請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28448
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 曲芳華 | |
dc.contributor.author | Yi-Yun Chen | en |
dc.contributor.author | 陳藝勻 | zh_TW |
dc.date.accessioned | 2021-06-13T00:08:34Z | - |
dc.date.available | 2007-07-31 | |
dc.date.copyright | 2007-07-31 | |
dc.date.issued | 2007 | |
dc.date.submitted | 2007-07-27 | |
dc.identifier.citation | Abler, M.L., and P.J. Green (1996) Control of mRNA stability in higher plants, in Post-transcriptional Control of Gene Expression in Plants (Filipowicz, W. and Hohn, T., eds), pp. 63–78, Kluwer Academic Publishers
Anderson, J. P., E. Badruzsaufari, P. M. Schenk, J. M. Manners, O. J. Desmond, C. Ehlert, D. J. Maclean, P. R. Ebert, and K. Kazana (2004) Antagonistic interaction between abscisic acid and jasmonate–ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell 16: 3460–79. Aravind, L., and E. V. Koonin (2000) Eukaryote-specific domains in translation initiation factors- implications for translation regulation and evolution of the translation system. Genome Res. 10:1172–1184. Aubourg, S., A. Picaud, M. Kreis, and A. Lecharny (1999) Structure and expression of three src2 homologues and a novel subfamily of flavoprotein monooxygenase genes revealed by the analysis of a 25 kb fragment from Arabidopsis thaliana chromosome IV. Gene 230:197–205. Bartel, P. L, C.-T Chien., R. Sternglanz, and S. Fields (1993) Elimination of false positives that arise in using the two-hybrid system. BioTechniques 14:920–924. Benes, C.H., N.Wu, A. E. H. Elia, T. Dharia, L. C. Cantley, and S. P. Soltoff (2005) The C2 domain of PKCδ Is a phosphotyrosine binding domain. Cell 121: 271–280. Bono, F., J. Ebert, L. Unterholzner, T. Güttler, E. Izaurralde, and E. Conti (2004) Molecular insights into the interaction of PYM with the Mago-Y14 core of the exon junction complex. EMBO Rep. 5: 304-310. Bostock, R. M. (2005) Signal crosstalk and induced resistance: straddling the line between cost and benefit. Annu. Rev. Phytopathol. 43: 545-580. Boufford, D. E., C.-F. Hsieh, T.-C. Huang, H. Ohashi, Y.-P. Yang, S.-Y. Lu, and S.-Y. Yang (1996) Flora of Taiwan vol. 2: 584. Retrieved April 20, 2007, from the World Wide Web: http://tai2.ntu.edu.tw/udth/bin/fot1.exe/browse?BID=1&page=584 Chang, S.-T., S.-Y. Wang, and Y.-H. Kuo (2003) Resources and bioactive substances from Taiwania (Taiwania cryptomerioides). J. Wood Sc. 49:1-4. Chen, Y.-R., J.-F. Shaw, M.-C. Chung, and F.-H. Chu (2007) Molecular identification and characterization of TcMAGO and TcY14 in Taiwania (Taiwania cryptomerioides) Tree Physiol. 27: 1261–1271. Chen, Y.-R., Y.-R. Lee, S.-Y. Wang, S.-T. Chang, J.-F. Shaw, and F.-H. Chu (2004) Establishment of expressed sequence tags from Taiwania (Taiwania cryptomerioides Hayata) seedling cDNA. Plant Sci. 167: 955-957. Cheong, Y. H., H.-S. Chang, R. Gupta, X. Wang, T. Zhu, and S. Luan (2002) Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiol. 129: 661-677. Culbertson, M.R., and P. F. Leeds (2003) Looking at mRNA decay pathways through the window of molecular evolution. Curr. Opin. Genet. Dev. 13:207–214. Czaplinski, K., Y. Weng, K. W. Hagan, and S. W. Peltz (1995) Purification and characterization of the Upf1 protein, a factor involved in translation and mRNA degradation. RNA 1: 610-623. Dammann, C., E. Rojo, and J. J. Sánchez-Serrano (1997) Abscisic acid and jasmonic acid activate wound inducible genes in potato through separate, organ specific signal transduction pathways. Plant J. 11:773–782. De La Cruz, J., D. Kressler, and P. Linder (1999) Unwinding RNA in Saccharomyces cerevisiae: DEAD-box proteins and related families. Trends Biochem. Sci. 24: 192–198. Dick, F. A., S. Karamanou, and B. L. Trumpower (1997) QSR1, an essential yeast gene with a genetic relationship to a subunit of the mitochondrial cytochrome bc1 complex, codes for a 60S ribosomal subunit protein. J. Biol. Chem. 272:13372–13379. Eisinger, D. P., F. A. Dick, and B. L. Trumpower (1997) Qsr1p, a 60S ribosomal subunit protein, is required for the joining of 40S and 60S subunits. Mol. Cell. Biol. 17:5136–5145. Fujii, H., P. E. Verslues, and J.-K. Zhu (2007) Identification of two protein kinases required for abscisic acid regulation of seed germination, root growth, and gene expression in Arabidopsis. Plant Cell 19: 485-494. Gadal, O., D. Strauss, J. Kessl, B. Trumpower, D. Tollervey, and E. Hurt (2001) Nuclear export of 60S ribosomal subunits depends on Xpo1p and requires a nuclear export sequence-containing factor, Nmd3p, that associates with the large subunit protein Rpl10p. Mol. Cell. Biol. 21: 3405-3415. Glazebrook, J. (2001) Genes controlling expression of defense responses in Arabidopsis – 2001 status. Curr. Opin. Plant Biol. 4:301–308. Greenwood, M., and A. Tsang (1991) Sequence and expression of annexin VII of Dictyostelium discoideum. Biochim. Biophys. Acta 1088: 429-432. Gutiérrez, R. A., G. C. MacIntosh and P. J. Green (1999) Current perspectives on mRNA stability in plants: multiple levels and mechanisms of control. Trends Plant Sci. 4:429-438. He, F., and A. Jacobson (1995) Identification of a novel component of the nonsense-mediated mRNA decay pathway by use of an interacting protein screen. Gene. Dev. 9:437–454. Hedges J., M. West and A. W Johnson (2005) Release of the export adapter, Nmd3p, from the 60S ribosomal subunit requires Rpl10p and the cytoplasmic GTPase Lsg1p. EMBO J. 24: 567-579. Hedges J., Y.-I Chen, M. West, C. Bussiere and A. W Johnson (2006) Mapping the functional domains of yeast NMD3, the nuclear export adapter for the 60S ribosomal subunit. J. Biol. Chem. 281:36579–36587. Ho, J. H. N., and A. W. Johnson (1999) NMD3 encodes an essential cytoplasmic protein required for stable 60S ribosomal subunits in Saccharomyces cerevisiae. Mol. Cell Biol. 19: 2389-2399. Ho, J. H. N., G. Kallstrom, and A. W. Johnson (2000) Nmd3p is a Crm1p-dependent adapter protein for nuclear export of the large ribosomal subunit. J. Cell Biol. 151:1057-1066. Hori, K., and Y. Watanabe (2005) UPF3 suppresses aberrant spliced mRNA in Arabidopsis. Plant J. 43:530-540. Hurley, J. H., and S. Misra (2000) Signaling and subcellular targeting by membrane-binding domains. Annu. Rev. Biophy. Biomelec. Struct. 29: 49-79. Isshiki, M., Y. Yamamoto, H. Satoh, and K. Shimamoto (2001) Nonsense-mediated decay of mutant waxy mRNA in rice. Plant Physiol. 125:1388–1395. Jensen, R.B., K. Lykke-Andersen, G. I. Frandsen, H. B. Nielsen, J. Haseloff, H. M. Jespersen, J. Mundy, and K. Skriver (2000) Promiscuous and specific phospholipids binding by domains in ZAC, a membrane-associated Arabidopsis protein with an ARF GAP zinc finger and a C2 domain. Plant Mol. Biol. 44: 799-814. Jofuku, K. D., R. D. Schipper, and R. B. Goldberg (1989) A frameshift mutation prevents Kunitz Trypsin inhibitor mRNA accumulation in soybean embryos. Plant Cell 1: 427-435. Johnson, A. W., E. Lund , and J. Dahlberg (2002) Nuclear export of ribosomal subunits. Trends Biochem.Sci. 127: 580-585. Johnston, M., S. Andrews, R. Brinkman, J. Cooper, H. Ding, J. Dover, Z. Du, A. Favello, L. Fulton, S. Gattung, C. Geisel, J. Kirsten, T. Kucaba, L. Hillier, M. Jier, L. Johnston, Y. Langston, P. Latreille, E. J. Louis, C. Macri, E. Mardis, S. Menezes, L. Mouser, M. Nhan, L. Rifkin, L. Riles, H. St. Peter, E. Trevaskis, K. Vaughan, D. Vignati, L. Wilcox, P. Wohldman, R. Waterston, R. Wilson, and M. Vaudin. (1994) Complete nucleotide sequence of Saccharomyces cerevisiae chromosome VIII. Science 265: 2077-2082. Kadlec, J., E. Izaurralde, and S. Cusack (2004) The structural basis for the interaction between nonsense-mediated mRNA decay factors UPF2 and UPF3. Nat. Struct. Mol. Biol. 11:330-337. Kallstrom, G., J. Hedges, and A. Johnson (2003) The Putative GTPases Nog1p and Lsg1p Are Required for 60S Ribosomal Subunit Biogenesis and Are Localized to the Nucleus and Cytoplasm, Respectively. Mol. Cell. Biol. 23: 4344-4355. Karl, T., K. Önder, R. Kodzius, H. Wimmer, A. Thür, H. Hundsberger, M. Löffler, T. Klade, M. Breitenbach, and L. Koller (1999) GRC5 and NMD3 function in translational control of gene expression and interact genetically. Curr. Genet. 34: 419–429 Kastenmayer, J. P., A. van Hoof, M. A. Johnson, and P. J.Green (1998) mRNA decay machinery in plants: approaches and potential components. NATO ASI (Series 104, Cellular Integration of Signaling Pathways in Plant Development) (Lo Schiavo, F. et al., eds): 125–133. Kinniburgh, A. J., L. E. Maquat, T. Schedl, E. Rachmilewitz, and J. Ross (1982) mRNA-deficient β0-thalassemia results from a single nucleotide deletion. Nucleic Acids Res. 10: 5421-5427. Kopka, J., C. Pical, A. M. Hetherington, and B. Muller-Rober (1998) Ca2+/phospholipid- binding (C2) domain in multiple plant proteins: novel components of the calcium-sensing apparatus. Plant Mol. Biol. 36: 627–37. Kumar, G., B. T. Krishnaprasad, M. Savitha, R. Gopalakrishna, K. Mukhopadhyay, G. Ramamohan, and M. Udayakumar (1999) Enhanced expression of heat shock proteins in thermotolerant lines of sunflower and their progenies selected on the basis of temperature induction response (TIR). Theor. Appl. Genet. 99: 359-367. Kuzmiak, H. A., and L. E. Maquat (2006) Applying nonsense-mediated mRNA decay research to the clinic: progress and challenges. Trends Mol. Med. 12: 306-316. Larkindale, J., J. D. Hall, M. R. Knight, and E. Vierling (2005) Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiol. 138: 882-897. Lee, C.-H , M.-H. Chan, Y.-N. Wang, and F.-H. Chu (2006) Gene investigation into the inner bark of Taiwania (Taiwania cryptomerioides). Bot. Stud. 47: 111-118. Leeds, P., S. W. Peltz, and A. Jacobson (1991) The product of the yeast UPF1 gene is required for rapid turnover of mRNAs containing a premature translational termination codon. Genes Dev. 5:2303-2314. Lei, E. P., and P. A. Silver (2002) Protein and RNA export from the nucleus. Developmental Cell 2: 261–272. Lei, E. P., C. A. Stern, B. Fahrenkrog, H. Krebber, T. I. Moy, U. Aebi, and P. A. Silver (2003) Sac3 is an mRNA export factor that localizes to cytoplasmic fibrils of nuclear pore complex. Mol. Biol. Cell 14: 836–847. Luban, J., and S.P. Goff (1995) The yeast two-hybrid system for studying protein interactions. Curr. Opin. Biotechnol. 6:59–64. Maquat, L. E. (2004) Nonsense-mediated mRNA decay: A comparative analysis of different species. Curr. Genomics 5:175-190. Maquat, L. E., A. J. Kinniburgh, E. A. Rachmilewitz, and J. Ross (1981) Unstable β-globin mRNA in mRNA-deficient β0 thalassemia. Cell 27: 543-553. Maquat, L. E., and G. G. Carmichael (2001) Quality control of mRNA function. Cell 104: 173–176. Meijer, H. J. G., and T. Munnik (2003) Phospholipid-based signaling in plants. Annu. Rev. Plant Biol. 54: 265-306. Mengiste, T., X. Chen, J. Salmeron, and R. Dietrich (2003) The BOS1 gene encodes an R2R3MYB transcription factor protein that is required for biotic and abiotic stress responses in Arabidopsis. Plant Cell 15:2551–2565. Metzstein, M. M., and M. A. Krasnow (2006) Functions of the nonsense-mediated mRNA decay pathway in Drosophila development. PLoS Genet. 12: 2143-2154. Montfort, M., A. Chaba´s, L. Vilageliu, and D. Grinberg (2006) Analysis of nonsense-mediated mRNA decay in mutant alleles identified in Spanish Gaucher disease patients. Blood Cells Mol. Dis. 36:46-52. Mortimer, R. K., J. M. Cherry, F. S. Dietrich, L. Riles, M. V. Olson, and D. Botstein (1994) “Genetic and Physical maps of Saccharomyces cerevisiae (Edition 12)'. pp. 374-377. Yeast Genetics and Molecular Biology Meeting Program and Abstracts. Bethesda, MD: The Genetics Society of America. Mozoruk, J., L. E. Hunnicutt, W. B. Hunter, and M. G. Bausher (2007) CsV03-3 is a member of a novel gene family from citrus that encodes a protein with DNA binding activity and whose expression is responsive to defense signals and abiotic stress. J. Plant Physiol. (in Press) Munnik, T., R. F. Irvine, and A. Musgrave (1998) Phospholipid signaling in plants. Biochim. Biophys. Acta 1389:222–72. Nalefski, E. A., and J. J. Falke (1996) The C2 domain calcium-binding motif: structural and functional diversity. Protein Sci. 5: 2375-2390. Niknam, V., M. Bagherzadeh, H. Ebrahimzadeh, and A. Sokhansanj (2004) Effect of NaCl on Biomass and Contents of Sugars, Proline and Proteins in Seedlings and Leaf Explants of Nicotiana tabacum Grown in vitro. Biol. Plant. 48: 613-615. Oufattole, M., J. H. Park, M. Poxleitner, L. Jiang, and J. C. Rogers (2005) Selective membrane protein internalization accompanies movement from the endoplasmic reticulum to the protein storage vacuole pathway in Arabidopsis. Plant Cell 17: 3066–3080. Ovchinnikov, Y. A., N. G. Abdulaev, A. S. Zolotarev, I. D. Artamonov, I. A., Bespalov, A. E. Dergachev, and M. Tsuda (1988) Octopus rhodopsin. Amino acid sequence deduced from cDNA. FEBS Lett. 232: 69-72. Pappan, K., S. Zheng, and X. Wang (1997) Identification and characterization of a novel plant phospholipase D that requires polyphosphoinositides and submicromolar calcium for activity in Arabidopsis. J. Biol. Chem. 272:7048–7054. Peltz, S. W., and A. Jacobson (1993) mRNA tumover in Saccharomyces cerevisiae. Pp. 291-328. In Belasco, J., and G. Brawerman, eds. Control of mRNA Stability. Academic press, New York. Pendle A. F., P. C. Gillian, R. Boon, D. Lewandowska, Y. W. Lam, J. Andersen, M. Mann, A. I. Lamond, J. W. S. Brown, and P. J. Shaw (2005) Proteomic analysis of the Arabidopsis nucleolus suggests novel nucleolar functions. Mol. Biol. Cell 16: 260–269. Reymond, P., and E. E. Farmer (1998) Jasmonate and salicylate as global signals for defense gene expression. Curr. Opin. Plant Biol. 1:404–411. Rizo, J., and T.C. Südhof (1998) C2-domains, structure and function of a universal Ca2þ-binding domain. J. Biol. Chem. 273:15879–15882. Saito, M., and T. Nakamura (2005) Two point mutations identified in emmer wheat generate null Wx-A1 alleles. Theor. Appl. Genet. 110: 276-282. Srikanthbabu, V., B. T. Krishnaprasad, R. Gopalakrishna, M. Savitha, and M. Udayakumar (2002) Identification of pea genotypes with enhanced thermotolerance using temperature induction response (TIR) technique. J. Plant Physiol. 159: 535-545. Takahashi, R., and E. Shimosaka (1997) cDNA sequence analysis and expression of two cold-regulated genes in soybean. Plant Sci. 123: 93-104. Thomas, F., and U. Kutay (2003) Biogenesis and nuclear export of ribosomal subunits in higher eukaryotes depend on the CRM1 export pathway. J. Cell Sci. 116: 2409-2419. Trotta, C. R., E. Lund, L. Kahan, A. W.Johnson ,and J. E.Dahlberg (2003) Coordinated nuclear export of 60S ribosomal subunits and NMD3 in vertebrates. EMBO J. 22: 2841-2851. Uetz, P., L. Giot, G. Cagney, T. A. Mansfield, R. S. Judson, J. R. Knight, D. Lockshon, V. Narayan, M. Srinivasan, P. Pochart, A. Qureshi-Emili, Y. Li, B. Godwin, D. Conover, T. Kalbfleisch, G. Vijayadamodar, M. Yang, M. Johnston, S. Fields, and J. M. Rothberg (2000) A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403: 623-627. Vrinten, P., Z. Hu, M.-A. Munchinsky, G. Rowland, and X. Qiu (2005) Two FAD3 Desaturase Genes Control the Level of Linolenic Acid in Flax Seed. Plant Physiol. 139: 79–87. Wang, X. (2000) Multiple forms of phospholipase D in plants: the gene family, catalytic and regulatory properties, and cellular functions. Prog. Lipid Res. 39: 109–49. Wang, X. (2001) Plant phospholipases. Annual Review of Plant Physiology and Plant Mol. Biol. 52:211–31. Ye, Q., and Worman, H. J. (1995) Protein-protein interactions between human nuclear lamins expressed in yeast. Exp. Cell Res. 219:292–298. Yoine, M., M.-aki Ohto, K. Onai, S. Mita, and K. Nakamura (2006b) The lba1 mutation of UPF1 RNA helicase involved in nonsense-mediated mRNA decay causes pleiotropic phenotypic changes and altered sugar signalling in Arabidopsis. Plant J. 47: 49-62. Yoine, M., T. Nishii, and K. Nakamura (2006a) Arabidopsis UPF1 RNA Helicase for Nonsense-mediated mRNA Decay is Involved in Seed Size Control and is Essential for Growth. Plant Cell Physiol. 47: 572-580. Zheng, L., R. Krishnamoorthi, M. Zolkiewski, and X. Wang (2000) Distinct Ca2+-binding properties of novel C2 domains of plant phospholipase Dα and β. J. Biol. Chem. 275: 19700–19706. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28448 | - |
dc.description.abstract | NMD3 (nonsense-mediated mRNA decay protein 3)為一細胞核質間的穿梭蛋白,將60 S核糖體從細胞核運送至細胞質,再回到細胞核。為了了解NMD3在演化及臺灣杉中所具之生理現象,我們從臺灣杉苗木選殖出的假定NMD3基因命名為TcNMD3。TcNMD3的轉譯區共有1548個核苷酸,此基因在臺灣杉苗木的基因體中存在三個套數。經由組織專一性的表現分析結果顯示TcNMD3基因在70年生臺灣杉的樹皮和頂端分生組織較其雄花與雌花中為多;而在四年生的臺灣杉苗木中,則是在葉和莖中較其在根中為多。
根據TcNMD3啟動子序列分析,我們對22天大的臺灣杉小苗做了不同的物理逆境、植物賀爾蒙濃度梯度及鹽逆境處理。TcNMD3的RNA表現量在6小時的400 μM 吲哚乙酸,600 μM 茉莉酸,400 μM 水楊酸,10 μM 離層酸和200 mM 氯化鈉處理下及72 hr光照和37 ℃處理下,比起控制組為增多。這個現象也許提示了TcNMD3和植物的生長發育(吲哚乙酸)、防禦機制(茉莉酸和水楊酸)與植物賀爾蒙所牽涉的訊息傳導(離層酸)有著直接或間接的關連性。 NMD3蛋白質主要特徵為在其胺基酸N端序列中四個Cys-X2-Cys結構,且在其C端中發現NLS和NES序列,此結果也符合NMD3在細胞核質間穿梭的角色。利用酵母菌雙雜合方法,以TcNMD3做釣餌,釣取獲得交互作用之蛋白質TcSRC2。TcSRC2蛋白質中的N端具C2功能區塊(C2 domain)屬於膜蛋白的一個特徵,因此,也使TcSRC2和穿梭於細胞核質間的TcNMD3有了合理的關連性。 | zh_TW |
dc.description.abstract | NMD3 (nonsense-mediated mRNA decay protein 3) is a shuttling protein between nucleus and cytoplasm. It helps export 60S ribosomal subunit from nucleus to cytoplasm and then is recycled to the nucleus. Putative NMD3 gene cloned from Taiwania seedling in this research was named TcNMD3 to elucidate the evolutional role and the physiological phenomenon in Taiwania. There are 1548 nucleotides in the coding region of TcNMD3. TcNMD3s are multiple copies in the Taiwania genome. By tissue-specific expression analysis, the TcNMD3 transcripts were more abundant in bark and apical meristem than in male and female flowers in mature trees. In seedlings, TcNMD3 transcripts are more abundant in leaves and stems than in roots.
According to the cis-elements analysis of TcNMD3, several physiological stress, pytohormone gradient concentration and salinity stress treatments were treated to Taiwania 22-d-old seedlings to profile the pattern of the TcNMD3 transcripts. The TcNMD3 transcripts were up-regulated by 6 hr of 400 μM IAA, 600 μM JA, 400 μM SA, 10 μM ABA, 200 mM NaCl treatments, 72hr light condition and treatment of 37℃. The results might mean that TcNMD3 has a direct or indirect connection with growth development (IAA), defense mechanism (JA and SA), and signal transduction (ABA). The main characteristic in NMD3 is four Cys-X2-Cys motifs in its N terminal region which is the zinc-binding motif, and the NLS and NES, also found in the C terminus of TcNMD3. These results are consistent with which NMD3 is a shuttling protein between nucleus and cytoplasm. By using the yeast two-hybrid method, TcSRC2 was the interacting protein with the TcNMD3 as a bait. The C2 domain in SRC2 is a feature belonged to membrane proteins, and this makes a possible connection to NMD3, a shuttling protein between nucleus and cytoplasm. [Keywords] NMD3, Taiwania, stress, phytohormone, yeast two-hybrid, C2 domain. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T00:08:34Z (GMT). No. of bitstreams: 1 ntu-96-R94625001-1.pdf: 985071 bytes, checksum: a4d7ab7122cea06437e94d2e9bb745db (MD5) Previous issue date: 2007 | en |
dc.description.tableofcontents | 口試委員會審定書 ………………………………………………….. i
誌謝 ...………………………………………………………………. ii 中文摘要 ……………………………………………………………... iii 英文摘要 ……………………………………………………………. iv 1. Introduction ……………………………………………………………… 1 1.1 Introduction to Taiwania …………...………………………...…… 1 1.2 Nonsense-mediated mRNA Decay (NMD)………..……….………… 2 1.3 NMD Related Protein UPF1…….…..………………………………… 3 1.4 Introduction to NMD3 .……………………………………. 4 1.4.1 Nuclear Transportation …………….…..…………………………… 4 1.4.2 NMD3 …………….…..…………………………… 4 2. Materials and Methods …………….……………………………………… 6 2.1 Plant material and growth conditions …………………………………….…. 6 2.2 RNA Extraction and Reverse Transcription Polymerase Chain Reactions ……6 2.3 Cis-Regulatory Elements Analysis of TcNMD3 ……….….…………….. 7 2.4 Molecular Cloning of TcNMD3 ……………….……….…………….. 8 2.5 Plasmid Construction …….………………………….…………….. 8 2.6. Phylogeny Analysis ….……………..……………………………… 8 2.7 Southern Blot Analysis ……..….………..…...………….…………….. 9 2.8 Northern Blot Analysis …….….………………..……….…………….. 10 2.9 Yeast Two-Hybrid Screen and Assay ..............……………………… 11 3. Results …………………………………………………………….. 11 3.1 Comparison of the TcNMD3 Coding Sequences ……....…….………... 11 3.1.1 Cloning TcNMD3 of Taiwania ………………………………………. 11 3.1.2 Amino Acid Sequences Alignment among NMD3 Homologs ……...… 12 3.2 Pairwise Comparisons of NMD3 Homologs ....……....…………... 12 3.3 Phylogeny ………………………………….……….....……....…………... 13 3.4 Southern Blot Analysis in Taiwania ………………………………..….. 13 3.5 Tissue Specific Profiling of TcNMD3 Transcripts ………………….….. 14 3.6 Cis-Regulatory Elements Analysis ………………………..………….…... 14 3.7 Differential expression of the TcNMD3 transcripts ………………….…... 15 3.7.1 Several plant hormones and chemicals concentration gradients ………… 15 3.7.1.1 IAA concentration gradient ……………………………………… 16 3.7.1.2 ABA concentration gradient …………………….....…………… 16 3.7.1.3 MeJA concentration gradient ………………………………...….... 16 3.7.1.4 SA concentration gradient ..………….………………………..…. 16 3.7.2 Physical Stress …………………………………………………………… 16 3.7.2.1 Water Stress……………… ………………………………………….. 16 3.7.2.2 Temperature……………… ………………………………………….. 16 3.7.2.3 Light ……………… ………………………………………….. 17 3.7.2.4 Wounding and Drought … ……………………………….…..…….. ….17 3.7.2.5 Salt … …………………………………………………….……………17 NaCl … …………………………………………………….………….. 17 CaCl2… …………………………………………………..……...…….. 17 3.8 Screening for TcNMD3 Interacting Proteins ….……………….…. 18 3.9 ONPG Assay ……….…………………………………..………….…... 19 4. Discussion ……..……………………………………………………………. 20 4.1 Connection between TcNMD3 and Phytohormone Signaling Pathway …… 20 4.2 Connection between TcNMD3 and Salinity Stress ………..……………. 23 4.3 Responses of the TcNMD3 Transcripts under Physiological Stresses … 24 4.3.1 Drought and Water Stress ……………………………………………… 24 4.3.2 Wounding ………………….……………………………………… 24 4.3.3 Light and Dark ………………….……………………………………… 25 4.3.4 Temperature …………….……………………………………… 25 4.4 TcSRC2 Is an Interacting Protein with TcNMD3 …………………………….25 5. References ……..…………………………………………………………… 28 6. Figures and Tables ……………………………………………………….. 38 | |
dc.language.iso | en | |
dc.title | 臺灣杉核質間穿梭蛋白TcNMD3之基因表現圖譜與分子特性之研究 | zh_TW |
dc.title | Expression Profiling and Molecular Characterization of Nuclear Export Adapter, TcNMD3, in Taiwania cryptomerioides Hayata | en |
dc.type | Thesis | |
dc.date.schoolyear | 95-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 吳素幸,葉國楨,陳振榮,楊健志 | |
dc.subject.keyword | NMD3,臺灣杉,逆境,植物賀爾蒙,酵母菌雙雜合,C2功能區塊, | zh_TW |
dc.subject.keyword | NMD3,Taiwania,stress,phytohormone,yeast two-hybrid,C2 domain, | en |
dc.relation.page | 37 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2007-07-30 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 森林環境暨資源學研究所 | zh_TW |
顯示於系所單位: | 森林環境暨資源學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-96-1.pdf 目前未授權公開取用 | 961.98 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。