請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28481完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃武良(Wuu-Liang Huang) | |
| dc.contributor.author | Ting-Wei Ko | en |
| dc.contributor.author | 柯婷瑋 | zh_TW |
| dc.date.accessioned | 2021-06-13T00:09:31Z | - |
| dc.date.available | 2007-07-31 | |
| dc.date.copyright | 2007-07-31 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-26 | |
| dc.identifier.citation | References
Alexander, R., Kagi, R., Noble, R., 1983. Identification of the bicyclic sesquiterpanes, drimane, and eudesmane in petroleum. Journal of the Chemical Society, Chemical Communications, 226-228. Andersen, S.I., 1994. Dissolution of solid Boscan asphaltenes in mixed solvents. Fuel Science & Technology International 12, 51. Barrer, R.M., D.M.MacLeod, 1954. Intercalation and sorption by montmorillonite, Transactions of the Faraday Society 50, 980–989. Bassin, N.J., Ichiye, T., 1977. Flocculation behavior of suspended sediments and oil emulsions. Journal of Sedimentary Petrology 47(2), 671-677. Bastow, T.P., van Aarssen, B.G.K.,Chidlow G.E., Alexander, R., Kagi, R.I., 2003. Small-scale and rapid quantitative analysis of phenols and carbazoles in sedimentary matter. Organic Geochemistry 34, 1113-1127. Bennett, B., Chen, M., Brincat, D., Gelin, F.J.P., Larter, S.R., 2002. Fractionation of benzocarbazoles between source rocks and petroleums. Organic Geochemistry 33, 545-559. Bergaya, F., Theng B.K.G., Lagaly, G., 2006. Handbook of clay science. 2nd Edition. Elsevier; Oxford. Bradley, W. F., 1945. Molecular associations between montmorillonite and some polyfunctional organic liquids: Journal of American Chemical Society 67, 975-981. Carlson, R.M.K., Chamberlain D.E., 1986. Steroid biomarker-clay mineral adsorption free energies : Implications to petroleum migration indices. Organic Geochemistry 10, 163-180. Celis, R., Hermonsin, M.C., Cox, L., Cornejo, J., 1999. Sorption of 2,4-dichlorophenoxyacetic acid by model particles simulating naturally occurring soil colloids. Environmental Science and Technology 33, 1200–1206. Charles, E.W., Lin, D.P., 1975. The chemistry of clay minerals. In: Developments in sedimentology, Elsevier, New York. Clegg, H., Wilkes, H., Oldenburg, T., Santamaria Orozco, D. and Horsfield, B., 1998. Influence of maturity on carbazole and benzocarbazole distributions in crude oils and source rocks from the Sonda de Campeche, Gulf of Mexico. Organic Geochemistry 29, 183. Cornford, C., Christie, O., Endresen, U., Jensen P., Myhr, M.-B., 1988. Source rock and seep oil maturity in Dorset, southern England. Organic Geochemistry 13, 399-409. Creaney, S., Allan, J., 1990. In: Brooks J. (Ed.) Classic Petroleum Provinces, Geological Society of London Special Publication 50, London. De Boer, R., Leeloyer, K., Eigner, M., van Bergen, A., 1995. Screening of Crude Oils for Asphalt Precipitation: Theory, Practice, and the Selection of Inhibitors. Society of Petroleum Engineers Journal 55. Eduardo, B.-G., Carlos, L.-G., 2004. Asphaltene Precipitation in Crude Oils: Theory and Experiments. Thermodynamics 50, 2552–2570. Eglinton, G., Scott, P. M., Belsky, T., Burlingame, A.L., Calvin, M., 1964. Hydrocarbons of biological origin from 1-billion-year-old sediment. Science 145, 263. Eglinton, G., Calvin, M., 1967. Chemical fossils. Scientific American 216, 32-43. England, W.A., Mackenzie, A.S., Mann, D.M., Quigley, T.M., 1987. The movement and entrapment of petroleum fluids in the subsurface. Journal of the Geological Society, London 144, 327-347. Fotland, P., Anfinsen, H., Foerdedal, H., Hjermstad, H.P., 1997. The Phase Diagrams of Asphaltenes: Experimental Technique, Results and Modeling on Some North Sea Crude Oils. Symposium on the Chemistry of the Asphaltene and Related Substances, Cancun, Mexico. Galimberti, R., Ghiselli, C., Chiaramonte, M.A., 1999. Acidic polar compounds in petroleum: a new analytical methodology and applications as molecular migration indexes. Extended abstracts of the 19th Intl. Meeting on Organic Geochemistry, Istanbul, Turkey TUBITAK Marmara Research Center, Gebze-Kocaeli. Grim, R. E., 1968. Clay mineralogy. McGraw-Hill, New York. Gurgey, K., 1998. Geochemical effects of asphaltene separation procedures: changes in sterane, terpane, and methylalkane distributions in maltenes and asphaltene co-precipitates. Organic Geochemistry 29, 1139-1147. Hammami, A., Phelps, C.H., Monger-McClure, T., Little, T.M., 2000. Asphaltene precipitation from live oils; An experimental investigation of onset conditions and reversibility. Energy Fuels 14, 14. Hoffmann, R.W., Brindley, G.W., 1960. Adsorption of non-ionic aliphatic molecules from aqueous solutions on montmorillonite. Clay-organic studies—II. Geochimica et Cosmochimica Acta 20(1), 15-29. Horsfield, B., Clegg, H., Wilkes, H., Santamaria Orozco, D., 1998. Effect of maturity on carbazole distributions in petroleum systems: new insights from the Sonda de Campeche, Mexico, and Hils syncline. Naturwissenschaften 85, 288. Illing, V.C., 1933. Migration of oil and natural gas. J. Inst. Petrol. 19(114), 229-274. Khelifa, A., Stoffyn-Egli, P., Hill, P.S., Lee K., 2005. Effects of salinity and clay type on oil-mineral aggregation. Marine Environmental Research 59, 235-254. Kokal, S.L., Sayegh, S.G., 1995. Asphaltenes: The Cholesterol of Petroleum, SPE 29787 presented at the SPE Middle East Oil Show, Bharain. Mar, 11-14. Krooss, B.M., Brothers, L., Engel, M.H., 1992. Geochromatography in petroleum migration: a review. In: England, A.J., Fleet, A.J. (Eds.), Petroleum Migration, vol. 59. Geological Society Special Publication, pp. 149–163. Lagaly, G., Ogawa, M., Dekany, I., 2006. Clay mineral organic interactions. In: Bergaya, F., Theng B.K.G., Lagaly, G. (Eds.), Handbook of Clay Science. Elsevier, Oxford, pp. 309-378. Larter,S.R. and Aplin, A.C., 1995. Reservoir Geochemistry: Methods, applications and opportunities. In: England, W.A., Cubitt, J. (Eds.) The Geochemistry of Reservoirs. Geological Society Special Publication, 5-32. Larter, S.R., Bowler, B.F.J., Li, M., Chen, M., Brincat, D., Bennett, B., Noke, K., Donohoe, P., Simmons, D., Kohnen, M., Allan, J., Telnaes, N., Horstad I., 1996. Molecular indicators of secondary oil migration distances. Nature 383, 593. Larter, S.R., Bowler, B.F., Clarke, E., Wilson, C., Moffatt, B., Bennett, B., Yardley, G., Carruthers, D., 2000. An experimental investigation of geochromatography during secondary migration of petroleum performed under subsurface conditions with a real rock. Geochemical Transactions. Li, M., Larter, S.R., Stoddart, D., Bjorùy, M., 1992. Liquid chromatographic separation schemes for pyrrolic and pyridinic nitrogen aromatic heterocycle fractions from crude oils suitable for rapid characterisation of geochemical samples. Analytical Chemistry 64, 1337. Li, M., Larter, S.R., Stoddart, D., Bjorùy, M., 1995. in The Geochemistry of Reservoirs, ed. W. A. England and J. Cubitt, Geological Society Special Publication, London. Li, M., Yao, H., Stasiuk, L.D., Fowler, M.G., Larter, S.R., 1997. Effect of maturity and petroleum expulsion on pyrrolic nitrogen compound yields and distributions in Duvernay Formation petroleum source rocks in central Alberta. Organic Geochemistry 26, 731. Li, M., Yao, H.X., Fowler, M.G., Stasiuk, L.D., 1998. Geochemical constraints on models for secondary petroleum migration along the upper Devonian Rimbey-Meadowbrook reef trend in central Alberta, Canada. Organic Geochemistry 29, 163. MacEwan, D.M., 1948. Complexes of clays with organic compounds, I, complex formation between montmorillonite and halloysite and certain organic liquids: Trans. Faraday Soc. 44, 349-367. Mackenzie, A.S., Lamb, N.A., Maxwell J.R., 1982. Steroid hydrocarbons and the thermal history of sediments. Nature 295, 223-226. Mackenzie, A.S., 1984. Applications of Bilogical Markers in Petroleum Geochemistry. Academic Press 1, 115-214. Mitchell, A.G., Hazell, L.B., Webb, K.J., 1990. Wettability determination: Pore surface analysis. Society of Petroleum Engineers, Paper No. 2050, 351–360. Narine, D.R., Guy, R.D., 1981. Interaction of some large organic cations with bentonite in dilute aqueous systems. Clays and Clay Minerals 29, 205-212. Olphen, H.V., Fripiat, J.J., 1979. Data Handbook for Clay Materials and other Non-Metallic Minerals. Pergamon Press, Oxford. Ourisson, G., Albrecht, P., Rohmer, M., 1982. The microbial original of fossil fuels. Scientific American 251, 44-51. Pan, C., Feng, J., Tian, Y., Yu, L., Luo, X., Sheng, G., Fu, J., 2005. Interaction of oil components and clay minerals in reservoir sandstones. Organic Geochemistry 36, 633-654. Peters, K.E., Walters, C.C., Moldowan, J.M., 1993. The Biomarker Guide. Biomarkers and Isotope in the Environment and Human History. Prentice Hall, Englewood Cliffs, NJ. Peters, K.E., Walters, C.C., Moldowan, J.M., 1993. The Biomarker Guide. Biomarkers and Isotopes in Petroleum Exploration and Earth History, Prentice Hall, Englewood Cliffs, NJ. Philp, R.P., 1985. Fossil Fuel Biomarkers---Applications and Spectra, 4th Edition. Elsevier, Tokyo. Popl, M., Dolansky, V., Mostecky J., 1974. Influence of the molecular structure of. aromatic hydrocarbons on their adsorptivity on alumina, Journal of Chromatography 91, 649-658. Radke, M., Welte, D.H., Willsch, H., 1982a. Geochemical study on a well in the Western Canada Basin: relation of the aromatic distribution pattern to maturity of organic matter. Geochimica et Cosmochimica Acta 46, 1-10. Radke, M., Willsch, H., Leythauser, D., Teichmull, M., 1982b. Aromatic components of coal: relation of distribution pattern to rank. Geochim Cosmochim Acta 46, 1831-1848. Radke, M., Welte, D.H., 1983. The methylphenanthrene index (MPI). A maturity parameter based on aromatic hydrocarbons. In: Bjoroy, M., Albrecht, C., Cornford, C. et al. (Eds.) Advances in Organic Geochemistry, John Wiley & Sons, New York, pp. 504-512 Radke, M., Willsch, H., Welte, D.H., 1984. Class separation of aromatic compound in rock extracts and fossil fuels by liquid chromatography. Anal. Chem. 56, 2538-2546. Radke, M., Welte, D.H., Willsch H., 1986. Maturity parameters based on aromatic hydrocarbons: influence of the organic matter type. Organic Geochemistry 10, 51-63. Radke, M., 1987. Organic Geochemistry of Aromatic Hydrocarbons. In: Brooks, J., Welte, D. (Eds.), Advances in Petroleum Geochemistry, London, pp. 141-208 Radke, M., 1988. Application of aromatic compound as maturity indicators in source rocks and crude oils. Marine and Petroleum Geology 5, 224-235. Requwjo, A.G., 1992. Quantitative analysis of triterpane and sterane biomarkers: Methodology and applications in molecular maturity studies. Biological Markers in Sediments and Petroleum. In: Moldowan, J.M., Albrecht, P.,Philp, R.P. ( Eds.), Biological Markers in Sediments and Petroleum. Englewood Cliffs, Prince Hall, pp. 223-240. Riediger, C.L., Brooks, P.W., Fowler, M.G., Snowdon, L.R., 1990. Lower and Middle Triassic source rock, thermal maturation, and oil-source rock correlation in the Peace River Embayment area, Alberta and British Columbia. Bulletin of Canadian Petroleum Geology 38a, 218-235. Schwark, L., Stoddart, D., Keuser, C., Spitthoff, B., Leythaeuser, D., 1997. A novel sequential extraction system for whole core plug extraction in a solvent flow-though cell –application to extraction of residual petroleum from an intact pore-system in secondary migration studies. Organic Geochemistry 26, 19–31. Seifert, W.K., Howells W.G., 1969. Interfacially active acids in a California crude oil. Isolation of carboxylic acids and phenols. Analytical Chemistry 41, 554 – 562. Seifert, W.K., Moldowan, J.M., 1978. Application of steranes, terpanes, and monoaromatics to the maturation, migration, and source of crude oils. Geochimica et Cosmochimica Acta 42, 77-95. Seifert, W.K., Moldowan, J.M., Jones, R.W., 1980. Application of biological marker chemistry to petroleum exploration. In: Proceedings of the Tenth World Petroleum Congress, Heyden & Son, Inc., Philadelphia, PA 425-440. Seifert, W.K., Moldowan, J.M., 1981. The effect of thermal stress on source-rock quality as measured by hopane stereochemistry. Physics and Chemistry on Earth 12, 229-237. Seifert, W.K., Moldowan, J.M., 1986. Use of biological markers in petroleum exploration. In: Johns R.B. (Ed.), Methods in Geochemistry and Geophysics, pp. 261-290. Stoddart, D.P., Hall, P., Larter, S.R., Brasher, J., Bjoroy, M., 1995. The reservoir geochemistry of the Eldfisk Field, Norwegian North Sea. In: Cubitt, J.M., England, W.A. (Eds.), The Geochemistry of Reservoirs, vol. 86. Geological Society Special Publication, pp. 257–281. Taylor, P., Larter, S., Jones, M., Dale, J., Horstad, I., 1997. The effect of oil/water/rock partitioning on the occurrence of alkylphenols in petroleum systems. Geochimica et Cosmochimica Acta 61, 1899. Theng, B.K.G., 1974. The Chemistry of Clay-Organic Reactions, 1st Edition. Wiley, New York. Turekian, K.K., 1968. Oceans, 1st Edition. Prentice-Hall Englewood Cliffs, NJ. Van Duin, A.C.T., Larter, S.R., 1998. Application of molecular dynamics calculations in the prediction of dynamical molecular properties. Organic Geochemistry 29, 1043-1050. Van Duin, A.C.T., Larter, S.R., 2001. Molecular dynamics investigation into the adsorption of organic compounds on kaolinite surfaces. Organic Geochemistry 32, 143-150. Volkman, J.K., 1988. Biological marker compounds as indicators of the depositional environments of petroleum source rocks. Geological Society Special Publication. Yamamoto, M., 1992. Fractionation of azaarenes during oil migration. Organic Geochemistry 19, 389. Zumberge, J.E., 1987. Terpenoid biomarker distributions in low maturity crude oils. Organic Geochemistry 11, 479-496. 林錦玲,1994,芳香烴化合物於地質化學上的應用研究. 國立成功大學化學研究所,碩士論文。 梁瑜玲,2002,甲苯在三種黏土礦物下長時間吸附機制. 國立台灣大學環境工程學研究所,碩士論文。 鄭艾玲,2001,天然氣在移棲過程中吸附及擴散作用之實驗模擬. 國立台灣大學地質科學研究所,碩士論文。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28481 | - |
| dc.description.abstract | 石油在二次移棲的過程中會導致成份的改變,一般相信地層中黏土礦物對石油中極性化合物的吸附是造成成份改變的因素之一,但是卻少有實驗研究證實黏土礦物在二次移棲過程中所扮演的角色。本研究利用伊朗的原油(API 33.5°)分別與高嶺土、蒙脫石以及伊萊石作用來探討黏土礦物對石油中飽和烴(SAT)、芳香烴(ARO)以及極性化合物(NSO)的影響。並利用高壓高溫的裝置,改變其反應時的溫度與壓力,來探討溫壓條件以及天然氣對吸附能力的影響。經過八天持續攪拌作用的石油經離心後,我們取出上層的石油進入氣相層析質譜儀(GC-MS)分析,並且將其中一小部份的石油,經過矽膠礬土淨化管柱的分離作用後,分別得到飽和烴(SAT)、芳香烴(ARO)、和極性化合物(NSO)的部份。濃縮稱重後的各樣品加入適量的二氯甲烷溶解後,則繼續進行GC-MS的分析。沉澱在瓶壁的黏土與剩下的油樣則繼續靜置使其作用。
從質譜分析的結果,我們發現就算連極性很小的飽和烴成份都會因黏土礦物的吸附而有些微的成份差異,因此我們利用幾個普遍且常用的生物指標m/z =191、217、231、253來檢驗黏土礦物對生物指標分佈的影響。發現大部份常用的成熟度參數並不會隨著黏土礦物吸附效應而失真,唯有Tricyclics/C30(17-α)hopane會隨著吸附的時間長短而呈顯著的變化,因此在應用此成熟度的參數時必須將黏土礦物的可能含量也計算進去以減小誤判的可能。而在芳香烴的化合物中我們的確看到了預期的比飽和烴顯著的吸附效應,而且不同的黏土礦物也影響了各個化合物中同分異構物(isomers)的分化係數。此外,溫度、壓力以及鹽水的存在都會讓黏土礦物對芳香烴的吸附產生複雜的成份變化。 長時間的持續靜置後,高嶺土、蒙脫石以及伊萊石的吸附都使Tricyclics/C30(17α)hopane持續下降,而且石油中飽和烴和芳香烴的吸附都還沒達到反應平衡的狀態。未來我們希望能模擬自然界的情況,去分析真正吸附在黏土礦物中的石油,藉由這些被強力吸附的化合物間分化係數的比例以及關係,以期增加未來在應用判斷二次移棲過程中的芳香烴和極性化合物(NSO)參數的精確性,並且希冀能利用分化效應去協助判斷石油可能的移棲路徑和距離。 | zh_TW |
| dc.description.abstract | The study investigates the compositional fractionation of oil during secondary migration, especially under the interactions between oil and clay minerals. Iran crude oil (API 33.5°) reacted with kaolinite, montmorillonite, and illite at 26℃ and 80℃ respectively, under 1atm and 3atm; saline water (20,000 ppm) was also added into the 26℃, 1atm system. All the samples were stirringly mixed for eight days then centrifuged to separate oil from clays. The rest of oil samples and clay minerals are setting in the sealed vials for continuing reaction. Liquid chromatography was used to separate crude oil into saturate, aromatic, and polar (NSO) fraction before analysis by GC-MS.
The Pr/Ph ratios of starting sample and 15 experimental aliquots are consistent with Type II carbonaceous source rock, suggesting that the ratio can still indicate its environment after interaction with clays during migration. Our observation indicates that slightly selective adsorptions did occur in all detected compounds relative to n-alkane in saturate fraction but commonly applied biomarker parameters such as Ts/(Ts+Tm), TA/(TA+MA), ββ/(αα+ββ), and 20S/(20S+20R) C29 steranes are no significant change after interacting with excessive amount of clay minerals. Only the tricyclics/17α (H)-hopanes ratios in m/z=191 show considerable fractionation and therefore, the use of this previously proposed maturity indicator should be cautious. In aromatic compounds, especially naphthalene, fluorene, dibenzothiophene, and phenanthrene, the result shows the co-precipitation of asphaltenes, the presence of saline water, and the adsorption of different clay minerals, may cause complex behavior of fractionation for isomers. For long-term experiments, we found that adsorption of saturate and aromatic compounds on the studied clays were still far from equilibrium. In contrast to the previous observation that clay minerals would adsorb large amount of heterocyclic (NSO) compounds at fast rate, the present study reveals a slight adsorption of some aromatic and saturate compounds at slower rate, which result in fractionation of some biomarkers. Continuing kinetic variations in saturate and aromatic fractions in longer time are expected. Our future work will focus on finding specific NSO compounds sensitive to adsorption to help model the migration distances of petroleum and correlate the petroleum with their source rock. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T00:09:31Z (GMT). No. of bitstreams: 1 ntu-96-R94224101-1.pdf: 4796048 bytes, checksum: 2791f01428c63017bd8e941d0d348f3d (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | Table of Contents
Acknowledgments I Chinese abstract II English abstract III List of Figures IV List of Tables V 1. Introduction 1 2. How petroleum components may interact with clay minerals 5 2.1 The structure and surface properties of kaolinite, montmorillonite, and illite 5 3. Samples and Experiments 9 3.1 Samples 9 3.2 Experimental Apparatus and procedures 10 3.3 Separation of oil fractions 12 3.3.1 Silica: alumina column 12 3.3.2 Saturate, aromatic, and polar (NSO) hydrocarbon fraction 12 3.4 GC and GC-MS analyses 13 3.5 Compound Identification 13 4. Results 15 4.1 General Remark 15 4.2 Slightly selective adsorptions in saturate fractions 17 4.2.1 n-Alkanes and acyclic isoprenoids 17 4.2.2 Terpane and steranes 17 4.2.3 Aromatic steroid 20 4.2.4 Selective adsorption of saturate isomers 22 4.3 Obvious selective adsorptions in aromatic fractions 23 4.3.1 Effect of gas-induced asphaltene precipitation on aromatic compounds 24 4.3.2 Effect of adsorptions of clay minerals on aromatic compounds 26 4.3.3 Effect of salinewater-saturated clays on aromatic compounds 28 4.4 Kinetics of clay adsorption 33 4.5 Summary of results 35 4.5.1 Saturate fractions 35 4.5.2 Aromatic fractions 35 5. Discussions 37 5.1 Effect of asphaltene precipitation 37 5.2 Effect of clay mineral adsorptions 37 5.3 The effect of asphaltene precipitation and clay adsorptions on the variation of biomarker parameters 39 5.3.1 n-Alkanes and acyclic isoprenoids 39 5.3.2 Terpanes 39 5.3.3 Steranes 40 5.3.4 Aromatic steroid 41 5.4 The effect of asphaltene precipitation and clay adsorptions on relative variation of aromatic hydrocarbons and isomers 43 5.4.1 The effect of asphaltene precipitation 43 5.4.2 The effect of clay mineral adsorption 44 5.4.3 Biomarkers in aromatic fractions 45 5.5 The effect of salinewater-saturated clay adsorptions on the variation of biomarker parameters 47 5.5.1 Saturated hydrocarbons 47 5.5.2 Aromatic hydrocarbons 48 5.5.3 The effect of salinity on oil/clay aggregates 48 5.6 The recovery efficiency of liquid chromatography 50 6. Conclusions 51 References 53 Appendix A 59 Appendix B 60 Appendix C 61 | |
| dc.language.iso | zh-TW | |
| dc.subject | 生物指標 | zh_TW |
| dc.subject | 石油 | zh_TW |
| dc.subject | 黏土礦物 | zh_TW |
| dc.subject | 二次移棲 | zh_TW |
| dc.subject | petroleum | en |
| dc.subject | selective adsorption | en |
| dc.subject | compositional fractionation | en |
| dc.subject | clay minerals | en |
| dc.subject | secondary migration | en |
| dc.title | 石油在二次移棲過程中黏土礦物的作用對其成分變化的影響 | zh_TW |
| dc.title | Effect of Clay Minerals on Petroleum Compositional Fractionation during Secondary Migration | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 鄧茂華(Mao-Hua Teng),翁榮南(Jung-Nan Oung),吳素慧(Suh-Huei Wu),黃得時(Ded-Shih Huang) | |
| dc.subject.keyword | 石油,黏土礦物,二次移棲,生物指標, | zh_TW |
| dc.subject.keyword | petroleum,secondary migration,clay minerals,compositional fractionation,selective adsorption, | en |
| dc.relation.page | 58 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-07-30 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 地質科學研究所 | zh_TW |
| 顯示於系所單位: | 地質科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 4.68 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
