請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28398完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林琬琬 | |
| dc.contributor.author | Jui-Ching Chen | en |
| dc.contributor.author | 陳瑞青 | zh_TW |
| dc.date.accessioned | 2021-06-13T00:07:11Z | - |
| dc.date.available | 2012-08-08 | |
| dc.date.copyright | 2007-08-08 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-28 | |
| dc.identifier.citation | Alam, J., and Den, Z. (1992). Distal AP-1 binding sites mediate basal level enhancement and TPA induction of the mouse heme oxygenase-1 gene. J Biol Chem 267, 21894-21900.
Alam, J., Stewart, D., Touchard, C., Boinapally, S., Choi, A. M., and Cook, J. L. (1999). Nrf2, a Cap'n'Collar transcription factor, regulates induction of the heme oxygenase-1 gene. J Biol Chem 274, 26071-26078. Alam, J., Wicks, C., Stewart, D., Gong, P., Touchard, C., Otterbein, S., Choi, A. M., Burow, M. E., and Tou, J. (2000). Mechanism of heme oxygenase-1 gene activation by cadmium in MCF-7 mammary epithelial cells. Role of p38 kinase and Nrf2 transcription factor. J Biol Chem 275, 27694-27702. Aliev, G., Smith, M. A., Turmaine, M., Neal, M. L., Zimina, T. V., Friedland, R. P., Perry, G., LaManna, J. C., and Burnstock, G. (2001). Atherosclerotic lesions are associated with increased immunoreactivity for inducible nitric oxide synthase and endothelin-1 in thoracic aortic intimal cells of hyperlipidemic Watanabe rabbits. Exp Mol Pathol 71, 40-54. Álvarez de Sotomayor, M., and Andriantsitohaina, R. (2001). Simvastatin and Ca2+ signaling in endothelial cells: involvement of Rho protein. Biochem Biophys Res Commun 280, 486-490. Amin-Hanjani, S., Stagliano, N. E., Yamada, M., Huang, P. L., Liao, J. K., and Moskowitz, M. A. (2001). Mevastatin, an HMG-CoA reductase inhibitor, reduces stroke damage and upregulates endothelial nitric oxide synthase in mice. Stroke 32, 980-986. Araujo, J. A., Meng, L., Tward, A. D., Hancock, W. W., Zhai, Y., Lee, A., Ishikawa, K., Iyer, S., Buelow, R., Busuttil, R. W., et al. (2003). Systemic rather than local heme oxygenase-1 overexpression improves cardiac allograft outcomes in a new transgenic mouse. J Immunol 171, 1572-1580. Aviram, M., Dankner, G., Cogan, U., Hochgraf, E., and Brook, J. G. (1992). Lovastatin inhibits low-density lipoprotein oxidation and alters its fluidity and uptake by macrophages: in vitro and in vivo studies. Metabolism 41, 229-235. Aviram, M., Rosenblat, M., Bisgaier, C. L., and Newton, R. S. (1998). Atorvastatin and gemfibrozil metabolites, but not the parent drugs, are potent antioxidants against lipoprotein oxidation. Atherosclerosis 138, 271-280. Axel, D. I., Riessen, R., Runge, H., Viebahn, R., and Karsch, K. R. (2000). Effects of cerivastatin on human arterial smooth muscle cell proliferation and migration in transfilter cocultures. J Cardiovasc Pharmacol 35, 619-629. Baeuerle, P. A., and Baltimore, D. (1988). I kappa B: a specific inhibitor of the NF-kappa B transcription factor. Science 242, 540-546. Baeuerle, P. A., and Baltimore, D. (1996). NF-kappa B: ten years after. Cell 87, 13-20. Bar-Sagi, D., and Hall, A. (2000). Ras and Rho GTPases: a family reunion. Cell 103, 227-238. Bardeleben, R., Kaina, B., and Fritz, G. (2003). Ultraviolet light-induced apoptotic death is impaired by the HMG-CoA reductase inhibitor lovastatin. Biochem Biophys Res Commun 307, 401-407. Behr, D., Rupin, A., Fabiani, J. N., and Verbeuren, T. J. (1999). Distribution and prevalence of inducible nitric oxide synthase in atherosclerotic vessels of long-term cholesterol-fed rabbits. Atherosclerosis 142, 335-344. Blonska, M., Bronikowska, J., Pietsz, G., Czuba, Z. P., Scheller, S., and Krol, W. (2004). Effects of ethanol extract of propolis (EEP) and its flavones on inducible gene expression in J774A.1 macrophages. J Ethnopharmacol 91, 25-30. Blouw, B., Song, H., Tihan, T., Bosze, J., Ferrara, N., Gerber, H. P., Johnson, R. S., and Bergers, G. (2003). The hypoxic response of tumors is dependent on their microenvironment. Cancer Cell 4, 133-146. Bornman, L., Baladi, S., Richard, M. J., Tyrrell, R. M., and Polla, B. S. (1999). Differential regulation and expression of stress proteins and ferritin in human monocytes. J Cell Physiol 178, 1-8. Brouard, S., Otterbein, L. E., Anrather, J., Tobiasch, E., Bach, F. H., Choi, A. M., and Soares, M. P. (2000). Carbon monoxide generated by heme oxygenase 1 suppresses endothelial cell apoptosis. J Exp Med 192, 1015-1026. Brune, B., von Knethen, A., and Sandau, K. B. (1998). Nitric oxide and its role in apoptosis. Eur J Pharmacol 351, 261-272. Burleigh, M. E., Babaev, V. R., Oates, J. A., Harris, R. C., Gautam, S., Riendeau, D., Marnett, L. J., Morrow, J. D., Fazio, S., and Linton, M. F. (2002). Cyclooxygenase-2 promotes early atherosclerotic lesion formation in LDL receptor-deficient mice. Circulation 105, 1816-1823. Caivano, M., and Cohen, P. (2000). Role of mitogen-activated protein kinase cascades in mediating lipopolysaccharide-stimulated induction of cyclooxygenase-2 and IL-1 beta in RAW264 macrophages. J Immunol 164, 3018-3025. Camhi, S. L., Alam, J., Otterbein, L., Sylvester, S. L., and Choi, A. M. (1995). Induction of heme oxygenase-1 gene expression by lipopolysaccharide is mediated by AP-1 activation. Am J Respir Cell Mol Biol 13, 387-398. Caron, E., Self, A. J., and Hall, A. (2000). The GTPase Rap1 controls functional activation of macrophage integrin alphaMbeta2 by LPS and other inflammatory mediators. Curr Biol 10, 974-978. Caunt, C. J., Kiss-Toth, E., Carlotti, F., Chapman, R., and Qwarnstrom, E. E. (2001). Ras controls tumor necrosis factor receptor-associated factor (TRAF)6-dependent induction of nuclear factor-kappa b. Selective regulation through receptor signaling components. J Biol Chem 276, 6280-6288. Cauwels, A. (2007). Nitric oxide in shock. Kidney Int. Chanmugam, P., Feng, L., Liou, S., Jang, B. C., Boudreau, M., Yu, G., Lee, J. H., Kwon, H. J., Beppu, T., Yoshida, M., and et al. (1995). Radicicol, a protein tyrosine kinase inhibitor, suppresses the expression of mitogen-inducible cyclooxygenase in macrophages stimulated with lipopolysaccharide and in experimental glomerulonephritis. J Biol Chem 270, 5418-5426. Chao, C. C., Hu, S., Molitor, T. W., Shaskan, E. G., and Peterson, P. K. (1992). Activated microglia mediate neuronal cell injury via a nitric oxide mechanism. J Immunol 149, 2736-2741. Chen, B. C., Chou, C. F., and Lin, W. W. (1998a). Pyrimidinoceptor-mediated potentiation of inducible nitric-oxide synthase induction in J774 macrophages. Role of intracellular calcium. J Biol Chem 273, 29754-29763. Chen, C. C., Wang, J. K., and Lin, S. B. (1998b). Antisense oligonucleotides targeting protein kinase C-alpha, -beta I, or -delta but not -eta inhibit lipopolysaccharide-induced nitric oxide synthase expression in RAW 264.7 macrophages: involvement of a nuclear factor kappa B-dependent mechanism. J Immunol 161, 6206-6214. Chen, K. D., Chen, L. Y., Huang, H. L., Lieu, C. H., Chang, Y. N., Chang, M. D., and Lai, Y. K. (1998c). Involvement of p38 mitogen-activated protein kinase signaling pathway in the rapid induction of the 78-kDa glucose-regulated protein in 9L rat brain tumor cells. J Biol Chem 273, 749-755. Chen, K., and Maines, M. D. (2000). Nitric oxide induces heme oxygenase-1 via mitogen-activated protein kinases ERK and p38. Cell Mol Biol (Noisy-le-grand) 46, 609-617. Chen, H., Ikeda, U., Shimpo, M., Ikeda, M., Minota, S., and Shimada, K. (2000a). Fluvastatin upregulates inducible nitric oxide synthase expression in cytokine-stimulated vascular smooth muscle cells. Hypertension 36, 923-928. Chen, K. D., Lai, M. T., Cho, J. H., Chen, L. Y., and Lai, Y. K. (2000b). Activation of p38 mitogen-activated protein kinase and mitochondrial Ca2+-mediated oxidative stress are essential for the enhanced expression of grp78 induced by the protein phosphatase inhibitors okadaic acid and calyculin A. J Cell Biochem 76, 585-595. Chen, Z., Sun, J., Pradines, A., Favre, G., Adnane, J., and Sebti, S. M. (2000c). Both farnesylated and geranylgeranylated RhoB inhibit malignant transformation and suppress human tumor growth in nude mice. J Biol Chem 275, 17974-17978. Chen, B. C., and Lin, W. W. (2001). PKC- and ERK-dependent activation of I kappa B kinase by lipopolysaccharide in macrophages: enhancement by P2Y receptor-mediated CaMK activation. Br J Pharmacol 134, 1055-1065. Chen, Y. C., Shen, S. C., Lee, W. R., Hou, W. C., Yang, L. L., and Lee, T. J. (2001). Inhibition of nitric oxide synthase inhibitors and lipopolysaccharide induced inducible NOS and cyclooxygenase-2 gene expressions by rutin, quercetin, and quercetin pentaacetate in RAW 264.7 macrophages. J Cell Biochem 82, 537-548. Chen, C. W., Chao, Y., Chang, Y. H., Hsu, M. J., and Lin, W. W. (2002a). Inhibition of cytokine-induced JAK-STAT signalling pathways by an endonuclease inhibitor aurintricarboxylic acid. Br J Pharmacol 137, 1011-1020. Chen, Y. C., Shen, S. C., Lee, W. R., Lin, H. Y., Ko, C. H., and Lee, T. J. (2002b). Nitric oxide and prostaglandin E2 participate in lipopolysaccharide/interferon-gamma-induced heme oxygenase 1 and prevent RAW264.7 macrophages from UV-irradiation-induced cell death. J Cell Biochem 86, 331-339. Chen, C. J., Raung, S. L., Liao, S. L., and Chen, S. Y. (2004a). Inhibition of inducible nitric oxide synthase expression by baicalein in endotoxin/cytokine-stimulated microglia. Biochem Pharmacol 67, 957-965. Chen, J. C., Huang, K. C., Wingerd, B., Wu, W. T., and Lin, W. W. (2004b). HMG-CoA reductase inhibitors induce COX-2 gene expression in murine macrophages: role of MAPK cascades and promoter elements for CREB and C/EBPbeta. Exp Cell Res 301, 305-319. Chen, J. C., Huang, K. C., and Lin, W. W. (2006). HMG-CoA reductase inhibitors upregulate heme oxygenase-1 expression in murine RAW264.7 macrophages via ERK, p38 MAPK and protein kinase G pathways. Cell Signal 18, 32-39. Cho, S., Kim, Y., Cruz, M. O., Park, E. M., Chu, C. K., Song, G. Y., and Joh, T. H. (2001). Repression of proinflammatory cytokine and inducible nitric oxide synthase (NOS2) gene expression in activated microglia by N-acetyl-O-methyldopamine: protein kinase A-dependent mechanism. Glia 33, 324-333. Chung, H. K., Lee, I. K., Kang, H., Suh, J. M., Kim, H., Park, K. C., Kim, D. W., Kim, Y. K., Ro, H. K., and Shong, M. (2002). Statin inhibits interferon-gamma-induced expression of intercellular adhesion molecule-1 (ICAM-1) in vascular endothelial and smooth muscle cells. Exp Mol Med 34, 451-461. Cipollone, F., Prontera, C., Pini, B., Marini, M., Fazia, M., De Cesare, D., Iezzi, A., Ucchino, S., Boccoli, G., Saba, V., et al. (2001). Overexpression of functionally coupled cyclooxygenase-2 and prostaglandin E synthase in symptomatic atherosclerotic plaques as a basis of prostaglandin E(2)-dependent plaque instability. Circulation 104, 921-927. Cipollone, F., Fazia, M., Iezzi, A., Zucchelli, M., Pini, B., De Cesare, D., Ucchino, S., Spigonardo, F., Bajocchi, G., Bei, R., et al. (2003). Suppression of the functionally coupled cyclooxygenase-2/prostaglandin E synthase as a basis of simvastatin-dependent plaque stabilization in humans. Circulation 107, 1479-1485. Collisson, E. A., Carranza, D. C., Chen, I. Y., and Kolodney, M. S. (2002). Isoprenylation is necessary for the full invasive potential of RhoA overexpression in human melanoma cells. J Invest Dermatol 119, 1172-1176. Corsini, A., Maggi, F. M., and Catapano, A. L. (1995). Pharmacology of competitive inhibitors of HMG-CoA reductase. Pharmacol Res 31, 9-27. Cox, J. S., Shamu, C. E., and Walter, P. (1993). Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase. Cell 73, 1197-1206. Cullinan, S. B., and Diehl, J. A. (2004). PERK-dependent activation of Nrf2 contributes to redox homeostasis and cell survival following endoplasmic reticulum stress. J Biol Chem 279, 20108-20117. Cybulsky, A. V., Takano, T., Papillon, J., Khadir, A., Liu, J., and Peng, H. (2002). Complement C5b-9 membrane attack complex increases expression of endoplasmic reticulum stress proteins in glomerular epithelial cells. J Biol Chem 277, 41342-41351. Da Silva, J., Pierrat, B., Mary, J. L., and Lesslauer, W. (1997). Blockade of p38 mitogen-activated protein kinase pathway inhibits inducible nitric-oxide synthase expression in mouse astrocytes. J Biol Chem 272, 28373-28380. Dajas, F., Rivera, F., Blasina, F., Arredondo, F., Echeverry, C., Lafon, L., Morquio, A., and Heizen, H. (2003). Cell culture protection and in vivo neuroprotective capacity of flavonoids. Neurotox Res 5, 425-432. Degraeve, F., Bolla, M., Blaie, S., Creminon, C., Quere, I., Boquet, P., Levy-Toledano, S., Bertoglio, J., and Habib, A. (2001). Modulation of COX-2 expression by statins in human aortic smooth muscle cells. Involvement of geranylgeranylated proteins. J Biol Chem 276, 46849-46855. Denhardt, D. T. (1996). Signal-transducing protein phosphorylation cascades mediated by Ras/Rho proteins in the mammalian cell: the potential for multiplex signalling. Biochem J 318 ( Pt 3), 729-747. Diaz-Meco, M. T., Dominguez, I., Sanz, L., Dent, P., Lozano, J., Municio, M. M., Berra, E., Hay, R. T., Sturgill, T. W., and Moscat, J. (1994). zeta PKC induces phosphorylation and inactivation of I kappa B-alpha in vitro. EMBO J 13, 2842-2848. Dichtl, W., Dulak, J., Frick, M., Alber, H. F., Schwarzacher, S. P., Ares, M. P., Nilsson, J., Pachinger, O., and Weidinger, F. (2003). HMG-CoA reductase inhibitors regulate inflammatory transcription factors in human endothelial and vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 23, 58-63. Dickson, D. W., Lee, S. C., Mattiace, L. A., Yen, S. H., and Brosnan, C. (1993). Microglia and cytokines in neurological disease, with special reference to AIDS and Alzheimer's disease. Glia 7, 75-83. DiDonato, J. A., Hayakawa, M., Rothwarf, D. M., Zandi, E., and Karin, M. (1997). A cytokine-responsive IkappaB kinase that activates the transcription factor NF-kappaB. Nature 388, 548-554. Dimmerler, S., and Zeiher, A.M. (1997). Nitric oxide and apoptosis: another paradigm for the double-edged role of nitric oxide. Nitric Oxide 1, 275-281. Dorner, A. J., Wasley, L. C., and Kaufman, R. J. (1992). Overexpression of GRP78 mitigates stress induction of glucose regulated proteins and blocks secretion of selective proteins in Chinese hamster ovary cells. Embo J 11, 1563-1571. Eguchi, D., Weiler, D., Alam, J., Nath, K., and Katusic, Z. S. (2001). Protective effect of heme oxygenase-1 gene transfer against oxyhemoglobin-induced endothelial dysfunction. J Cereb Blood Flow Metab 21, 1215-1222. Ejima, K., and Perrella, M. A. (2004). Alteration in heme oxygenase-1 and nitric oxide synthase-2 gene expression during endotoxemia in cyclooxygenase-2-deficient mice. Antioxid Redox Signal 6, 850-857. Elalamy, I., Said, F. A., Singer, M., Couetil, J. P., and Hatmi, M. (2000). Inhibition by extracellular cAMP of phorbol 12-myristate 13-acetate-induced prostaglandin H synthase-2 expression in human pulmonary microvascular endothelial cells. Involvement of an ecto-protein kinase A activity. J Biol Chem 275, 13662-13667. Elbein, A. D. (1984). Inhibitors of the biosynthesis and processing of N-linked oligosaccharides. CRC Crit Rev Biochem 16, 21-49. Elbirt, K. K., Whitmarsh, A. J., Davis, R. J., and Bonkovsky, H. L. (1998). Mechanism of sodium arsenite-mediated induction of heme oxygenase-1 in hepatoma cells. Role of mitogen-activated protein kinases. J Biol Chem 273, 8922-8931. Endres, M., Laufs, U., Huang, Z., Nakamura, T., Huang, P., Moskowitz, M. A., and Liao, J. K. (1998). Stroke protection by 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase inhibitors mediated by endothelial nitric oxide synthase. Proc Natl Acad Sci U S A 95, 8880-8885. Feng, B., Yao, P. M., Li, Y., Devlin, C. M., Zhang, D., Harding, H. P., Sweeney, M., Rong, J. X., Kuriakose, G., Fisher, E. A., et al. (2003a). The endoplasmic reticulum is the site of cholesterol-induced cytotoxicity in macrophages. Nat Cell Biol 5, 781-792. Feng, B., Zhang, D., Kuriakose, G., Devlin, C. M., Kockx, M., and Tabas, I. (2003b). Niemann-Pick C heterozygosity confers resistance to lesional necrosis and macrophage apoptosis in murine atherosclerosis. Proc Natl Acad Sci USA 100, 10423-10428. Fink, M. P. (2007). Ethyl pyruvate: a novel treatment for sepsis. Curr Drug Targets 8, 515-518. Finlin, B. S., and Andres, D. A. (1997). Rem is a new member of the Rad- and Gem/Kir Ras-related GTP-binding protein family repressed by lipopolysaccharide stimulation. J Biol Chem 272, 21982-21988. Fisher, J. E., Rogers, M. J., Halasy, J. M., Luckman, S. P., Hughes, D. E., Masarachia, P. J., Wesolowski, G., Russell, R. G., Rodan, G. A., and Reszka, A. A. (1999). Alendronate mechanism of action: geranylgeraniol, an intermediate in the mevalonate pathway, prevents inhibition of osteoclast formation, bone resorption, and kinase activation in vitro. Proc Natl Acad Sci U S A 96, 133-138. Formica, J. V., and Regelson, W. (1995). Review of the biology of Quercetin and related bioflavonoids. Food Chem Toxicol 33, 1061-1080. Fromm, C., Coso, O. A., Montaner, S., Xu, N., and Gutkind, J. S. (1997). The small GTP-binding protein Rho links G protein-coupled receptors and Galpha12 to the serum response element and to cellular transformation. Proc Natl Acad Sci U S A 94, 10098-10103. Frost, J. A., Swantek, J. L., Stippec, S., Yin, M. J., Gaynor, R., and Cobb, M. H. (2000). Stimulation of NFkappa B activity by multiple signaling pathways requires PAK1. J Biol Chem 275, 19693-19699. Ganne, F., Vasse, M., Beaudeux, J. L., Peynet, J., Francois, A., Mishal, Z., Chartier, A., Tobelem, G., Vannier, J. P., Soria, J., and Soria, C. (2000). Cerivastatin, an inhibitor of HMG-CoA reductase, inhibits urokinase/urokinase-receptor expression and MMP-9 secretion by peripheral blood monocytes--a possible protective mechanism against atherothrombosis. Thromb Haemost 84, 680-688. Geng, Y. J., Wu, Q., Muszynski, M., Hansson, G. K., and Libby, P. (1996). Apoptosis of vascular smooth muscle cells induced by in vitro stimulation with interferon-gamma, tumor necrosis factor-alpha, and interleukin-1 beta. Arterioscler Thromb Vasc Biol 16, 19-27. Giroux, L. M., Davignon, J., and Naruszewicz, M. (1993). Simvastatin inhibits the oxidation of low-density lipoproteins by activated human monocyte-derived macrophages. Biochim Biophys Acta 1165, 335-338. Giroux, M., and Descoteaux, A. (2000). Cyclooxygenase-2 expression in macrophages: modulation by protein kinase C-alpha. J Immunol 165, 3985-3991. Glomset, J. A., Gelb, M. H., and Farnsworth, C. C. (1990). Prenyl proteins in eukaryotic cells: a new type of membrane anchor. Trends Biochem Sci 15, 139-142. Glomset, J. A., Gelb, M. H., and Farnsworth, C. C. (1992). Geranylgeranylated proteins. Biochem Soc Trans 20, 479-484. Goldstein, J. L., and Brown, M. S. (1990). Regulation of the mevalonate pathway. Nature 343, 425-430. Gonzalez-Fernandez, F., Jimenez, A., Lopez-Blaya, A., Velasco, S., Arriero, M. M., Celdran, A., Rico, L., Farre, J., Casado, S., and Lopez-Farre, A. (2001). Cerivastatin prevents tumor necrosis factor-alpha-induced downregulation of endothelial nitric oxide synthase: role of endothelial cytosolic proteins. Atherosclerosis 155, 61-70. Gotoh, T., and Mori, M. (2006). Nitric oxide and endoplasmic reticulum stress. Arterioscler Thromb Vasc Biol 26, 1439-1446. Grandaliano, G., Biswas, P., Choudhury, G. G., and Abboud, H. E. (1993). Simvastatin inhibits PDGF-induced DNA synthesis in human glomerular mesangial cells. Kidney Int 44, 503-508. Grip, O., Janciauskiene, S., and Lindgren, S. (2000). Pravastatin down-regulates inflammatory mediators in human monocytes in vitro. Eur J Pharmacol 410, 83-92. Grynkiewicz, G., Poenie, M., and Tsien, R. Y. (1985). A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260, 3440-3450. Gu, M., Lynch, J., and Brecher, P. (2000). Nitric oxide increases p21(Waf1/Cip1) expression by a cGMP-dependent pathway that includes activation of extracellular signal-regulated kinase and p70(S6k). J Biol Chem 275, 11389-11396. Guha, M., O'Connell, M. A., Pawlinski, R., Hollis, A., McGovern, P., Yan, S. F., Stern, D., and Mackman, N. (2001). Lipopolysaccharide activation of the MEK-ERK1/2 pathway in human monocytic cells mediates tissue factor and tumor necrosis factor alpha expression by inducing Elk-1 phosphorylation and Egr-1 expression. Blood 98, 1429-1439. Guijarro, C., Kim, Y., Schoonover, C. M., Massy, Z. A., O'Donnell, M. P., Kasiske, B. L., Keane, W. F., and Kashtan, C. E. (1996). Lovastatin inhibits lipopolysaccharide-induced NF-kappaB activation in human mesangial cells. Nephrol Dial Transplant 11, 990-996. Hahn, A., Barth, H., Kress, M., Mertens, P. R., and Goppelt-Struebe, M. (2002). Role of Rac and Cdc42 in lysophosphatidic acid-mediated cyclo-oxygenase-2 gene expression. Biochem J 362, 33-40. Hall, A. (1998). Rho GTPases and the actin cytoskeleton. Science 279, 509-514. Han, B. H. (1999). Interferon-gamma and lipopolysaccharide induce mouse guanylate-binding protein 3 (mGBP3) expression in the murine macrophage cell line RAW264.7. Arch Pharm Res 22, 130-136. Hara, M., Akasaka, K., Akinaga, S., Okabe, M., Nakano, H., Gomez, R., Wood, D., Uh, M., and Tamanoi, F. (1993). Identification of Ras farnesyltransferase inhibitors by microbial screening. Proc Natl Acad Sci U S A 90, 2281-2285. Harding, H. P., Zhang, Y., Bertolotti, A., Zeng, H., and Ron, D. (2000). Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol Cell 5, 897-904. Harding, H. P., Zeng, H., Zhang, Y., Jungries, R., Chung, P., Plesken, H., Sabatini, D. D., and Ron, D. (2001). Diabetes mellitus and exocrine pancreatic dysfunction in perk-/- mice reveals a role for translational control in secretory cell survival. Mol Cell 7, 1153-1163. Harrison, D. G. (1997). Cellular and molecular mechanisms of endothelial cell dysfunction. J Clin Invest 100, 2153-2157. Hausding, M., Witteck, A., Rodriguez-Pascual, F., von Eichel-Streiber, C., Forstermann, U., and Kleinert, H. (2000). Inhibition of small G proteins of the rho family by statins or clostridium difficile toxin B enhances cytokine-mediated induction of NO synthase II. Br J Pharmacol 131, 553-561. Hayashi, S., Takamiya, R., Yamaguchi, T., Matsumoto, K., Tojo, S. J., Tamatani, T., Kitajima, M., Makino, N., Ishimura, Y., and Suematsu, M. (1999). Induction of heme oxygenase-1 suppresses venular leukocyte adhesion elicited by oxidative stress: role of bilirubin generated by the enzyme. Circ Res 85, 663-671. Haynes, C. M., Titus, E. A., and Cooper, A. A. (2004). Degradation of misfolded proteins prevents ER-derived oxidative stress and cell death. Mol Cell 15, 767-776. Haze, K., Yoshida, H., Yanagi, H., Yura, T., and Mori, K. (1999). Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol Biol Cell 10, 3787-3799. Heitmeier, M. R., Scarim, A. L., and Corbett, J. A. (1999). Prolonged STAT1 activation is associated with interferon-gamma priming for interleukin-1-induced inducible nitric-oxide synthase expression by islets of Langerhans. J Biol Chem 274, 29266-29273. Henwood, J. M., and Heel, R. C. (1988). Lovastatin. A preliminary review of its pharmacodynamic properties and therapeutic use in hyperlipidaemia. Drugs 36, 429-454. Hernandez-Perera, O., Perez-Sala, D., Navarro-Antolin, J., Sanchez-Pascuala, R., Hernandez, G., Diaz, C., and Lamas, S. (1998). Effects of the 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors, atorvastatin and simvastatin, on the expression of endothelin-1 and endothelial nitric oxide synthase in vascular endothelial cells. J Clin Invest 101, 2711-2719. Hernandez-Presa, M. A., Martin-Ventura, J. L., Ortego, M., Gomez-Hernandez, A., Tunon, J., Hernandez-Vargas, P., Blanco-Colio, L. M., Mas, S., Aparicio, C., Ortega, L., et al. (2002). Atorvastatin reduces the expression of cyclooxygenase-2 in a rabbit model of atherosclerosis and in cultured vascular smooth muscle cells. Atherosclerosis 160, 49-58. Hodnick, W. F., Kung, F. S., Roettger, W. J., Bohmont, C. W., and Pardini, R. S. (1986). Inhibition of mitochondrial respiration and production of toxic oxygen radicals by flavonoids. A structure-activity study. Biochem Pharmacol 35, 2345-2357. Hollman, P. C., de Vries, J. H., van Leeuwen, S. D., Mengelers, M. J., and Katan, M. B. (1995). Absorption of dietary quercetin glycosides and quercetin in healthy ileostomy volunteers. Am J Clin Nutr 62, 1276-1282. Hong, M., Lin, M. Y., Huang, J. M., Baumeister, P., Hakre, S., Roy, A. L., and Lee, A. S. (2005). Transcriptional regulation of the Grp78 promoter by endoplasmic reticulum stress: role of TFII-I and its tyrosine phosphorylation. J Biol Chem 280, 16821-16828. Hou, Y. C., Chao, P. D., Ho, H. J., Wen, C. C., and Hsiu, S. L. (2003). Profound difference in pharmacokinetics between morin and its isomer quercetin in rats. J Pharm Pharmacol 55, 199-203. Hrboticky, N., Draude, G., Hapfelmeier, G., Lorenz, R., and Weber, P. C. (1999). Lovastatin decreases the receptor-mediated degradation of acetylated and oxidized LDLs in human blood monocytes during the early stage of differentiation into macrophages. Arterioscler Thromb Vasc Biol 19, 1267-1275. Hsu, M. J., Lee, S. S., and Lin, W. W. (2002). Polysaccharide purified from Ganoderma lucidum inhibits spontaneous and Fas-mediated apoptosis in human neutrophils through activation of the phosphatidylinositol 3 kinase/Akt signaling pathway. J Leukoc Biol 72, 207-216. Huang, K. C., Chen, C. W., Chen, J. C., and Lin, W. W. (2003). HMG-CoA reductase inhibitors inhibit inducible nitric oxide synthase gene expression in macrophages. J Biomed Sci 10, 396-405. Hung, C. C., Ichimura, T., Stevens, J. L., and Bonventre, J. V. (2003). Protection of renal epithelial cells against oxidative injury by endoplasmic reticulum stress preconditioning is mediated by ERK1/2 activation. J Biol Chem 278, 29317-29326. Hwang, D., Jang, B. C., Yu, G., and Boudreau, M. (1997). Expression of mitogen-inducible cyclooxygenase induced by lipopolysaccharide: mediation through both mitogen-activated protein kinase and NF-kappaB signaling pathways in macrophages. Biochem Pharmacol 54, 87-96. Igel, M., Sudhop, T., and von Bergmann, K. (2001). Metabolism and drug interactions of 3-hydroxy-3-methylglutaryl coenzyme A-reductase inhibitors (statins). Eur J Clin Pharmacol 57, 357-364. Ignarro, L. J. (2000). The unique role of nitric oxide as a signaling molecule in the cardiovascular system. Ital Heart J 1 Suppl 3, S28-29. Ikeda, U., Shimpo, M., Ikeda, M., Minota, S., and Shimada, K. (2001). Lipophilic statins augment inducible nitric oxide synthase expression in cytokine-stimulated cardiac myocytes. J Cardiovasc Pharmacol 38, 69-77. Ikeda, E. (2005). Cellular response to tissue hypoxia and its involvement in disease progression. Pathol Int 55, 603-610. Immenschuh, S., Hinke, V., Ohlmann, A., Gifhorn-Katz, S., Katz, N., Jungermann, K., and Kietzmann, T. (1998a). Transcriptional activation of the haem oxygenase-1 gene by cGMP via a cAMP response element/activator protein-1 element in primary cultures of rat hepatocytes. Biochem J 334 ( Pt 1), 141-146. Immenschuh, S., Kietzmann, T., Hinke, V., Wiederhold, M., Katz, N., and Muller-Eberhard, U. (1998b). The rat heme oxygenase-1 gene is transcriptionally induced via the protein kinase A signaling pathway in rat hepatocyte cultures. Mol Pharmacol 53, 483-491. Immenschuh, S., and Ramadori, G. (2000). Gene regulation of heme oxygenase-1 as a therapeutic target. Biochem Pharmacol 60, 1121-1128. Inagi, R., Nangaku, M., Onogi, H., Ueyama, H., Kitao, Y., Nakazato, K., Ogawa, S., Kurokawa, K., Couser, W. G., and Miyata, T. (2005). Involvement of endoplasmic reticulum (ER) stress in podocyte injury induced by excessive protein accumulation. Kidney Int 68, 2639-2650. Ingi, T., Cheng, J., and Ronnett, G. V. (1996). Carbon monoxide: an endogenous modulator of the nitric oxide-cyclic GMP signaling system. Neuron 16, 835-842. Inoue, H., Yokoyama, C., Hara, S., Tone, Y., and Tanabe, T. (1995). Transcriptional regulation of human prostaglandin-endoperoxide synthase-2 gene by lipopolysaccharide and phorbol ester in vascular endothelial cells. Involvement of both nuclear factor for interleukin-6 expression site and cAMP response element. J Biol Chem 270, 24965-24971. Ishikawa, K., and Maruyama, Y. (2001). Heme oxygenase as an intrinsic defense system in vascular wall: implication against atherogenesis. J Atheroscler Thromb 8, 63-70. Ishikawa, K., Sugawara, D., Goto, J., Watanabe, Y., Kawamura, K., Shiomi, M., Itabe, H., and Maruyama, Y. (2001a). Heme oxygenase-1 inhibits atherogenesis in Watanabe heritable hyperlipidemic rabbits. Circulation 104, 1831-1836. Ishikawa, K., Sugawara, D., Wang, X., Suzuki, K., Itabe, H., Maruyama, Y., and Lusis, A. J. (2001b). Heme oxygenase-1 inhibits atherosclerotic lesion formation in ldl-receptor knockout mice. Circ Res 88, 506-512. Itoh, K., Chiba, T., Takahashi, S., Ishii, T., Igarashi, K., Katoh, Y., Oyake, T., Hayashi, N., Satoh, K., Hatayama, I., et al. (1997). An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun 236, 313-322. Itoh, K., Wakabayashi, N., Katoh, Y., Ishii, T., Igarashi, K., Engel, J. D., and Yamamoto, M. (1999). Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev 13, 76-86. Izumo, N., Fujita, T., Nakamuta, H., and Koida, M. (2001). Lipophilic statins can be osteogenic by promoting osteoblastic calcification in a Cbfa1- and BMP-2-independent manner. Methods Find Exp Clin Pharmacol 23, 389-394. Jia, Z., Person, M. D., Dong, J., Shen, J., Hensley, S. C., Stevens, J. L., Monks, T. J., and Lau, S. S. (2004). Grp78 is essential for 11-deoxy-16,16-dimethyl PGE2-mediated cytoprotection in renal epithelial cells. Am J Physiol Renal Physiol 287, F1113-F1122. Jo, M., Thomas, K. S., Somlyo, A. V., Somlyo, A. P., and Gonias, S. L. (2002). Cooperativity between the Ras-ERK and Rho-Rho kinase pathways in urokinase-type plasminogen activator-stimulated cell migration. J Biol Chem 277, 12479-12485. Joly, G. A., Schini, V. B., and Vanhoutte, P. M. (1992). Balloon injury and interleukin-1 beta induce nitric oxide synthase activity in rat carotid arteries. Circ Res 71, 331-338. Juan, S. H., Lee, T. S., Tseng, K. W., Liou, J. Y., Shyue, S. K., Wu, K. K., and Chau, L. Y. (2001). Adenovirus-mediated heme oxygenase-1 gene transfer inhibits the development of atherosclerosis in apolipoprotein E-deficient mice. Circulation 104, 1519-1525. Jung, W. J., and Sung, M. K. (2004). Effects of major dietary antioxidants on inflammatory markers of RAW 264.7 macrophages. Biofactors 21, 113-117. Just, I., Selzer, J., Wilm, M., von Eichel-Streiber, C., Mann, M., and Aktories, K. (1995). Glucosylation of Rho proteins by Clostridium difficile toxin B. Nature 375, 500-503. Just, I., Hofmann, F., and Aktories, K. (2000). Molecular mode of action of the large clostridial cytotoxins. Curr Top Microbiol Immunol 250, 55-83. Kacimi, R., Chentoufi, J., Honbo, N., Long, C. S., and Karliner, J. S. (2000). Hypoxia differentially regulates stress proteins in cultured cardiomyocytes: role of the p38 stress-activated kinase signaling cascade, and relation to cytoprotection. Cardiovasc Res 46, 139-150. Kamijo, R., Harada, H., Matsuyama, T., Bos | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28398 | - |
| dc.description.abstract | HMG-CoA reductase 抑制劑 statins 可以有效抑制膽固醇的合成,且被廣泛用於治療心血管疾病。除了用於治療心血管疾病與降血脂外,近來有研究報導指出,statins 在臨床治療上仍具有多重治療效果。statins 的多重治療效果並不單純因藥物本身能降低血液中的膽固醇含量,而主要是statins 的作用機轉在於能抑制與Ras、Rho、Cdc42、Rac 等小分子G 蛋白質有關之訊息傳導路徑,進而有效抑制發炎作用。流行病學研究顯示,富含類黃酮的食物會降低罹患發炎等慢性疾病之機率。Quercetin 乃為廣泛存在於蔬菜水果的類黃酮,諸多報導指出Quercetin 可能是具有生物活性的膳食成分,可能藉由作為抗氧化劑或影響其他訊息傳遞而發揮作用。在本論文中我們分成五個研究主題,研究statins 在巨噬細胞調控與發炎反應相關的基因表現及訊息傳遞作用機轉,也研究Quercetin 在微神經膠細胞中對於iNOS及HO-1 的基因表現調控機制。希望藉由這些研究結果能更清楚闡述statins 及Quercetin 的抗發炎作用的機制與提供將來臨床應用的學理依據。
首先我們探討statins 在巨噬細胞內對誘導型一氧化氮合成酶﹙iNOS﹚基因表現的調節作用。本實驗使用lovastatin、pravastatin、atorvastatin 與fluvastatin,來探討它們在鼠類RAW 264.7 巨噬細胞中對NO 形成之影響。給予巨噬細胞LPS 與IFN-γ 刺激會促進iNOS 表現與大量NO 之生成,給予不同statins﹙0.1-30 μM﹚能對該刺激產生有效地抑制作用。上述的影響是作用在基因轉錄層級,藥物的抑制程度依序為︰ lovastatin > atorvastatin > fluvastatin > > pravastatin 。研究發現lovastatin 主要是抑制在經由LPS 刺激所活化的IKK/NF-κB 與IFN-γ 刺激所磷酸化的STAT1 訊息傳導路徑。再者,statins 的抑制作用可以被mevalonate、FPP、GGPP所阻斷。該實驗結果顯示statins 可能影響蛋白質isoprenylation、而抑制調控iNOS 基因表現所需訊息傳遞路徑中NF-κB 與STAT1 的活化。研究進一步發現:給予RAW 264.7 巨噬細胞statins﹙1-30 μM﹚可以誘導乙型 環氧化酶﹙COX-2﹚基因轉錄作用與PGE2 的生成,作用強度依序為︰lovastatin>fluvastatin>atorvastatin>>pravastatin。利用COX-2 基因啟動子活性分析我們發現Statins 的作用是在COX-2 基因啟動子的CREB 與C/EBPβ 結合位置,並非NF-κB結合位置。Mevalonate、FPP、GGPP 均能有效抑制statins 所活化的COX-2 基因轉錄、誘導COX-2 蛋白表現與促進PGE2 生成等作用。Manumycin A﹙Ras 抑制劑﹚與geranylgeranyltransferase 抑制劑也具有與statins 類似的作用,皆能夠誘導COX-2蛋白表現與促進PGE2 生成。其中又以toxin B﹙Rho 蛋白抑制劑﹚作用最為顯著。實驗結果亦顯示statins 的作用與tyrosine kinase、PKC、ERK、p38 MAPK 激酶之活化息息相關。總體而言,statins 可藉由促進MAPK 激酶活化,經由CREB 與C/EBPβ 啟動子結合位置來誘導COX-2 基因轉錄,同時在此過程中小分子G 蛋白扮演了負向調控角色。 甲型血基質氧化酶﹙HO-1﹚不只是影響血基質代謝的決定酵素,也提供細胞保護作用來對抗氧化性傷害與維持體內組織的恆定。因具有上述的防衛機制,使得「HO-1 的調控」被認為是一種極可能的切入點,將其運用到臨床上來治療因細胞凋亡、發炎反應、氧化作用或動脈粥狀硬化所造成的疾病。實驗結果顯示lovastatin、fluvastatin、atorvastatin、simvastatin、mevastatin 與pravastatin 能夠誘導HO-1 mRNA 表現。Lovastatin 的作用可以被FPP、GGPP、PKG 抑制劑﹙KT5823﹚、sGC 抑制劑﹙ODQ﹚、PKC 抑制劑﹙Ro31-8220 與GF109203X﹚、p38 MAPK 抑制劑﹙SB203580﹚與MEK 抑制劑﹙U0126 與PD98059﹚所阻斷,而不受PKA、JNK與ROCK 抑制劑所影響。實驗證實在鼠類巨噬細胞中statins 可活化ERK 與p38MAPK。實驗進ㄧ步發現statins 可經由cGMP/PKG/ERK 的訊息傳遞路徑誘導AP-1﹙HO-1 基因表現的重要轉錄因子﹚活化。此外,Ras 抑制劑﹙manumycin A﹚也可誘導相當程度的HO-1 mRNA 與蛋白表現;相反地,Rho 蛋白抑制劑﹙toxin B﹚只能促進短暫且微弱的引起HO-1 表現。Manumycin A 誘導HO-1 基因表現的訊息傳遞路徑與p38 MAPK、JNK 與ERK 活化有關。總結來說,本實驗結果是第一個證實statins 可經由調控PKG 來促進ERK 與p38 MAPK 活化,進而誘導HO-1 基因表現,該作用也為 statins 的臨床治療用途提供一種全新的抗發炎機轉。 GRP78 為主要的內質網伴隨蛋白之一,可提供細胞保護作用,以抵抗過度內質網壓力造成的細胞死亡。由於內質網壓力造成的巨噬細胞死亡,會使動脈粥狀硬化更趨嚴重,我們因而想了解statins 除了可以有效降低脂質含量外,是否也對未折疊蛋白反應﹙unfolded protein response,UPR﹚及其相關訊息傳遞路徑有所影響。給予RAW 264.7 巨噬細胞statins﹙3-30 μM﹚可以誘導GRP78、ATF6、XBP1與磷酸化的eIF2α 表現,而不影響ATF4、CHOP 與細胞死亡的發生。實驗結果顯xii示:1.statins 誘導GRP78 基因轉錄作用與c-Src、PI turnover、PKC、ERK與p38 MAPK有關。2.statins 可藉由調控鈣離子與抑制小分子G 蛋白作用這兩條獨立卻具有協同作用的訊息傳遞路徑,活化c-Src/PI-PLC/PKC,進而活化ERK 與p38 MAPK。3.statins 可誘導GRP78 表現來保護缺氧造成的細胞死亡,而statins 的這種細胞保護作用可被GRP78 small interfering RNA 所阻斷。4.statins 也可在內質網壓力造成腎臟病變之小鼠中提供類似的保護好處。實驗結果提供statins 一個與降低脂質含量完全無關的全新作用機轉,無論是在體外實驗模式或活體實驗模式,均能誘導具有細胞保護作用的未折疊蛋白反應。實驗結果更為臨床上運用statins 治療動脈粥狀硬化疾病提供新理論基礎。 另ㄧ方面,我們研究Quercetin﹙分布比例最高的類黃酮﹚與其主要代謝物Quercetin-3’-sulfate,在BV-2 微神經膠細胞中對於給予LPS 與IFN-γ 刺激,所誘導的NO 生成之影響。Quercetin 主要是抑制經由LPS 刺激所活化的IKK/NF-κB 與AP-1;與抑制經由IFN-γ 刺激所誘導的STAT1 與IRF-1 的活化以產生有效地抗發炎作用,然而Quercetin-3’-sulfate 不具抑制效果。再者Quercetin 也可以誘導HO-1表現。本實驗利用HO-1 反義質體以釐清HO-1 與iNOS 二者關係。HO-1 反義質體可以部分阻斷Quercetin 抑制NO 生成與iNOS 蛋白表現的作用;相反的,HO-1 誘導劑hemin 則具有與Quercetin 相同的抑制iNOS/NO 作用。Quercetin 誘導HO-1基因表現的訊息傳導路徑與tyrosine kinase 及MAPK 激酶活化有關。上述研究結果顯示Quercetin 能夠抑制造成神經損害之發炎作用,因此具有治療神經退化性疾病的應用價值。 | zh_TW |
| dc.description.abstract | The 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors, statins, are potent inhibitors of cholesterol synthesis and have wide therapeutic use incardiovascular diseases. Except in coronary artery disease and hyperlipidemia management, increasing studies have demonstrated the pleiotropic benefits of statins in potential clinical uses. Some of these pleiotropic effects of statins are not attributed solely to their lipid lowering properties, but to some anti-inflammatory benefits, which are related to the inhibition of signaling pathways mediated by small G proteins (Ras, Rho, Cdc42, Rac etc.). Currently, the molecular mechanisms underlying theanti-inflammatory actions of statins are unclear and required further investigation.
Epidemiologic studies also demonstrated that foods rich in flavonoids can reduce the risk of chronic disease including inflammation. Quercetin, a flavonoid, is found ubiquitously in the vegetables and fruits, and may be a useful bioactive compound of the human diet. In the present study, we investigated the effects and action mechanisms of statins on multiple gene expressions in macrophages in order to elucidate their pleiotropic benefits relating to clinical therapy. In addition, anti-inflammatory mechanisms of quercetin such as regulation of HO-1 and iNOS gene expression in microglia were demonstrated. In the first part, we investigated the effects of lovastatin, pravastatin, atorvastatin and fluvastatin on macrophage’s formation of NO in murine RAW 264.7 cells. Stimulation of macrophages with lipopolysaccharide (LPS) and interferon-γ (IFN-γ) resulted in iNOS expression, which was accompanied by a large amount of NO formation. Within concentrations of 0.1-30 μM, statins can inhibit stimuli-induced NO formation and iNOS induction to ifferent extents. This inhibition occurred at the transcriptional level, and displayed potencies as ovastatin > atorvastatin > fluvastatin >> pravastatin. We found that LPS-induced IKK and NF-κB activation, as well as IFN-γ-induced STAT1 phosphorylation, were reduced by lovastatin. Moreover, inhibitions by lovastatin of NO production and NF-κB activation were reversed by mevalonate, FPP and GGPP. All these results suggest that inhibition of iNOS gene expression by statins can be attributed to the interference with protein isoprenylation, leading to uncoupling NF-κB and STAT1 activation in the upstream signaling pathways required for iNOS gene transcription. In the second part, we investigated the effects of statins on COX-2 gene induction in murine RAW 264.7 macrophages. We found that statins within 1-30 μM stimulated COX-2 gene transcription and PGE2 formation, displaying potencies as lovastatin > fluvastatin > atorvastatin >> pravastatin. Transfection experiments with COX-2 promoter construct showed the necessity of C/EBPβ and CRE promoter sites, but not NF-κB promoter site. Effects of statins on the activation of COX-2 promoter, induction of COX-2 protein and PGE2 production were all prevented by mevalonate and prenylated metabolites, FPP and GGPP. In consistent with the effects of statins, manumycin A (a Ras inhibitor), farnesyltransferase inhibitor, and eranylgeranyltransferase inhibitor increased PGE2 production and COX-2 induction. Likewise, toxin B, an inhibitor of Rho family members, caused a significant COX-2 induction. Results also indicated that tyrosine kinase, PKC, ERK, and p38 MAPK play essential roles in statin-mediated COX-2 induction. Taken together, these results not only demonstrate a unique action of statins in the upregulation of COX-2 expression in macrophages, but also suggest a negative role controlled by small G proteins in COX-2 gene regulation. Removing this negative regulation by impairing G protein prenylation with statins leads to MAPKs activation and promotes COX-2 gene transcription through CRE and C/EBPβ sites. In the third part, we investigated the effects of statins on the anti-inflammatory gene heme oxygenase-1 (HO-1) expression in RAW 264.7 macrophages. HO-1 is the rate-limiting enzyme in heme catabolism, which confers cytoprotection against oxidative injury and provides a vital function in maintaining tissue homeostasis. This important defense mechanism makes it conceivable to target HO-1 induction as a promising therapeutic intervention in treating a variety of disorders related to cell apoptosis, inflammation, oxidation and atherosclerosis. We showed that lovastatin, fluvastatin, atorvastatin, simvastatin, mevastatin and pravastatin are able to up-regulate the mRNA expression of HO-1 gene. This effect of lovastatin was attenuated by FPP, GGPP, PKG inhibitor (KT5823), soluble guanylyl cyclase (sGC) inhibitor (ODQ), PKC inhibitors (Ro31-8220 and GF109203X), p38 MAPK inhibitor (SB203580), and MEK inhibitors (U0126 and PD98059), but not by inhibitors of PKA, JNK and Rho kinase. Consistent with this notion, we found the ability of statins to activate ERK and p38 MAPK. Moreover, we demonstrated the participation of cGMP/PKG pathway for ERK activation in cells stimulated with statin, and the ability of statin to induce AP-1 activity, which is an essential transcription factor in the regulation of HO-1 gene expression. In addition, manumycin A treatment also caused a marked induction of HO-1 mRNA followed by a corresponding increase in HO-1 protein; instead, inhibition of Rho activity by toxin B only led to a transient and weak induction of HO-1. The involvement of signal pathways in manumycin A-induced HO-1 gene expression was associated with p38 MAPK, JNK and ERK activation. Taken together, these results demonstrate for the first time that PKG is an intermediate player for statins to activate ERK and p38 MAPK pathways and further induce HO-1 gene expression. HO-1 induction by statins provides a novel anti-inflammatory mechanism in the therapeutic validity. In the fourth part, we investigated the effects of statins on 78 kDa glucose-regulated protein (GRP78) gene expression. GRP78 is a major ER chaperone whose induction by ER stress confers cytoprotection against cell death. Since ER stress-induced macrophage apoptosis contributes to advanced atherosclerotic lesions, we sought to understand the effects of statins on unfolded protein response (UPR) and the signaling cascades underlying statins’ action. Exposure of murine RAW 264.7 macrophages to statins (within 3-30 μM) increased expressions of GRP78, ATF6, XBP1, and phosphorylated eIF2α, while no effects on ATF4, CHOP and cell death. Promoter activity measurement with inhibitors indicated that phosphoinositide (PI) turnover, c-Src, PKC, ERK and p38 MAPK involve in upregulation of GRP78 gene transcription by statins. We observed that increased intracellular Ca2+ level and interruption of a small G protein pathway are two bifurcated but cooperative signaling pathways for c-Src, leading to downstream activation of phospholipase C, PKC, ERK and p38. We further demonstrated that statins protected hypoxia-mediated cell death via GRP78 induction. Correspondingly, the downregulation of GRP78 via small interfering RNA approach decreased statins’ cytoprotection in hypoxia. Statins also conferred similar prot ective benefits on ER stress-induced kidney failure in mice model. Collectively, these results demonstrated a novel action of statins, independently of lipid lowering activity, to induce cytoprotective UPR response in vitro and in vivo. These findings provide new insights into statins for their clinical benefits in atheroslcerosis. In the final part, experiments were performed to explore the action of quercetin, the most widely distributed flavonoids, and its major in vivo metabolite, quercetin-3’-sulfate, on LPS- and IFN-γ-induced NO production in BV-2 microglia. We found that quercetin could suppress LPS- and IFN-γ-induced NO production and iNOS gene transcription, while quercetin-3’-sulfate had no effect. LPS-induced IKK, NF-κB and AP-1 activation, and IFN-γ-induced NF-κB, STAT1 and IRF-1 activation were reduced by quercetin. Moreover quercetin was able to induce HO-1 expression. To address the involvement of HO-1 induction in iNOS inhibition, HO-1 antisense oligodeoxynucleotide was used. Quercetin-mediated inhibition of NO production and iNOS protein expression were partially reversed by HO-1 antisense oligodeoxynucleotide, and was mimicked by hemin, a HO-1 inducer. The involvement of signal pathways in quercetin-induced HO-1 gene expression was associated with tyrosine kinase and MAPKs activation. All these results suggest that quercetin should provide therapeutic benefits for suppression of inflammatory-related neuronal injury in neurodegenerative diseases. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T00:07:11Z (GMT). No. of bitstreams: 1 ntu-96-F90443002-1.pdf: 6305625 bytes, checksum: bfc959fb06da23f63118df33961f24c0 (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
致謝 ii Abbreviations iii Abstract vi 中文摘要 x Introduction 1 Materials and Methods 20 Part I. Statins inhibit inducible nitric oxide synthase gene expression in macrophages 33 Results 34 Discussion 38 Figures 41 Part II. Statins induce cyclooxygenase-2 gene expression in macrophages 47 Results 48 Discussion 53 Figures 60 Part III. Statins upregulate heme oxygenase-1 gene expression in macrophages 68 Results 69 Discussion 74 Figures 79 Part IV. Statins activate unfolded protein response and induce GRP78 gene expression in macrophages 86 Results 87 Discussion 98 Figures 104 Part V. Quercetin inhibits inducible nitric oxide synthase gene expression in microglia 117 Results 118 Discussion 123 Figures 127 Schematic Conclusion 139 References 141 Publications 167 Appendixes 168 | |
| dc.language.iso | en | |
| dc.subject | STATIN | zh_TW |
| dc.subject | 未折疊蛋白反應 | zh_TW |
| dc.subject | 巨噬細胞 | zh_TW |
| dc.subject | 發炎反應 | zh_TW |
| dc.subject | Quercetin | zh_TW |
| dc.subject | inflammation | en |
| dc.subject | Quercetin | en |
| dc.subject | macrophage | en |
| dc.subject | UPR | en |
| dc.subject | STATIN | en |
| dc.title | STATIN及QUERCETIN在巨噬細胞及微神經膠細胞調節發炎相關基因表現及活化未折疊蛋白反應之訊息傳遞研究 | zh_TW |
| dc.title | Molecular mechanisms for statin and quercetin in the regulation of inflammation-related genes and activation of unfolded protein response in macrophages and microglial cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 顏茂雄,楊春茂,蘇銘嘉,黃國晉 | |
| dc.subject.keyword | STATIN,Quercetin,發炎反應,巨噬細胞,未折疊蛋白反應, | zh_TW |
| dc.subject.keyword | STATIN,Quercetin,inflammation,macrophage,UPR, | en |
| dc.relation.page | 176 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-07-30 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 藥理學研究所 | zh_TW |
| 顯示於系所單位: | 藥理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 6.16 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
