Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28438Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 楊照彥(Jaw-Yen Yang) | |
| dc.contributor.author | Ji-Feng Chen | en |
| dc.contributor.author | 陳繼峰 | zh_TW |
| dc.date.accessioned | 2021-06-13T00:08:17Z | - |
| dc.date.available | 2008-07-30 | |
| dc.date.copyright | 2007-07-30 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-29 | |
| dc.identifier.citation | [1] E. M. Purcell, “Spontaneous emission probability at radio frequencies,” Physical Review, vol. 69, pp. 681 (1946).
[2] K. Ohtaka, “Energy band of photons and low-energy photon diffraction,” Physical Review B, vol. 19, pp. 5057-5067 (1979). [3] E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Physical Review Letters, vol. 58, pp. 2059-2062 (1987). [4] S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Physical Review Letters, vol. 58, pp. 2486-2489 (1987). [5] E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Physical Review Letters, vol. 67, pp. 3380-3383 (1991). [6] S. G. Johnson, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Guided modes in photonic crystal slabs,” Physical Review B, vol. 60, pp. 5751-5758 (1999). [7] O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science, vol. 284, pp.1819-1821 (1999). [8] S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and E. F. Scherer, “High Extraction Efficiency of Spontaneous Emission from Slabs of Photonic Crystals,” Physical Review Letters, vol. 78, pp. 3294-3297 (1997). [9] Aurélien David, Tetsuo Fujii, Brendan Moran, Shuji Nakamura, Steven P. DenBaars, and Claude Weisbuch, “Photonic crystal laser lift-off GaN light-emitting diodes,” Applied Physics Letters, vol. 88, 133514 (2006). [10] M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, Jeff F. Young, S. R. Johnson, Jim MacKenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Applied Physics Letters, vol. 70, pp. 1438-1440 (1997). [11] M. L. Povinelli, Steven G. Johnson, Shanhui Fan, and J. D. Joannopoulos, “Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap,” Physical Review B, vol. 64, 075313 (2001). [12] E. Yablonovitch, T. J. Gmitter, and K. M. Leung, “Photonic band structure: The face-centered-cubic case employing nonspherical atoms,” Physical Review Letters, vol. 67, pp. 2295-2298 (1991). [13] J. D. Joannopoulos, R. D. Mead, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, Princeton (1995). [14] K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and R. Sigalas, “Photonic band gaps in three dimensions: New layer-by-layer periodic structures,” Solid State Communications, vol. 89, pp. 413-416 (1994). [15] E. Özbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C. M. Soukoulis, C. T. Chan, and K. M. Ho, “Measurement of Three-Dimensional Band Gap in New Crystal Structure Made of Dielectric Rods,” Physical Review B, vol. 50, pp. 1945-1948 (1994). [16] S. G. Johnson and J. D. Joannopoulos, “Three-dimensional periodic dielectric layered structure with omnidirectional photonic band gap,” Applied Physics Letters, vol. 77, pp. 3490-3492 (2000). [17] B. T. Holland, C. F. Blanford, and A. Stein, “Synthesis of Macroporous Minerals with Highly Ordered Three-Dimensional Arrays of Spheroidal Voids,” Science, vol. 281, pp. 538-540 (1998). [18] J. E. G. J. Wijnhoven and W. L. Vos, “Preparation of Photonic Crystals Made of Air Spheres in Titania,” Science, vol. 281, pp. 802-804 (1998). [19] F. Romanato, R. Kumar, E. Di Fabrizio, “Interface lithography: a hybrid lithographic approach for the fabrication of patterns embedded in three-dimensional structures,” Nanotechnology, vol. 16, pp. 40-46 (2005). [20] E. Lidorikis, M. L. Povinelli, S.G. Johnson, and J. D. Joannopoulos, “Polarization-Independent Linear Waveguides in 3D Photonic Crystals,” Physical Review Letters, vol. 91, 023902 (2003). [21] Minghao Qi, Elefterios Lidorikis, Peter T. Rakich, Steven G. Johnson, J. D. Joannopoulos, Erich P. Ippen and Henry I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature, vol. 429, pp. 538-542 (2004). [22] S. Noda, N. Yamamoto, and A. Sasaki, “New realization method for three-dimensional photonic crystal in optical wavelength region,” Japeness Journal of Applied Phyics, Part2 vol. 35, pp. L909-L912 (1996). [23] N. Yamamoto, S. Noda and A. Chutinan, “Development of one period of a three-dimensional photonic crystal in the 5-10μm wavelength region by wafer fusion and laser beam diffraction pattern observation techniques,” Japeness Journal of Applied Phyics, Part2 vol. 37, pp. L1052-L1054 (1998). [24] Zhi-Yuan Li and Kai-Ming Ho, “Waveguides in three-dimensional layer-by-layer photonic crystals,” Journal of Optical Society America B, vol. 20, pp. 801- 809 (2003). [25] Mehmet Bayindir, E. Özbay, B. Temelkuran, M. M. Sigalas, C. M. Soukoulis, R. Biswas, and K. M. Ho, “Guiding, bending, and splitting of electromagnetic waves in highly confined photonic crystal waveguides,” Physical Review B, vol. 63, 081107 (2001). [26] Mehmet Bayindir, E. Özbay, “Dropping of electromagnetic waves through localized modes in three-dimensional photonic band gap structures,” Applied Physics Letters, vol. 81, pp. 4514-4516 (2002). [27] S. Noda, M. Imada, M. Okano, S. Ogawa, M. Mochizuki, and A. Chutinan, “Semiconductor three-dimensional and two-dimensional photonic crystals and devices,” IEEE Journal of Quantum Electronics, vol. 38, pp. 726-735 (2002). [28] S. Ogawa, M. Imada, S. Yoshimoto, M. Okano, S. Noda, “Control pf light emission by 3D photonic crystals,” Science, vol. 305, pp. 227-229 (2004). [29] K. M. Leung and Y. F. Liu, “Full vector wave calculation of photonic band structures in face-centered-cubic dielectric media,” Physical Review Letters, vol. 65, pp. 2646-2649 (1990). [30] K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Physical Review Letters, vol. 65, pp. 3152-3155 (1990). [31] K. Sokoda, “Symmetry, degeneracy, and uncoupled modes in two-dimensional photonic lattices,” Physical Review B, vol. 52, pp. 7982-7986 (1995). [32] N. Vats, S John, and K. Busch, “Theory of fluorescence in photonic crystals,” Physical Review A, vol. 65, 043808 (2002). [33] J. E. Sipe, “Vector k•p approach for photonic band structures,” Physical Review E, vol. 62, pp. 5672-5677 (2000). [34] Yee, K. S., “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Transaction Antannas and Propagation, vol. 14, pp. 302-307 (1966). [35] A. Mekis, J. C.Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High Transmission through Sharp Bends in Photonic Crystal Waveguides,” Physical Review Letters, vol. 77, pp. 3787-3790 (1996). [36] G. Tayeb and D. Maystre, “Scattering by a random set of parallel cylinders,” Journal of Optical Society America A, vol. 11, pp. 2526-2538 (1997). [37] R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, and O. L. Alerhand, “Accurate theoretical analysis of photonic band-gap materials,” Physical Review B, vol. 48, pp. 8434-8437 (1993). [38] François Delyon, Michel Duneau, “Computation of eigenmodes of photonic crystals by inversion of the Maxwell operator,” Journal of Computational Physics, vol. 207, pp. 375-387 (2005). [39] E. R. Davidson, “The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices,” Computational Physics, vol. 17, pp. 87-94 (1975). [40] G. L. G. Sleijpen and H. A. van der Vorst, “A Jacobi-Davidson Method,” SIAM Journal on Scientific Computing, vol. 15, pp. 62-76 (1994). [41] S. G. Johnson and J. D. Joannopoulos, “Block−iterative frequency−domain methods for Maxwell's equations in a planewave basis,” Optics Express, vol. 8, pp. 173-190 (2001). [42] S. G. Johnson and J. D. Joannopoulos, The MIT Photonic-Bands Package, http://ab-initio.mit.edu/mpb/ [43] C. Guiffaut, K. Mahdjoubi, “A parallel FDTD algorithm using the MPI library,” IEEE Atennas and Propagation Magazine, vol. 43, pp. 94-103 (2001). [44] N. W. Ashcroft and N. D. Mermin, Solid State Physics, Holt Saunders, Philadelphia (1976). [45] K. Ohtaka and Y. Tanabe, “Photonic band using vector spherical waves. I. various properties of Bloch electric fields and heavy Photons,”Journal of Physical Society of Japan, vol. 65, pp. 2265-2275 (1996) [46] J. Jin, The Finite-Element Method in Electromagnetics, Wiley, New York, Chap. 5, 7 (1993). [47] P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization, Academic, London (1981). [48] J. J. More and D. J. Thuente, “Line search algorithms with guaranteed sufficient decrease,” ACM Transaction Math. Software, vol. 20, pp. 286-307 (1994). [49] A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, Boston and London (2000). [50] G. Mur, “Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic field equations,” IEEE Transaction Electromagnetic Compatibility, vol. 23, pp. 377-382 (1981). [51] J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” Journal of Computational Physics, vol. 114, pp. 185-200 (1994). [52] Y-C. Kao and R. G. Atkins, “A finite-difference time-domain approach for frequency selective surfaces at oblique incidence,” Proceedings of the 1996 IEEE Antennas and Propagation Society International Symposium, Baltimore, MD, pp. 1432-1435 (1996). [53] J. A. Roden, S. D. Gedney, M. P. Kesler, J. G. Maloney, P. H. Harms, “Time-domain analysis of periodic structures at oblique incidence: Orthogonal and nonorthogonal FDTD implementation,” IEEE transaction Microwave Theory and Techniques, vol. 46, pp. 420-427 (1998). [54] Peter S. Pacheco, Parallel Programming with MPI, Morgan Kaufmann Publishers, San Francisco (1997). [55] Michael J. Quinn, Parallel Programming in C with MPI and OpenMP, McGraw-Hill, New York (2004). [56] E. Istrate and E. H. Sargent, “Photonic crystal heterostructures ─ resonant tunnelling, waveguides and filters,” Journal of Optics A: Pure and Applied Optics, vol. 4, pp. S242-S246 (2002). [57] M. Iida, M. Tani, K. Sakai, M. Watanabe, H. Kitahara, T. Tohme, and M. W. Takeda, “Planar Defect Modes Excited at the Band Edge of Three-dimensional Photonic Crystals,” Journal of Physical Society of Japan, vol. 73, pp. 2355-2357 (2004). [58] David J. Griffiths, “Introduction to Electrodynamics,” 3rd edition, Prentice-Hall, New Jersey (1999). [59] T. Janssen, Crystallographic groups, North-Holland, Amsterdam (1973). [60] P. Kopperschmidt, “Tetragonal photonic woodpile structures,” Applied Physics B, vol. 76, pp. 729-734 (2003). [61] Sakurai, J. J., Advanced Quantum Mechanics, Addision-Wesley, London (1982). [62] Jackson J. D., Classical Electrodynamics, Wiley, New York (1975). [63] Y. Xu, J. S. Vučković, R. K. Lee, O. J. Painter, A. Scherer, and A. Yariv, “Finite-difference time-domain calculation of spontaneous emission lifetime in a microcavity,” Journal of Optical Society of America, vol. 16, pp. 465-474 (1999). [64] R. J. Glauber and M. L. Lewenstein, “Quantum optics of dielectric media,” Physical Review A, vol. 43, pp. 467-491 (1991). [65] T. Suzuki and Paul K. L. Yu, “Emission power of an electric dipole in the photonic band structure of the fcc lattice,” Journal of Optical Society of America, vol. 12, pp. 570-582 (1995). [66] L. Catarinucci, P. Palazzari, L. Tarricone, “A parallel variable-mesh FDTD algorithm for the solution of large electromagnetic problems,” Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (2005). [67] E. A. Hinds, Cavity Quantum Electrodynamics, edited by P. R. Berman, Academic, New York (1994). [68] J. K. Hwang, H. Y. Ryu, and Y. H. Lee, “Spontaneous emission rate of an electric dipole in a general microcavity,” Physical Review B, vol. 60, pp. 4688-4695 (1999). [69] Hermamn A. Haus, Waves and Fields in Optoelectronics, Chap. 3, Prentice-Hall, New Jersey (1984). [70] K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, “Microassembly of semiconductor three-dimensional photonic crystals,” Nature, vol. 2, pp. 117-121 (2003). [71] J. Hama and M. Watanabe, “General formulae for the special points and their weighting factors in k-space integration,” Journal of Physics: Condensed Matter, vol. 4, pp. 4583-4594 (1992). [72] Peter. E. Blöchl, O. Jepsen, and O. K. Andersen, “Improved tetrahedron method for Brillouin-zone integrations,” Physical Review B, vol. 49, pp. 16223-16233 (1994). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28438 | - |
| dc.description.abstract | 本論文主要探討三維層疊式(layer-by-layer)光子晶體,在加入各種面缺陷(planar defects)結構後的穿透(transmission)及放射(emission)特性。文中利用三維平面波展開法及超晶格(supercell)來求得缺陷結構的特徵模態(eigen-mode);並利用三維時域有限差分法配合平行計算程式來求取各種結構的穿透頻譜和放射頻譜。由頻譜分析和垂直向共振模場我們可以清楚地得知,面缺陷的特徵模態可分為缺陷共振模(defect mode)和帶緣共振模(band-edge resonant mode)兩種。前者只在缺陷層內以共振腔的形式存在;後者除了在缺陷層內形成共振腔外,還會在缺陷層附近的光子晶體結構產生駐波。
利用三維層疊式光子晶體可以改變自發性放射(spontaneous emission),不同偏極化以及位於不同位置的耦極輻射源,都具有不一樣的放射頻譜。研究顯示,在全方位光子能隙的頻率範圍內,任何偏極化方向、任何位置上的耦極,其自發性放射率都會被強烈地抑制;在帶緣頻率(band-edge frequency)上則依耦極偏極化方向和位置而有不同的放射加強。雖然帶緣模態可以加強自發性放射率,但是卻降低了光取出效率。改用具有面缺陷結構的層疊式光子晶體,不但可以在一定頻段範圍內提供很大的放射改變因子,並且可以藉由面缺陷的垂直向共振效應來提高光取出效率。 | zh_TW |
| dc.description.abstract | This thesis studies about the transmission and emission properties of various planar defects in the three-dimensional (3D) layer-by-layer photonic crystal. Two numerical methods have been employed with parallel programming for electromagnetic simulation. One is the 3D plane-wave expansion (PWE) method with supercell technique, which is used for finding eigen-modes of defects. The other is the 3D finite-difference time-domain (FDTD) method, which can simulate the time response and transmission or emission spectrum. Two different kinds of resonant modes, the defect mode and the band-edge resonant mode, have been clarified by spectrum analysis and calculated mode profiles. While the former appears only inside the cavity located at the defect layer, the latter appears not only in the defect layer but also with the standing wave concentrated in the dielectric or the air part of a photonic crystal.
The finite three-dimensional layer-by-layer photonic crystal is shown to drastically modify the spontaneous emission rate of an embedded dipole. Simulation shows that the emission spectra are quite different when the position or polarization of the dipole is changed. However, there is always strong suppression of spontaneous emission in the frequency range of complete photonic bandgap (PBG). On the other hand, the emission rate can be enhanced by the large photonic density of state (DOS) at the band edges. Although we can observe high modification factor of spontaneous emission with dielectric or air band-edge modes, the light extraction is lower than that of the free-space radiation. Instead, by appropriately employing a planar defect structure we obtain not only strong enhancement of emission at a frequency range but also large extraction efficiency due to the vertical resonance effect in the defect layer. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T00:08:17Z (GMT). No. of bitstreams: 1 ntu-96-D91543008-1.pdf: 7884514 bytes, checksum: 9ad6939e711a8fc17f9a254a320dd1e0 (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 誌謝 ……… ii
中文摘要 ………iii 英文摘要 ……… iv 目錄 ……… v 圖目錄 ……… viii 表目錄 ……… xi 第一章 緒論 ……… 1 1.1研究背景 ……… 1 1.2文獻回顧 ……… 2 1.3論文範疇 ……… 6 第二章 理論與數值方法 ……… 7 2.1平面波展開法 ……… 7 2.2區塊雷利商數疊代法 ……… 9 2.3時域有限差分法 ……… 12 2.3.1 Yee演算法下的Maxwell方程式 ……… 12 2.3.2波源條件 ……… 14 2.3.3邊界條件 ……… 16 2.4平行計算 ……… 21 2.4.1資料拓樸 ……… 21 2.4.2平行計算效率分析 ……… 25 第三章 三維層疊式光子晶體之能帶結構與穿透頻譜 ……… 28 3.1能帶結構 ……… 28 3.1.1單位晶胞 ……… 28 3.1.2單位晶胞的選擇與能帶計算 ……… 29 3.2穿透頻譜 ……… 32 3.3面缺陷結構 ……… 36 3.3.1共振穿隧效應 ……… 37 3.3.2 FDTD與PWE的超晶胞 ……… 39 3.3.3 epsilon_[d]-型面缺陷的能帶與頻譜分析 ……… 40 3.3.4 a_[d]-型面缺陷的能帶與頻譜分析 ……… 45 3.3.5 h_[d]-型面缺陷的能帶與頻譜分析 ……… 52 3.3.6 delta-型面缺陷的能帶與頻譜分析 ……… 57 3.4結語 ……… 59 第四章 三維層疊式光子晶體之自發性放射頻譜 ……… 61 4.1物質與輻射場的相互作用 ……… 61 4.1.1由量子理論探討自發性放射 ……… 62 4.1.2由古典理論探討自發性放射 ……… 64 4.2放射頻譜 ……… 66 4.2.1平行金屬板 ……… 67 4.3三維層疊式光子晶體內的自發性放射 ……… 71 4.4 型面缺陷結構的放射頻譜分析 ……… 79 4.4.1放射頻譜與模場分佈 ……… 80 4.4.2光取出效率 ……… 84 4.4.3改變堆疊數、橫向週期的影響 ……… 85 4.4.4加入基板的影響 ……… 89 4.5 型面缺陷結構的放射頻譜分析 ……… 93 4.6結語 ……… 100 第五章 結論與未來展望 ………102 5.1結論 ……… 102 5.2未來展望 ……… 103 參考文獻 ……… 105 | |
| dc.language.iso | zh-TW | |
| dc.subject | 平行計算 | zh_TW |
| dc.subject | 耦極輻射 | zh_TW |
| dc.subject | 三維層疊式光子晶體 | zh_TW |
| dc.subject | 全方位光子能隙 | zh_TW |
| dc.subject | 面缺陷 | zh_TW |
| dc.subject | 時域有限差分法 | zh_TW |
| dc.subject | 穿透頻譜 | zh_TW |
| dc.subject | 缺陷共振模 | zh_TW |
| dc.subject | 帶緣共振模 | zh_TW |
| dc.subject | 自發性放射 | zh_TW |
| dc.subject | 放射頻譜 | zh_TW |
| dc.subject | 光取出效率 | zh_TW |
| dc.subject | emission spectrum | en |
| dc.subject | transmission spectrum | en |
| dc.subject | defect mode | en |
| dc.subject | band-edge resonant mode | en |
| dc.subject | spontaneous emission | en |
| dc.subject | dipole radiation | en |
| dc.subject | extraction efficiency | en |
| dc.subject | complete PBG | en |
| dc.subject | 3D layer-by-layer photonic crystal | en |
| dc.subject | planar defect | en |
| dc.subject | FDTD | en |
| dc.subject | parallel computation | en |
| dc.title | 三維層疊式光子晶體之穿透與放射頻譜計算分析 | zh_TW |
| dc.title | Computation and Analysis for Transmission and Emission Spectra of Three-dimensional Layer-by-layer Photonic Crystals | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 張家歐(Chia-Ou Chang),張宏鈞(Hung-Chun Chang),邱奕鵬(Yih-Peng Chiou),陳旻宏(Min-Hung Chen) | |
| dc.subject.keyword | 三維層疊式光子晶體,全方位光子能隙,面缺陷,時域有限差分法,平行計算,穿透頻譜,缺陷共振模,帶緣共振模,自發性放射,耦極輻射,放射頻譜,光取出效率, | zh_TW |
| dc.subject.keyword | 3D layer-by-layer photonic crystal,complete PBG,planar defect,FDTD,parallel computation,transmission spectrum,defect mode,band-edge resonant mode,spontaneous emission,dipole radiation,emission spectrum,extraction efficiency, | en |
| dc.relation.page | 110 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-07-30 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 應用力學研究所 | zh_TW |
| Appears in Collections: | 應用力學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-96-1.pdf Restricted Access | 7.7 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
