,” Proc. IEEE ICC’94, Vol. 2, pp. 913-917, New Orleans, 1994 [9] Y.K. Sun, “Dynamic analysis of generalized tree protocols,” Ph.D dissertation. [10] Y.K. Sun, K.C. Chen, D.C. Twu, ”Generalized tree multiple access protocols in packet switching networks,” In Proc. of PIMRC, vol. 3, pp. 918- 922, 1997. [11] Chao-Ming Teng, K.C. Chen,” A unified algorithm for multiple access control protocols”, Master thesis. [12] IEEE Standard for Wireless LAN Medium ACCESS Control (MAC) and Physical Layer (PHY) Specifications, Nov. 1997. P802.11. [13] G. Bianchi, “Performance analysis of the IEEE 802.11 distributed coordination function,” IEEE Journal on Selected Areas in Communications, Vol. 18, NO 3, March 2000. [14] C. Wang, B. Li, and L. Li, “A new collision resolution mechanism to enhance the performance of IEEE 802.11 DCF”, IEEE Trans. on Vehicular Technology, Vol. 53, No. 4, July 2004. [15] E. Ziouva, T. Antonakopoulos, “CSMA/CA performance under high traffic conditions: throughput and delay analysis”, Comp. Commun., vol. 25, pp. 313-321, 2002. [16] J. V. Sudarev, L. B. White, and S. Perreau, “Performance analysis of 802.11 CSMA/CA for infrastructure networks under finite load conditions”, In LANMAN, volume 3, pages 1 – 6, 18-21 Sept 2005. [17] F. Cali, M. Conti, and E. Gregori, “IEEE 802.11 protocol: design and performance evaluation of an adaptive backoff mechanism”, IEEE Journal on selected areas in communications, Vol. 18, No. 9, Sep. 2000. [18] Y.Yang, Tak-Shing P. Yum, “Delay distributions of slotted ALOHA and CSMA”, IEEE Trans. on Comm., Vol 51, No. 11, Nov. 2003 [19] B. J. Kwak, N. O. Song, and L. E. Miller, “Performance analysis of exponential backoff”, IEEE/ACM Tran. on Networking, Vol. 13, No. 2, Apr. 2005. [20] L. Jereb, M. A. Marsan, “Transient performance analysis of nonpersistent CSMA and CSMA-CD protocols,” IEEE GLOBECOM ‘89, Vol. 2, pp 939-943, 1989. [21] L. Jereb, M. A. Marsan, “Transient performance analysis of 1-persistent CSMA and CSMA-CD protocols,” IEEE INFOCOM ’90, Vol. 1, pp246-252, 1990. [22] X. Wang, J. Yin, and D. P. Agrawal, “ Analysis and optimization of the energy efficiency in the 802.11 DCF,” Workshop on Energy Efficient Wireless Networks (EWCN’04), in conjuncton with IPCCC2004, Apr. 2004. [23] Ramachandran, I; Roy, S, ”Analysis of throughput and energy efficiency of p-persistent CSMA with imperfect carrier sensing,” GLOBECOM’05 IEEE, Vol. 6, 28 Nov.- 2 Des. Page(s): 5pp. [24] D.S. Chan, T. Berger, R. Bridgelall, “Energy efficiency of CSMA protocols for wireless packet switched networks,” Proc. of IEEE WCNC, vol. 1, pp. 447 – 452, 2004 [25] R. Bruno, M. Conti, and E. Gregori, “Optimization of efficiency and energy consumption in p-persistent CSMA-based wireless LANS,” IEEE Trans. Mobile Computing, vol. 1, pp. 10-31, Jan. –Mar. 2002. [26] Y.K. Sun, K.C. Chen, “Energy-efficiency multiple access protocol design,” Communications Letters, IEEE, vol. 2, pp. 334- 335, Dec. 1998 [27] P. J. M. Havinga, G. J. M. Smit, and M. Bos, “Energy-efficient adaptive wireless network design”, Fifth IEEE ISCC 2000, pp 502. [28] J.C. Chen, K. M. Slvalingam, Prathima Agrawal, “Performance comparison of battery power consumption in wireless multiple access prtocosols,” Wireless Networks, Vol 5, pp. 445-460, 1999 [29] R. Mangharam, S. Pollin, B. Bougard, R. Rajkumar, F. Catthoor, L. van der Perre, I. Moerman, “Optimal fixed and scalable energy management for wireless networks,” IEEE INFOCOM '05, Vol. 1, pp 114-125, March 2005. [30] Chockalingam, A; Zorzi, M, “Energy efficiency of media access protocols for mobile data networks,” Trans. on Comm. IEEE, Vol. 46, No. 11, pp.1418 – 1421, Nov. 1998. [31] J. A. Stine, G. De Veciana, “Improving energy efficiency of centrally controlled wireless data networks”, Wireless Networks, Vol. 8, No. 6, pp 681-700, 2002. [32] P. Lettieri, C. Schurgers, and M. Srivastava, “Adaptive link layer strategies for energy efficient wireless networking”, Wireless Networks, Vol. 5, No. 5, pp 339-355, 1999. [33] C. E. Jones, K. M. Sivalingam, P. Agrawal, J. C. Chen, “A survey of energy efficient network protocols for wireless networks”, Wireless networks, Vol. 7, No. 4, pp343-358, 2001. [34] P. Karn, “MACA—a new channel access method for packet radio,” in Proceedings of the 9th ARRL/CRRL Amateur Radio Computer Networking Conference, pp. 134–140, Ontario, Canada, September 1990. [35] V. Bharghavan, A. Demers, S. Shenker, and L. Zhang, “MACAW: a media access protocol for wireless LAN’s,” in Proceedings of the Conference on Communications Architectures, Protocols and Applications (SIGCOMM ’94), pp. 212–225, London, UK, August-September 1994. [36] M. Kohvakka, M. Kuorilehto, M. Hannikainen, and T. D. Hamalainen, “Performance analysis of IEEE 802.15.4 and ZigBee for large-scale wireless sensor network applications,” Proc. of 3rd ACM international workshop on performance evaluation of wireless ad hoc, sensor and ubiquitous networks, pp 48-57, 2006. [37] A. Srivastava, J. Sobaje, M. Potkonjak, and M. Sarrafzadeh, “Optimal node scheduling for effective energy usage in sensor networks”, IEEE Workshop on Integrated Management of Power Aware Communications Computing and Networking 2002. [38] M. C. Vuran and I. F. Akyildiz, “ Spatial correlation-based collaborative medium access control in wireless sensor networks”, IEEE/ACM Tran. on Networking, Vol. 14, No. 2, Apr. 2006. [39] W. Ye, J. Heidemann, D. Estrin, ”Medium access control with coordinated adaptive sleeping for wireless sensor networks,” IEEE/ACM Trans. on Networking, vol. 12, No. 3, pp. 493 -506, Jun. 2004. [40] J. Polastre, J. Hill, D. Culler, “ Versatile low power media access for wireless sensor networks,” Proc. of the 2nd international conference on Embedded networked sensor systems, Nov. 03-05, 2004. [41] J. Li and G. Y. Lazarou, “A bit-map-assisted energy efficient MAC scheme for wireless sensor networks”, Proc. of the 3rd international symposium on information processing in sensor networks, pp 55-60, 2004. [42] R. Kannan, R. Kalidindi, S.S. Iyengar, V. Kumar, “Energy and rate based MAC protocol for wireless sensor networks”, ACM SIGMOD Record, pp 60-65, 2003. [43] G. P. Halkes, T. van Dam, and K. G. Langendoen, “Comparing energy-saving MAC protocols for wireless sensor networks”, Mobile Networks and Applications, Vol. 10, No. 5, pp 783-791, 2005. [44] T. van Dam, K. Langendoen, “An adaptive energy-efficient MAC protocol for wireless sensor networks”, Proc. of the 1st international conference on Embedded networked sensor systems, pp 171-180, 2003. [45] J. L. da Silva, Jr. et al. “Wireless protocols design: challenges and opportunities”, Proc. of the 8th international workshop on HW/SW codesign, pp 147-151, 2000. [46] K. Wang, F. Yang, Q. Zhang, D. O. Wu, and Y. Xu, “Distributed cooperative rate adaption for energy efficiency in IEEE 802.11-based multi-hop networks”, Proc. of the 3rd international conference on Quality of service in heterogeneous wired/wireless networks, 2006. [47] L. Li and P. Shiha, “Throughput and energy efficiency in topology-controlled multi-hop wireless sensor networks”, Proc. of the 2nd ACM international conference on Wireless sensor networks and applications, pp132-140, 2004. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28492 | - |
| dc.description.abstract | 在這篇論文中,我們提出一個在無限資料流的假設下適用於各種不同的多重存取協定的整合數學模型,並且以設計能量效率最佳化為我們的目的。我們利用嵌入馬爾科夫鏈(embedded Markov chain)廣泛地模擬ALOHA、Non-persistent CSMA、1-persistent CSMA和GRAP協定來得到系統總處理能力、延遲時間和能量效率等性能。然而,無限資料流的假設隱含著表示退避時間和總計抵達速率無關。我們放鬆待傳使用者的無關性並且利用提出的整合MAC演算法的原型來引導出協定和退避機制的關聯性。以直覺來說,增加平均退避時間也會跟著增加延遲時間。但在同時,它會降低總計抵達速來降低重傳次數。這個利益交換讓我們把調整退避時間視為最佳化能量效率的方法。因此,我們提出能動態調整延遲時間並以整合樹狀協定為基礎的最佳樹狀協定。我們也發現能量效率和延遲時間擁有相同的表達式-我們稱做加權時間。他們只差別在參數設定不同而已。然而,根據不同的系統限制假設,最佳化準則也將不同。我們將顯示出在一般限制下能量效率最佳化的數值分析結果。 | zh_TW |
| dc.description.abstract | In this thesis, we propose a general mathematic model under infinite traffic load for various multiple access protocols and aim at the designing of optimization of energy efficiency. We generally model the ALOHA, Non-persistent and 1-persistent CSMA, and GRAP protocols using embedded Markov chain to obtain the performances of throughput, delay and energy efficiency. However, the infinite traffic loads implicit express the independence of backoff time and aggregate arrival rate. We loosen this independence of backlogged users and propose the prototype of unified MAC protocol which shows the correlation of protocol and backoff mechanism. In intuition, increase average backoff time increases the delay as well. In the mean while, it decrease the aggregate arrival rate which result in less retransmission times. This tradeoff leads us to consider the optimal energy efficiency by adjusting backoff time. Thus, we propose optimal tree protocol based on the unified tree protocol by adjusting dynamic backoff time. We also figure out that energy efficiency and delay are based on the general form which we called weighted time. They are only different in parameters setting. Nevertheless, according to unlike assumptions of system constrain, the optimization criterion is also distinct. We show the optimal energy efficiency under general constrain by numerical result. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T00:09:52Z (GMT). No. of bitstreams: 1 ntu-96-R94942108-1.pdf: 1855257 bytes, checksum: 3b667d2d8239584c3d27e3957789d15e (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | Chapter 1 Introduction 1
1.1 Preview 1 1.2 Thesis Outline 3 Chapter 2 Overview of General Multiple Access Protocols 5 2.1 Preview 5 2.1.1 ALOHA Protocol 6 2.1.2 CSMA Family Protocols 6 2.1.3 GRAP 8 2.2 Generalized Tree Protocol 9 Chapter 3 General Mathmaticl Model and Analysis 13 3.1 General Model 13 3.1.1 System Model with Imbedded Markov Chain 13 3.1.2 Power Model 17 3.1.3 Weighted Time Model 18 3.2 System analysis 19 3.2.1 ALOHA 19 3.2.2 Non-persistent CSMA/CD 21 3.2.3 1-persistent CSMA/CD 23 3.2.4 GRAP 26 3.3 Numerical results 27 Chapter 4 General Protocol Design 33 4.1 Unified MAC Algorithm 33 4.2 Functional Algorithm 37 4.2.1 Exponential Backoff Algorithm 37 4.2.2 Geometric Backoff algorithm 40 4.3 Analysis of Backoff Algorithm 41 4.3.1 Exponential backoff 41 4.3.2 Geometric backoff 42 4.4 Optimization Criterion 44 4.4.1 Optimal Throughput 44 4.4.2 Optimization with limited delay 45 4.4.3 Optimization with limited delay and energy 46 4.5 Protocol design 47 4.5.1 Example 48 4.6 Numerical result and discussion 51 Chapter 5 Conclusion and Future Work 59 Appendix A 61 Appendix B 65 Bibliography 69 | |
| dc.language.iso | en | |
| dc.subject | 整合馬可夫鏈 | zh_TW |
| dc.subject | 能量效率 | zh_TW |
| dc.subject | 最佳樹狀協定 | zh_TW |
| dc.subject | general Makove chain | en |
| dc.subject | energy efficiency | en |
| dc.subject | MAC | en |
| dc.subject | optimal tree protocol | en |
| dc.title | 具能量效率的多重存取協定設計 | zh_TW |
| dc.title | Energy efficiency multiple access protocol design | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蘇育德,溫志宏,林風 | |
| dc.subject.keyword | 能量效率,整合馬可夫鏈,最佳樹狀協定, | zh_TW |
| dc.subject.keyword | energy efficiency,MAC,general Makove chain,optimal tree protocol, | en |
| dc.relation.page | 75 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-07-30 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 1.81 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
