請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28419完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳奕君 | |
| dc.contributor.author | Da-Wei Liu | en |
| dc.contributor.author | 劉大維 | zh_TW |
| dc.date.accessioned | 2021-06-13T00:07:45Z | - |
| dc.date.available | 2015-01-01 | |
| dc.date.copyright | 2011-08-10 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-05 | |
| dc.identifier.citation | 第一章 參考文獻
[1-1] 林慧萍編著, “替代能源潛力無窮” Compotech Asia. 2007 八月號特輯專文. [1-2] 吳國豪,“各類太陽能電池原理簡介”光芒學術期刊.3 (2009) 6 月. [1-3] 蔡進譯, “超高效率太陽電池-從愛因斯坦的光電效應談起” 物理雙月刊 27 (2005). [1-4] 楊素華,蔡泰成, “太陽能電池” 科學發展 390 (2005) 6 月. [1-5] M.A. Green, “Photovoltaics: technology overview” Energy Policy 28 (2000) 989-998 [1-6] 王孟傑,” 市場環境劇變下看 CIGS 商業化之發展”工業材料雜誌 276 (2009) 12 月. [1-7] M.Gratzel, “ Photovoltaic and photoelectrochemical conversion of solar energy ” Phil.Trans.R.Soc.A .365 (2007) 993–1005 [1-8] B.ORegan, M.Gratzel,“ A low-cost, high efficiency solar cell based on dye-sensitized colloidal TiO 2 films ”Nature. 353 (1991) 737-740. [1-9] M.K.Nazeeruddin, A.Kay, I.Rodicio, R.Humphry-Baker, E.Mueller, P.Liska, N.Vlachopoulos, M.Gratzel,” Conversion of light to electricity by cis-X 2 bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge- transfer sensitizers (X = Cl - , Br - , I - , CN - , and SCN - ) on nanocrystalline titanium dioxide electrodes”, J.Am.Chem.Soc.115 (1993) 6382-6390. [1-10]M.K. Nazeeruddin, F.D.Angelis , S.Fantacci, A.Selloni, G.Viscardi, P.Liska, S.Ito, B.Takeru and M.Gratzel,” Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers ” J.Am.Chem.Soc.127 (2005) 16835-16847. 28 [1-11] L.L.Kazmerski,”Photovoltaics: A review of cell and module technologies” Renewable and Sustainable Energy Review. 1 (1997) 71. [1-12] G.Dennler, C.Lungenschmied, H.Neugebauer, N.S.Sariciftci, M. Latreche, G.Czeremuszkin and M.R.Wertheimer,”A new encapsulation solution for flexible organic solar cells ”Thin Solid Films. 511 (2006) 349-353. [1-13] C.W.Tang,”Two-layer organic photovoltaic cell”Appl.Phys.Lett. 48 (1986) 183-185. [1-14] 莊嘉琛,“太陽能工程-太陽電池篇”全華科技圖書股份有限公司(2005). [1-15] L.Kazmerski,”NREL compilation of best research solar cell. efficiencies ” National Renewable Energy Laboratory (NREL). (2011). [1-16] M.Gratzel, “ Solar energy conversion by dye-sensitized photovoltaic cells ” Inorg.Chem .44 (2005) 6841−6851. [1-17] M.Gratzel,“ Dye-sensitized solar cells ” Journal of Photochemistry and Photobiology C: Photochemistry Reviews .4 (2003) 145–153. [1-18] D.Cahen and G.Hodes, M.Gratzel, J.F.Guillemoles, I.Riess, “ Nature of photovoltaic action in dye-sensitized solar cells “J.Phys.Chem.B.104 (2000) 2053–2059. [1-19] A.Hagfeldt,M.Gratzel,“ Molecular photovoltaics ” Acc.Chem.Res.33 (2000) 269-277. [1-20] S.Y.Huang ,G.Schlichthorl, A.J.Nozik ,M.Gratzel,and A.J. Frank, “ Charge recombination in dye-sensitized nanocrystalline TiO 2 solar cells ” J.Phys.Chem.B.101 (1997) 2576-2582. [1-21] M.Gratzel,“ Photoelectrochemical cells ” Nature .414 (2001) 338-344. 29 [1-22] 黃敬佩,”ITO導電玻璃及相關透明導電膜之原理及應用”勝華科技股份有 限公司 (2006). [1-23] M.G.Kang, N.Park, K.S.Ryu, S.H.Chang, K.J.Kim,“ A 4.2% efficient flexible dye-sensitized TiO 2 solar cells using stainless steel substrate ” Solar Energy Materials & Solar Cells. 90 (2006) 574–581. [1-24] M.Gratzel,” High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal ” Chem.Commun. (2006) 4004–4006. [1-25] J.H.Park, Y.Jun, H.G.Yun, S.Y.Lee ,A.M.G.Kang,” Fabrication of an efficient dye-sensitized solar cell with stainless steel substrate “Journal of The Electrochemical Society.155 (2008) 145-149. [1-26] R.Steim, P.Schilinsky, S.A.Choulis, C.J.Brabec,”Flexible polymer photovoltaic modules with incorporated organic bypass diodes to address module shading effects” Solar Energy Materials & Solar Cells. 93 (2009) 1963–1967. [1-27] http://www.display-all.com/index.php?language_page=taiwan [1-28] R.Hattori, H.Goto,” Carrier leakage blocking effect of high temperature sputtered TiO 2 film on dye-sensitized mesoporous photoelectrode ” Thin Solid Films.515 (2007) 8045–8049. [1-29] H.Yu, S.Zhang, H.Zhao, G.Will, P.Liu,” An efficient and low-cost TiO 2 compact layer for performance improvement of dye-sensitized solar cells” Electrochimica Acta. 54 (2009) 1319–1324. [1-30] J.Xia, N.Masaki, K.Jiang,and S.Yanagida,“ Sputtered Nb 2 O 5 as a novel blocking layer at conducting glass/TiO 2 interfaces in dye-sensitized ionic 30 liquid solar cells “ J.Phys.Chem.C. 111 (2007) 8092-8097. [1-31] L.Kavan and M.Gratzel,“ Highly efficient semiconducting TiO 2 photoelectrodes prepared by aerosol pyrolysis” Electrochimico Acta 40 (1995) 643-652. [1-32] W.Y.Gan, S.W.Lam, K.Chiang, R.Amal, H.Zhao and M.P.Brungs,“ Novel TiO 2 thin film with non-UV activated superwetting and antifogging behaviours ” J.Mater.Chem.17 (2007) 952–954. [1-33]M.Thelakkat, C.Schmitz and H.W.Schmidt,“ Fully vapor deposited thin layer Titanium dioxide solar cells” Adv.Mater.14 (2002) 577-581 [1-34] B.Peng, G.Jungmann, C.Jager, D.Haarer, H.W.Schmidt, M.Thelakkat,” Systematic investigation of the role of compact TiO 2 layer in solid state dye-sensitized TiO 2 solar cells” Coordination Chemistry Reviews. 248 (2004) 1479–1489. [1-35] Petra J. Cameron and Laurence M. Peter, “Characterization of titanium dioxide blocking layers in dye-sensitized nanocrystalline solar cells”, J. Phys.Chem.B.107 (2003) 14394-14400. [1-36] S.Ferrere, A.Zaban and A.Gregg,” Dye sensitization of nanocrystalline tin oxide by perylene derivatives” J.Phys.Chem.B.101 (1997) 4490–4493. [1-37] L.Vayssieres, K.Keis, S.E.Lindquist and A.Hagfeldt,“ Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO ” J.Phys.Chem.B.105 (2001) 3350–3352. [1-38] M.Y.ElZayat ,A.O.Saed and M.S.ElDessouki,“ Photoelectrochemical 31 properties of dye sensitized Zr-doped SrTiO 3 electrodes ” International Journal of Hydrogen Energy 23 (1998) 259-266. [1-39] U.Diebold,“ The surface science of titanium dioxide ” Surface Science Reports. 48 (2003) 53-229. [1-40] S. K.Deb,“ Dye-sensitized TiO 2 thin-film solar cell research at the national renewable energy laboratory” Solar Energy Materials & Solar Cells 88 (2005) 1–10. [1-41] N.-G.Park, J.van deLagemaat and A.J.Frank,” Comparison of dye- sensitized rutile- and anatase-based TiO 2 solar cells “ J.Phys.Chem.B .104 (2000) 8989-8994. [1-42] M.GoHmez,J.Rodriguez,S.Tingry,A.Hagfeldt,S.-E.Lindquist,C.G. Granqvist,” Photoelectrochemical effect in dye sensitized sputter deposited Ti oxide films :The role of thickness-dependent roughnessand porosity” Solar Energy Materials & Solar Cells. 59 (1999) 277-287. [1-43] M.G.Kang, K.S.Ryu, S.H.Chang, N.G.Park, J.S.Hong, and K.J.Kim, “ Dependence of TiO 2 film thickness on photocurrent-voltage characteristics of dye-sensitized solar cells” Bull. Korean Chem. Soc. 25 (2004) 5-7. [1-44] C.Y.Huang, Y.C.Hsu, J.G.Chen, V.Suryanarayanan, K.M.Lee, K.C.Ho, “ The effects of hydrothermal temperature and thickness of TiO 2 film on the performance of adye-sensitized solar cell” Solar Energy Materials & Solar Cells. 90 (2006) 2391–2397. [1-45] S.Ito, T.Kitamura,Y.Wada,S.Yanagida,”Facile fabrication of mesoporous TiO 2 electrodes for dye solar cells: chemical modification and 32 repetitive coating“ Solar Energy Materials & Solar Cells. 76 (2003) 3-13. [1-46] S.Hore, C.Vetter, R.Kern, H.Smit, A.Hinsch,“ Influence of scattering layers on efficiency of dye-sensitized solar cells ” Solar Energy Materials & Solar Cells.90 (2006) 1176–1188. [1-47] S.Ngamsinlapasathian, T.Sreethawong, Y.Suzuki, S.Yoshikawa,” Single- and double-layered mesoporous TiO 2 /P25 TiO 2 electrode for dye -sensitized solar cell” Solar Energy Materials & Solar Cells.86 (2005) 269–282. [1-48] Z.S.Wang, H.Kawauchi, T.Kashima, H.Arakawa,“ Significant influence of TiO 2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell” Coordination Chemistry Reviews. 248 (2004) 1381–1389. [1-53] B.C.O‟Regan, J.R.Durrant, P.M.Sommeling and N.J.Bakker,“ Influence of the TiCl 4 treatment on nanocrystalline TiO 2 films in dye-sensitized solar cells. 2. charge density, band edge shifts, and quantification of recombination losses at short circuit”J.Phys.Chem.C 111 (2007) 14001. [1-54] S.Ito, P.Liska, P.Comte, R.Charvet, P.Pechy, U.Bach, L.S.Mende, S.M.Zakeeruddin, A.Kay, M.K.Nazeeruddin, M.Gratzel,” Control of dark currentin photo-electrochemical and dye-sensitized solar cells” Chem. [1-55] P.M.Sommeling,”Influence of a TiCl 4 post-treatment on nanocrystalline TiO 2 films in dye-sensitized solar cells” J.Phys.Chem.B. 110 (2006) 19191-19197. [1-56] Andreas Kay,”Solar cells based on dye-sensitized nanocrystalline 33 TiO 2 Electrodes”EPFL 1214 (1994).1-189 [1-57] P.V.Kamat, J.P.Chauvet and R.W.Fessenden,“ Photoelectrochemistry in particulate systems.4.photosensitization of a TiO 2 semiconductor with a chlorophyll analogue” J.Phys.Chem.90 (1986) 1389-1394. [1-58] A.Kay, R.H.Baker and M.Gratzel,“Artificial photosynthesis.2. investigations on the mechanism of photosensitization of nanocrystalline Ti0 2 solar cells by chlorophyll derivatives” J.Phys.Chem. 98 (1994) 952-959. [1-59] C.Bauer, G.Boschloo, E.Mukhtar and A.Hagfeldt,“ Interfacial electron-transfer dynamics in Ru(tcterpy)(NCS) 3 -sensitized TiO 2 nanocrystalline solar cells ” J.Phys.Chem.B.106 (2002) 12693–12704. [1-60] R.Gru1nwald and H.Tributsch,” Mechanisms of instability in Ru-based dye sensitization solar cells” J.Phys.Chem. B. 101 (1997) 2564–2575. [1-61] M.K.Nazeeruddin, P.Pechy ,T.Renouard, S.M.Zakeeruddin, R.H.Baker, P.C.P.Liska, L.Cevey, E.Costa,V.Shklover, L.Spiccia, G.B.Deacon, C.A. Bignozzi,and M.Gratzel,” Engineering of efficient panchromatic sensitizers for nanocrystalline TiO 2 -based solar cells” J.Am. Chem.Soc. 123 (2001) 1613– 1624. [1-62] M.K.Nazeeruddin, R.H.Baker, P.Liska and M.Gratzel,” Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO 2 solar cell” J.Phys.Chem.B. 107 (2003) 8981–8987. [1-63] M.K.Nazeeruddin, S.M.Zakeeruddin, R.H.Baker, M.Jirousek,P. Liska, N.Vlachopoulos, V.Shklover, C.H.Fischer,and M.Gratzel,“ Acid-base equilibria of (2,2 ′ -bipyridyl-4,4 ′ -dicarboxylic acid) ruthenium(II) complexes and the effect of protonation on charge-transfer sensitization of nanocrystalline titania” Inorg.Chem.38 (1999) 6298–6305. [1-64] H.G.Agrell, J.Lindgren, A.Hagfeldt,“Degradation mechanisms in a dye-sensitized solar cell studied by UV–VIS and IR spectroscopy” Solar Energy. 75 (2003) 169–180. [1-65] P.J.Cameron,L.M.Peter, S.M.Zakeeruddin, M.Gratzel,” Electrochemical studies of the Co(III)/Co(II)(dbbip) 2 redox couple as a mediator for dye-sensitized nanocrystalline solar cells” Coordination Chemistry Reviews. 248 (2004) 1447–1453. [1-66] H.Usui, H.Matsui, N.Tanabe, S.Yanagida,” Improved dye-sensitized solar cells using ionic nanocomposite gel electrolytes” Journal of Photochemistry and Photobiology A: Chemistry. 164 (2004) 97–101. [1-67] T.N.Murakami, S.Ito, Q.Wang, M.K.Nazeeruddin, T.Bessho, I.Cesar, P.Liska, R.H.Baker, P.Comte, P.Pechy and M.Gratzel,” Highly efficient sye-sensitized solar cells based on carbon black counter electrodes” Journal of The Electrochemical Society.153 (2006) 2255-2261. [1-68] X.Fang, T.Ma, G.Guan, M.Akiyama, T.Kida, E.Abe,” Performances characteristics of dye-sensitized solar cells based on counter electrodes with Pt films of different thickness” Journal of Photochemistry and Photobiology A: Chemistry. 164 (2004) 179-182. 第二章 參考文獻 [2-1] 楊明輝,”透明導電膜”藝軒圖書出版社.(2006) [2-2] 汪建民,”材料分析”中國材料學學會.(2008) 第三章參考文獻 [3-1] J.H.Yum ,P.Chen, M.Grätzel and M.K.Nazeeruddin,“Recent developments in solid-state dye-sensitized solar cells”ChemSus Chem. 1 (2008) 699. [3-2] M.Bailes, P.J.Cameron, K.Lobato and L.M.Peter,“Determination of the density and energetic distribution of electron traps in dye-sensitized nanocrystalline solar cells”J.Phys.Chem.B 109 (2005) 15429. [3-3] R.A.Spurr and H.Myers,“Quantitative Analysis of Anatase-Rutile Mixtures with an X-Ray Diffractometer“ Anal.Chem.29 (1957) 760. [3-4] S.-M.Oh and T.Ishigaki,”Preparation of pure rutile and anatase TiO nanopowders using RF thermal plasma” Thin Solid Films 457 (2004) 186. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28419 | - |
| dc.description.abstract | 本論文利用添加聚苯乙烯球的二氧化鈦薄膜經過燒結所產生的微米孔洞所製作之中孔性二氧化鈦光電極改善染料敏化太陽能電池的短路電流與效率,本實驗所研究的二氧化鈦光電極主要包含了三種結構。第一種結構採用均為相同成分的二氧化鈦膠體溶液,網印共三層所製作出之 12 um 勻相薄膜結構光電極,定義為 Monolayer,在此結構下,除了本身的奈米多孔隙之外又增加了微米的大孔洞,因此增加了光的散射與光路徑(optical path),使染料對於光的吸收機會增加,進而提升了元件的效能。在此結構下,使用摻雜濃度 2 wt.%、平均直徑 2um的聚苯乙烯球有最佳化元件效能,其元件光電流為14.50 mA/cm2、光電轉換效率為6.70 %,比起傳統奈米多孔隙薄膜染料敏化太陽能電池光電流提升約11.2 %,而光電轉換效率也提高11.16 %。第二種結構則是含有兩種不同濃度的聚苯乙烯球之二氧化鈦膠體溶液製作出的非勻相薄膜結構光電極,第一層膜厚為8um,第二層膜厚為4 um;利用添加不同濃度的聚苯乙烯球於不同膜層中,此結構不
但能利用微米的孔洞增加光的散射與光路徑,而膜層之間濃度的改變亦能使光侷限於薄膜之中,提升了光在二氧化鈦光電極行走的路徑,進而增加染料對光的吸收,再次提升了元件的光電轉換效率。在摻雜濃度2 wt.% 為第一層膜、10 wt.%為第二層膜、平均直徑2um 聚苯乙烯球所製備的雙層中孔性二氧化鈦薄膜之染料敏化太陽能電池有最佳化條件,元件的光電流為15.3 mA/cm2、光電轉換效率為7.00 %,其光電流大於傳統奈米多孔隙薄膜染料敏化太陽能電池約11.90%, 而元件效率也提升了11.67 %。為了進一步利用光侷限效應提升染料敏化太陽能電池的光電轉換效率而採用第三種Trilayer 結構,其為含有三種不同濃度的聚苯乙烯球之二氧化鈦膠體溶液製作出的非勻相薄膜結構光電極,每一層不同濃度的膜厚均為4um。在聚苯乙烯球平均直徑2um、濃度2 wt.% 為第一層膜、5 wt.%為第二層膜、10 wt.%為第三層膜之聚苯乙烯球所製備三層中孔性二氧化鈦薄膜之染料敏化太陽能電池有本實驗最佳化條件,光電流密度和轉換效率分別提高 了22%和20%(光電流密度從12.9 mA/cm2 提升15.7 mA/cm2 和光電轉換效率從6%至7.2%)。在長波長區域可觀察到光吸收率和入射光子-電子轉換效率(IPCE)有顯著的提升,在加入聚苯乙烯小球的中孔性二氧化鈦薄光電極提升了光在長波長的吸收,也彌補了N719 染料於長波長吸收率不佳的情形。 | zh_TW |
| dc.description.abstract | This paper reports the enhanced performance of dye-sensitized solar cells (DSSCs) with microcavity-embedded nanoporous TiO2 photoanodes. The microcavities were formed by sintering TiO2 pastes with the addition of polystyrene (PS) microspheres. In this study, the study of TiO2 photoanode consists mainly three types of structure. The monolayer structure (M) was composed of three sublayers with PS microspheres of identical size and concentration, the composite pastes were screen printed layer-by-layer to achieve a total thickness of 12 um (three 4-um-thick sublayers).The present of microcavities in the TiO 2 photoanode increase the light scattering and light path (optical path), so there was more opportunity for dye to absorb the light, thereby enhancing the device performance. For DSSCs made with TiO 2 paste mixed with 2 wt.%, 2 um PS microspheres, the short-circuit current density was 14.5 mA/cm 2 and the conversion efficiency was 16.3 mA/cm 2 . Compared to conventional dye sensitized solar cell, it was improved by 11.2% and 11.16% respectively. The bilayer structure (B) comprises two sublayers with PS microspheres of identical size and concentration, denoted as the first layer, and one sublayer with PS microspheres of the same size but different concentration, denoted as the second layer. The first layer is 8 um and second layer is 4 um in thickness. In this structure , the further enhancement of cell performance was observed when the incident light passes from the first layer with high effective index (low concentration) of refraction to the second layer with low effective index(low concentration ).It can be attributed to light
confinement effect between different concentration layer. For DSSCs made with TiO 2 paste mixed with 2 wt.% for the first layer and 10 wt.% for the second layer with 2 um PS microspheres, theshort-circuit current density was 15.3 mA/cm2 and the conversionefficiency was 7.00 % . Compared to conventional dye sensitized solar cell, it was improved by 11.9% and 11.67% respectively. To furtherimprove the cell performance by utilizing the light confinement, atrilayer structure was proposed and investigated. The trilayer structure(T) contains three sublayers with PS microspheres of the same size but in different concentrations and the 4 um in thickness each. The I-Vcharacteristics of the best cell with photoanode made using PSmicrosphere concentrations of 2 wt.%, 5 wt.% and 10 wt.% in the first,second, and third sublayers are shown in Figure 8. A short-circuit currentdensity of 16.30 mA/cm2 and a conversion efficiency of 7.2% wereobtained, which were improved by 26% and 20%, respectively, compared to those of the DSSC without microcavities. Pronouncedincrease in both optical absorbance and incident monochromaticphoton-to-current conversion efficiency (IPCE) in the long wavelengthregion was observed, implying that the enhancement of cell performance was due to the multiple scattering of light by the microcavities and also to the light confinement by the stack of TiO2 sublayers with high-to-low graded effective index of refraction. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T00:07:45Z (GMT). No. of bitstreams: 1 ntu-100-R98941083-1.pdf: 4021553 bytes, checksum: 6d38bf49b6e4069139018aa1759af1bc (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 中文摘要 II
英文摘要 IV 目錄 VI 圖目錄 VIII 表目錄 XII 第一章 序論 1.1 前言 1 1.2 太陽能電池簡介 2 1.3 染料敏化太陽能電池 7 1.3.1基本原理與架構 7 1.3.2光電輸出特性 10 1.3.3 電極基板 12 1.3.3.1 透明導電玻璃 12 1.3.3.2可撓性基板 12 1.3.4 二氧化鈦緻密層 15 1.3.5 光電極 16 1.3.6 四氯化鈦處理 21 1.3.7 染料敏化劑 21 1.3.8 液態電解質 24 1.3.9 對電極 25 第一章參考文獻 27 第二章 樣品製備與量測分析儀器 2.1 實驗藥品與器材 35 2.2 樣品製備 36 2.2.1 基板之清洗 36 2.2.2 TiO 2 緻密層之成長 36 2.2.3 中孔性二氧化鈦凝膠之製備 37 2.2.4 奈米多孔隙二氧化鈦薄膜之塗佈製程 39 2.2.5 二氧化鈦薄膜之四氯化鈦處理 39 2.2.6 染料製作 40 2.2.7 對電極之製作 40 2.2.8 電池的組裝與電解質之注入 41 2.3 量測分析儀器 42 2.3.1 X-射線粉末繞射儀 42 2.3.2 掃描式電子顯微鏡 43 2.3.3 紫外光-可見光光譜儀(UV-Visible Spectrophotometer) 43 2.3.4 太陽光模擬光源(Solar simulator) 44 2.3.5 入射光子-電子轉換效率(IPCE) 44 第二章參考文獻 45 第三章 實驗結果與討論 3.1 基本材料分析 46 3.1.1 二氧化鈦緻密層 46 3.1.2 二氧化鈦薄膜分析 48 3.1.2.1 表面結構 48 3.1.2.2 晶體結構 55 3.2 勻相二氧化鈦薄膜結構之染料敏化太陽能電池 56 3.2.1 電性分析 56 3.2.2 光學分析 62 3.2.3 入射光子-電子轉換效率(IPCE) 63 3.3 非勻相二氧化鈦薄膜結構之染料敏化太陽能電池 65 3.3.1 雙層二氧化鈦薄膜結構染之染料敏化太陽能電池 65 3.3.1.1 電性分析 65 3.3.1.2 光學分析 68 3.3.2 三層二氧化鈦薄膜結構染之染料敏化太陽能電池 70 第三章參考文獻 73 第四章 結論 74 圖目錄 圖1-1 各類太陽能電池效率的發展情形 6 圖1-2 染料敏化太能電池各層反應時間圖 9 圖1-3 染料敏化太陽能電池動力學過程圖 9 圖1-4 染料敏化太陽能電池工作原理圖 10 圖1-5 染料敏化太陽能電池的I-V 特性圖 11 圖1-6 染料敏化太陽能電池的等效電路圖 12 圖1-7 可撓性不銹鋼板染料敏化太陽能電池 14 圖1-8 8.6 %可撓性染料敏化太陽能電池剖面結構圖 14 圖1-9 二氧化鈦緻密層剖面位置圖 16 圖 1-10 Anatase 和Rutile 相的結晶結構 19 圖 1-11 二氧化鈦平衡相圖 20 圖1-12 Anatase 和Rutile phase 相光電極對染料敏化太陽能電池效能的影響 圖1-13 FTO 表面及鍍上不同厚度鉑之 SEM 表面形貌。(a) FTO 導電玻璃;(b) 100 nm; (c) 200 nm ;(d) 450 nm 26 圖2-1 鉑(Pt)對電極厚度為10 nm 的穿透率 41 圖2-2 染料敏化太陽能電池之組裝側視圖 42 圖2-3 X 光粉末繞射儀實驗架設示意圖 43 圖2-4 紫外光-可見光頻譜分析儀之工作示意圖 44 圖3-1 二氧化鈦光電極薄膜型態剖面示意圖 46 圖3-2 二氧化鈦緻密層之表面形貌(50000 倍) 47 圖3-3 二氧化鈦緻密層之穿透率 48 圖3-4 傳統奈米多孔隙二氧化鈦薄膜之表面形貌圖(5000 倍) 49 圖3-5 摻雜濃度為2 wt.%、平均直徑為1 um 聚苯乙烯球之二氧化鈦薄膜於510 oC 燒結後之掃描式電子顯微鏡表面形貌影像(5000 倍) 50 圖3-6 摻雜濃度為2 wt.%、平均直徑為2 um 聚苯乙烯球之二氧化鈦薄膜於 510 oC 燒結後之掃描式電子顯微鏡表面形貌影像(5000 倍) 50 圖3-7 摻雜濃度為2 wt.%、平均直徑為3 um 聚苯乙烯球之二氧化鈦薄膜於 510 oC 燒結後之掃描式電子顯微鏡表面形貌影像(5000 倍) 51 圖3-7 摻雜濃度為2 wt.%、平均直徑為2 um 聚苯乙烯球之二氧化鈦薄膜於 510 oC 燒結後之掃描式電子顯微鏡表面形貌影像(1000 倍) 51 圖3-9 摻雜濃度為5 wt.%、平均直徑為2 um 聚苯乙烯球之二氧化鈦薄膜於 510 oC 燒結後之掃描式電子顯微鏡表面形貌影像(1000 倍) 52 圖3-10 摻雜濃度為10 wt.%、平均直徑為2 um 聚苯乙烯球之二氧化鈦薄膜於 510 oC 燒結後之掃描式電子顯微鏡表面形貌影像(1000 倍) 52 圖3-11 摻雜濃度為10 wt.%、平均直徑為2 um 聚苯乙烯球之二氧化鈦薄膜於 510 oC 燒結後之掃描式電子顯微鏡剖面影像(10000 倍) 53 圖3-12 摻雜濃度為10 wt.%、平均直徑為2 um 聚苯乙烯球之二氧化鈦薄膜於 510 oC 燒結後之掃描式電子顯微鏡表面形貌影像(10000 倍) 53 圖3-13 摻雜濃度為5 wt.%、平均直徑為2 um 聚苯乙烯球之二氧化鈦薄膜於510 oC 燒結後之掃描式電子顯微鏡表面形貌影像(10000 倍) 54 圖3-14 摻雜濃度為2 wt.%、平均直徑為2 um 聚苯乙烯球之二氧化鈦薄膜於 510 oC 燒結後之掃描式電子顯微鏡表面形貌影像(10000 倍) 54 圖3-15 摻雜濃度為10 wt.%、平均直徑為2 um 聚苯乙烯球之二氧化鈦薄膜於 510 oC 燒結後之掃描式電子顯微鏡表面形貌影像(50000 倍) 55 圖3-16 摻雜濃度為2 wt.%、平均直徑為2 um 聚苯乙烯球之中孔性二氧化鈦薄 膜與傳統奈米孔隙二氧化鈦薄膜經燒結過後之X 光粉末繞射圖 56 圖3-17 摻雜不同濃度之下平均直徑1 um 的聚苯乙烯球之勻相薄膜結構染料敏化太陽能電池之電壓-電流特性曲線實驗結果 59 圖3-18 摻雜不同濃度之下平均直徑2 um 的聚苯乙烯球之勻相薄膜結構染料敏化 太陽能電池之電壓-電流特性曲線實驗結果 59 圖3-19 摻雜不同濃度之下平均直徑3 um 的聚苯乙烯球之勻相薄膜結構染料敏化 太陽能電池之電壓-電流特性曲線實驗結果 60 圖3-20 摻雜不同濃度之下平均直徑1 um 、2 um 和 3 um 的聚苯乙烯球之勻相 薄膜結構染料敏化太陽能電池之 (a)光電轉換效率(b)光電流之比較圖 61 圖3-21 加入濃度2 wt.% 、平均直徑(1 um、2 um 和3 um)之聚苯乙烯球所製備 之中孔性二氧化鈦薄膜與傳統奈米多孔隙二氧化鈦薄膜,經N719 染料吸附下之 波長與吸收率關係圖 63 圖3-22 加入濃度2 wt.% 、平均直徑(1 um、2 um 和3 um)之聚苯乙烯球所製備 之中孔性二氧化鈦薄膜與傳統奈米多孔隙二氧化鈦薄膜,經N719 染料吸附下之 波長與入射光子-電子轉換效率 64 圖3-23 摻雜第一層膜濃度為2 wt.%、平均直徑2 um 的聚苯乙烯球之雙層非勻 相薄膜結構染料敏化太陽能電池之電壓-電流特性曲線實驗結果 66 圖3-24 摻雜第一層膜濃度為5 wt.%、平均直徑2 um 的聚苯乙烯球之雙層非勻 相薄膜結構染料敏化太陽能電池之電壓-電流特性曲線實驗結果 67 圖3-25 摻雜第一層膜濃度為10 wt.%、平均直徑2 um 的聚苯乙烯球之雙層非勻 相薄膜結構染料敏化太陽能電池之電壓-電流特性曲線實驗結果 67 圖3-26 摻雜第一層濃度為2 wt.% 、平均直徑2 um 之聚苯乙烯球所製備出雙層 非勻相中孔性二氧化鈦薄膜,經N719 染料吸附下之波長與吸收率關係圖 68 圖3-27 摻雜第一層濃度為5 wt.% 、平均直徑2 um 之聚苯乙烯球所製備出雙層 非勻相中孔性二氧化鈦薄膜,經N719 染料吸附下之波長與吸收率關係圖 69 圖3-28 摻雜第一層濃度為10 wt.% 、平均直徑2 um 之聚苯乙烯球所製備出雙 層非勻相中孔性二氧化鈦薄膜,經N719 染料吸附下之波長與吸收率關係圖 69 圖3-29 平均直徑2 um 的聚苯乙烯球所製備出三層非勻相薄膜結構染料敏化太陽 能電池之電壓-電流特性曲線實驗結果 71 圖3-30 平均直徑2 um 的聚苯乙烯球所製備出三層非勻相薄膜結構染料敏化太陽 能電池之波長與吸收率關係圖 72 表目錄 表1-1 各類太陽能電池的比較 6 表1-2 一般常見的光學級軟性透明塑膠基板材料特性 15 表1-3 N3(Red Dye)、N719 與N749(Black Dye)之特性表 23 表1-4 鉑膜厚度與太陽能電池的特性參數之比較 26 表2-1 本實驗所使用之基板、藥品與染料 35 表2-2 平均直徑1 um 的聚苯乙烯球與二氧化鈦膠體溶液於不同濃度下混合 38 表2-3 平均直徑2 um 的聚苯乙烯球與二氧化鈦膠體溶液於不同濃度下混合 38 表2-4 平均直徑3 um 的聚苯乙烯球與二氧化鈦膠體溶液於不同濃度下混合 39 表3-1 具勻相光電極之太陽能電池特性參數 58 表3-2 雙層二氧化鈦結構其太陽能電池之特性參數 66 表3-3 三層二氧化鈦結構其太陽能電池之特性參數 71 | |
| dc.language.iso | zh-TW | |
| dc.subject | 二氧化鈦光電極 | zh_TW |
| dc.subject | 染料敏化太陽能電池 | zh_TW |
| dc.subject | 微米孔洞 | zh_TW |
| dc.subject | dye-sensitized solar cells | en |
| dc.subject | micro-cavities | en |
| dc.subject | TiO2 photoanode | en |
| dc.title | 中孔性二氧化鈦光電極對染料敏化太陽能電池效能的影響 | zh_TW |
| dc.title | Enhanced performance of Dye-Sensitized Solar Cells with Microcavity-Embedded TiO 2 Photoanodes | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳建彰,何國川,吳志毅 | |
| dc.subject.keyword | 染料敏化太陽能電池,二氧化鈦光電極,微米孔洞, | zh_TW |
| dc.subject.keyword | dye-sensitized solar cells,TiO2 photoanode,micro-cavities, | en |
| dc.relation.page | 76 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-05 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 3.93 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
