請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28409完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃升龍(Sheng-Lung Huang) | |
| dc.contributor.author | Yu-Ching Wu | en |
| dc.contributor.author | 吳育慶 | zh_TW |
| dc.date.accessioned | 2021-06-13T00:07:28Z | - |
| dc.date.available | 2007-08-01 | |
| dc.date.copyright | 2007-08-01 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-27 | |
| dc.identifier.citation | [1] J.C. Brice, “The growth of crystals form the melt,” V 5, 1965, 192 P. John Wiley & Sons, Inc., New York (1965).
[2] 余樹楨,”晶體之結構與性質,”渤海堂,2000年。 [3] J. I. D. Alexander, S. Amiroudine, J. Ouazzani, and F. Rosenberger, 'Analysis of the low gravity tolerance of Bridgman-Stockbarger crystal growth. II, Transient and periodic accelerations,' Journal of crystal growth 113, 21-38 (1991). [4] H.J. Scheel, “Historical aspects of crystal growth technology,” Journal of Crystal Growth 211, 62–67 (2000). [5] J. Stone, and C. A. Burrus, 'Neodymium-doped fiber lasers: Room temperature CW operation with an injection laser pump,' IEEE Journal of Quantum Electronics 10, 794 (1974). [6] M. M. Fejer, G. A. Magel, and R. L. Byer, 'High-speed high-resolution fiber diameter variation measurement system,' Applied Optics 24, 2362 (1985). [7] S. Sudo, A. Cordova-Plaza, R. L. Byer, and H. J. Shaw, 'MgO:LiNbO3 single-crystal fiber with magnesium-ion in-diffused cladding,' Optics Letters 12, 938-940 (1987). [8] G. W. Young, and J. A. Heminger, 'Modeling the time-dependent growth of single-crystal fibers,' Journal of Crystal Growth 178, 410-421 (1997). [9] Y. C. Lee, and J. C. Chen, 'The effects of temperature distribution on the barium titanate crystal growth in an LHPG system,' Optical Materials 12, 83-91 (1999). [10] Y. C. Lee, J. C. Chen, and C. Hu, 'Observation of the growth mechanisms of lithium niobate single crystal during a LHPG process,' Journal of Crystal Growth 174, 313-319 (1997). [11] M. M. Fejer, J. L. Nightingale, G. A. Magel, and R. L. Byer, 'Laser-heated miniature pedestal growth apparatus for single-crystal optical fibers,' Review of Scientific Instruments 55, 1791-1796 (1984). [12] G. A. Magel, M. M. Fejer, and R. L. Byer, 'Quasi-phase-matched second-harmonic generation of blue light in periodically poled LiNbO3,' Applied Physics Letters 56, 108 (1990). [13] D. B. Gasson, and B. Cockayne, 'Oxide crystal growth using gas lasers,' Journal of Materials Science 5, 100-104 (1970). [14] R. S. Feigelson, W. L. Kway, and R. K. Route, 'Single crystal fiber by the laser-heated pedestal growth method,' Optical engineering(Bellingham. Print) 24, 1102-1107 (1982). [15] C. Y. Lo, K. Y. Huang, J. C. Chen, C. Y. Chuang, C. C. Lai, S. L. Huang, Y. S. Lin, and P. S. Yeh, 'Double-clad Cr4+: YAG crystal fiber amplifier,' Optics Letters 30, 129-131 (2005). [16] L. M. Lee, C. C. Kuo, J. C. Chen, T. S. Chou, Y. C. Cho, S. L. Huang, and H. W. Lee, 'Periodical poling of MgO doped lithium niobate crystal fiber by modulated pyroelectric field,' Optics Communications 253, 375-381 (2005). [17] J. L. Duranceau, and R. A. Brown, 'Thermal-capillary analysis of small-scale floating zones Steady-state calculations,' Journal of Crystal Growth 75, 367-389 (1986). [18] C. W. Lan, and S. Kou, 'Heat transfer, fluid flow and interface shapes in floating-zone crystal growth,' Journal of Crystal Growth 108, 351-366 (1991). [19] C. W. Lan, and S. Kou, 'Effects of rotation on heat transfer, fluid flow and interfaces in normal gravity floating-zone crystal growth,' Journal of Crystal Growth 114, 517-535 (1991). [20] C. W. Lan, 'Effect of axisymmetric magnetic fields on radial dopant segregation of floating-zone silicon growth in a mirror furnace,' Journal of Crystal Growth 169, 269-278 (1996). [21] C. W. Lan, and M. C. Liang, 'A three dimensional finite volume/Newton method for thermal capillary problems,' International Journal for Numerical Methods in Engineering 40, 621-636 (1997). [22] T. Surek, and B. Chalmers, 'The direction of growth of the surface of a crystal in contact with its melt,' Journal of Crystal Growth 29, 1-11 (1975). [23] J.F. Thompson, F.C. Thames, and C.W. Mastin, “Boundary-fitted curvilinear coordinate systems for solution of partial differential equations on fields containing any number of arbitrary two-dimensional bodies[Final Report],” 1977. [24] C. W. Lan, and S. Kou, 'Radial dopant segregation in zero-gravity floating-zone crystal growth,' Journal of crystal growth 132, 578-591 (1993). [25] A. D. Gosman, W. M. Pun, A. K. Runchal, D. B. Spalding, and M. Wolfshtein, 'Mass transfer in recirculating flows,' (New York, Academic Press, 1969). [26] C.W. Lan and S. Kou, “Thermocapillary flow and natural convection in a melt column with an unknown melt/solid interface,” International Journal for Numerical Methods in Fluids 12, 59 (1991). [27] C. W. Lan, 'Newton's method for solving heat transfer, fluid flow and interface shapes in a floating molten zone,' International Journal for Numerical Methods in Fluids 19, 41 (1994). [28] C. Goutaoudier, F. S. Ermeneux, M. T. Cohen-Adad, R. Moncorge, M. Bettinelli, and E. Cavalli, “LHPG and flux growth of various Nd:YVO4 single crystals: A comparative characterization,” Materials Research Bulletin 33, 1457 (1998). [29] L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE Journal of Quantum Electronics 32, 885 (1996). [30] G. J. Wagner, T. J. Carrig, R. H. Page, K. I. Schaffers, J. O. Ndap, X. Ma, and A. Burger, “Continuous-wave broadly tunable Cr2+:ZnSe laser,” Optics Letters 24, 19 (1999). [31] N. B. Angert, N. I. Borodin, V. M. Garmash, V. A. Zhiynyuk, A.G. Okhrimchuck, O. G. Siyuchenko, and A. V. Shestakov, “Lasing due to impurity color centers in yttrium aluminum garnet crystals at wavelengths in the range 1.35-1.45 μm,” Soviet Journal of Quantum lectronics 18, 73(1988). [32] M. Eilers, M. Dennis, K. Yen, H. Peterman, and W. Jia,“Performance of a Cr:YAG laser,” IEEE Journal of Quantum Electronics 29, 2508 (1993). [33] P. M. French, N. H. Rizvi, J. R. Taylor, and A.V. Shestakov,“Continuous-wave mode-locked Cr4+:YAG laser,” Optics Letters 18, 39(1993). [34] A. Sennaroglu, C. R. Pollock, and H. Nathel,“Continuous-wave self-mode-locked operation of Cr4+:YAG laser,” Optics Letters 19, 390 (1994). [35] A. Sennaroglu, C. R. Pollock, and H. Nathel,“Efficient continuous-wave chromium-doped YAG laser,” Journal of the Optical Society of America B 12, 930 (1995). [36] S. Ishibashi, K. Naganuma, and I. Yokohama, “Cr, Ca:Y3Al5O12 laser crystal grown by the laser heated pedestal growth method” Journal of Crystal Growth 183, 614 (1998). [37] I. T. Sorokina, S. Naumov, E. Sorokin, and E. Wintnter, “Directly diode-pumped tunable continuous-wave room-temperature Cr4+:YAG laser,” Optics Letters 24, 1578 (1999). [38] S. Ishibashi and K. Naganuma, “Diode pumped Cr4+:YAG single crystal fiber laser,” in Advanced Solid-State Lasers, OSA Technical Digest, Davos, Switzerland 103 (2000). [39] L. Hesselink and S. Redfield, “Photorefractive holographic recording in strontium barium niobate fibers,” Opt. Lett. 13, 877-879 (1988). [40] J.C. Chen, C.Y. Lo, K.Y. Huang, F.J. Kao, S.Y. Tu, and S.L. Huang, 'Fluorescence mapping of oxidation states of Cr ions in YAG crystal fibers,' Journal of Crystal Growth 274, 522-529 (2005). [41] Brian Henderson and Ralph H. Bartram, “Crystal-Field Engineering of Solid-State Laser Materials”, Cambridge University Press, 83-85 (2000) [42] V. V. Prokofiev, A. A. Kamshilin, T. Jaaskelainen, J. P. Andreeta, C. J. De Lima, M. R. B. Andreeta, A. C. Hernandes, and J. F. Carvalho, 'The influence of temperature gradients on structural perfection of single-crystal sillenite fibers grown by the LHPG method,' Optical Materials 4, 521-527 (1995). [43] C. W. Lan, 'Three-dimensional simulation of floating-zone crystal growth of oxide crystals,' Journal of Crystal Growth 247, 597-612 (2003). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28409 | - |
| dc.description.abstract | 摻雜活性離子的釔鋁石榴石晶體近來被廣泛地應用在雷射增益介質中。由於增益介質中摻雜離子的種類與徑向濃度分佈影響雷射品質甚鉅,如何直接在長晶過程中適當地控制熔區特性以提升增益介質的品質,是近來重要的研究方向。我們在實驗上成功地利用雷射加熱基座法將摻銣釔鋁石榴石(Nd:YAG)晶體材料生長成峰值濃度高達2.4atm.%的晶體光纖。其中原始晶棒為端面邊長480 μm且平均濃度為1.15atm.%的方棒;成長後的晶體光纖為端面直徑220 μm 的圓棒。此時的長晶速度約為1.25 mm/min。
為了進一步瞭解晶纖的生長參數與徑向濃度分佈的關係來改善熔區特性,我們引用Lan 所發展出用來模擬大尺度下塊狀晶體的二維計算流體力學程式,並成功地將其改良為微尺度下晶體光纖二維流體力學的模型來與實驗作熔區特性的比較。模擬結果顯示熔區形狀與尺寸,以及熔區高度相對於輸入雷射功率的變化趨勢都與實驗觀察結果相符合。另外晶纖的徑向摻雜濃度分佈也與實驗結果相似,但在長晶速度與峰值濃度間的變化關係不盡相同,推測為實驗上過高的掺雜濃度造成應力集中使得晶體結構被破壞,造成更高的長晶速度反使得峰值濃度下降。模擬上最佳峰值濃度約為1.5 atm.%,與實驗也有所出入,相信未來在模擬中加入表面張力隨濃度變化,可縮小在定量上的差距。 | zh_TW |
| dc.description.abstract | Yttrium aluminum garnet (YAG) crystal doped with active ions has been widely used as laser gain medium. It is important to control the molten-zone properties well during the drawing process to enhance the performance of the output laser beam, because the laser quality is affected significantly by the species of active ions and its radial dopant concentration distribution in the gain medium. We have experimentally demonstrated the neodymium-doped YAG crystal fiber with the maximum central dopant concentration up to 2.4 atm.% with a fiber diameter of 220 μm by laser-heated-pedestal-growth technique when the rawing velocity is 1.25 mm per minute. The source rod was square with an end facet area of 480 μm by 480 μm and an uniform dopant concentration of 1.15 atm.%.
To further understand the relation between the drawing parameters and the radial dopant concentration of the crystal fiber and compare with the experiment, we modified a 2-dimensional computational-fluid-dynamic (CFD) program, which was written by Lan et. al. for bulk materials. Simulation results agree with the experimental ones in size and shape of the molten zone for various CO2 laser input powers. Moreover, the radial dopant distribution of the crystal fiber in the simulations is similar to that in the experiments, but there are differences in the ariation of the maximum central concentration by changing the drawing speed. It is speculated that the crystal lattices are damaged due to the residual strain caused by high maximum central dopant concentration. Besides, the highest maximum central dopant concentration was about 1.5 atm.% in the simulations which is different from that in the experiments. We believe that it could be improved quantitatively by considering the surface tension coefficient as a function of both concentration and temperature in the simulation. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T00:07:28Z (GMT). No. of bitstreams: 1 ntu-96-R94941071-1.pdf: 8336852 bytes, checksum: 6cbd1a363eada762be398becbb9d441c (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 口試委員會審定書 ii
誌謝 ii 摘要 iv Abstract v 目錄 vi 圖目錄 viii 第一章 緒論 1 1.1 晶體生長 1 1.2 雷射加熱基座法 4 1.3 雷射加熱基座法之數值模擬 6 1.4 論文架構 7 第二章 數值方法與理論模型 8 2.1 主導方程式 8 2.1.1 連續方程式 10 2.1.2 能量方程式 11 2.1.3 動量方程式 14 2.1.4 質傳遞方程式 17 2.1.5 氣流函數 19 2.1.6 以氣流函數表示之主導方程式 22 2.1.7 無因次化參數 23 2.2 邊界條件 26 2.2.1 熱邊界條件 26 2.2.2 流場邊界條件 29 2.2.3 濃度邊界條件 32 2.3 數值計算方法架構 34 第三章 實驗架構與長晶方法 37 3.1 LHPG長晶系統 37 3.2 YAG材料之物理特性與參數 40 3.3 Nd:YAG生長參數與濃度分佈 41 3.4 偏析現象與偏析係數 46 第四章 熔區性質模擬結果與分析 48 4.1 雷射加熱場型與熔區形狀 48 4.1.1 雷射光束入射寬度與熔區高度的關係 50 4.1.2 雷射光束入射寬度與熔區固液界面形狀的關係 50 4.1.3 雷射光束入射寬度與熔區溫度梯度的關係 51 4.2雷射加熱功率與熔區高度 53 4.3熔區溫場與流場分佈 55 4.4晶纖摻雜濃度分佈 57 第五章 結論與未來工作 62 參考文獻 64 | |
| dc.language.iso | zh-TW | |
| dc.subject | 釔鋁石榴石 | zh_TW |
| dc.subject | 雷射 | zh_TW |
| dc.subject | 熱流 | zh_TW |
| dc.subject | 濃度 | zh_TW |
| dc.subject | 熔區 | zh_TW |
| dc.subject | laser | en |
| dc.subject | YAG | en |
| dc.subject | molten zone | en |
| dc.subject | concentration | en |
| dc.subject | fluid | en |
| dc.title | 利用雷射加熱基座法生長掺釹釔鋁石榴石
熔區特性之模擬分析 | zh_TW |
| dc.title | Simulation of Molten-Zone Characteristics for Nd:YAG Crystal Using Laser-Heated Pedestal Growth | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 藍崇文(Chung-Wen Lan) | |
| dc.contributor.oralexamcommittee | 陳志臣(Jyh-Chen Chen) | |
| dc.subject.keyword | 雷射,熱流,濃度,熔區,釔鋁石榴石, | zh_TW |
| dc.subject.keyword | laser,fluid,concentration,molten zone,YAG, | en |
| dc.relation.page | 68 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-07-30 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 8.14 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
