Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28349
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳文方(Wen-Fang Wu)
dc.contributor.authorChung-Hao Weien
dc.contributor.author韋鐘豪zh_TW
dc.date.accessioned2021-06-13T00:05:48Z-
dc.date.available2017-08-26
dc.date.copyright2007-07-31
dc.date.issued2007
dc.date.submitted2007-07-27
dc.identifier.citation1. American Society of Mechanical Engineers, ASME Boiler and Pressure Vessel Code Section III, 1995 Editions, 1995.
2. American Society of Mechanical Engineers, ASME Boiler and Pressure Vessel Code Section XI, 1995 Editions, 1995.
3. International Atomic Energy Agency, Assessment and Management of Ageing of Major Nuclear Power Plant Components Import to Safety: PWR Pressure Vessels, IAEA-TECDOC-1120, 1999.
4. Tipping, P., “Lifetime and ageing management of nuclear power plants: a brief overview of some light water reactor component ageing degradation problems and ways of mitigation,” International Journal of Pressure Vessels and Piping, Vol. 66, pp. 17-25, 1996.
5. Odette, G.R. and Lucas, G.E., “Embrittlement of nuclear reactor pressure vessels,” The Journal of The Minerals, Metals & Materials Society, Vol. 53, pp. 18-22, 2001.
6. U.S. Nuclear Regulatory Commission, “Radiation Embrittlement of Reactor Vessel Materials,” Regulatory Guide 1.99, Revision 2,1988.
7. Debarberis, L., Kryukov, A., Gillemot, F., Acosta, B. and Sevini, F., “Semi-mechanistic analytical model for radiation embrittlement and re-embrittlement data analysis,” International Journal of Pressure Vessels and Piping, Vol. 82, pp. 195-200, 2005.
8. Wang, J.A., Rao, N.S.V. and Konduri, S., “The development of radiation embrittlement models for US power reactor pressure vessel steels,” Journal of Nuclear Materials, Vol. 362, pp. 116-127, 2007.
9. Sundararajan, C., “Probabilistic assessment of pressure vessel and piping reliability,” ASME Journal of Pressure Vessel Technology, Vol. 108, pp. 1-13, 1986.
10. Becher, P. E. and Pedersen, A., “Application of statistical linear elastic fracture mechanics to pressure vessel reliability analysis,” Nuclear Engineering and Design, Vol. 27, pp. 413-425, 1974.
11. Francois, D., Advances in Fracture Research (Fracture 81), Vol. 2, Pergamon Press, pp. 517, 1981.
12. Yagawa, G., et al., “Japanese round Robin analysis for reliability for probabilistic fracture mechanics,” SMiRT 11 Transactions, Vol. G, pp. 331-336, 1991.
13. Dutta, B.K., Kushwaha, H.S. and Venkat, R.V., “Probabilistic assessment of reactor pressure vessel integrity under pressured thermal shock,” International Journal of Pressure Vessels and Piping, Vol. 76, pp. 445-453, 1999.
14. Li, F. and Modarres, M., “Probabilistic modeling for fracture mechanic studies of reactor vessels with characterization of uncertainties,” Nuclear Engineering and Design, Vol. 235, pp. 1-19, 2005.
15. Pugh, C.E., Richard B.B. and Dickson, T.L., “Role of probabilistic analysis in integrity assessments of reactor pressure vessels exposed to pressurized thermal-shock conditions,” Engineering Failure Analysis, Vol. 14, pp. 501-517, 2007.
16. AOT DISTANCE TRANING HOME PAGE, http://d-training.aots.or.jp/ioe/ioe5-1.html
17. The Nuclear Human Resource Development(HRD) Center of Korea Atomic Energy Research Institute, http://www.kntc.re.kr/openlec/policy/part1/part1_chapter6.htm
18. US Energy Information Agengy (EIA), http://www.eia.doe.gov/cneaf/nuclear/page/nuc_reactors/pwr.html
19. U.S. Nuclear Regulatory Commission, “Radiation embrittlement of reactor vessel material,” Code of Federal Regulations, 10 CFR50, Appendix G,1995.
20. U.S. Nuclear Regulatory Commission, “Reactor Vessel Material Surveillance Program Requirements,” Code of Federal Regulations, 10 CFR50, Appendix H, 1995.
21. American Society for Testing and Materials International , Standard Practice for Light-Water Cooled Nuclear Power Reactor Vessels, ASTM E185-82, E7.6 (IF), 1982.
22. Rubinstein, R. Y., Simulation and Monte Carlo Method, Wiley, New York, N.Y., 1981.
23. Ebeling, C. E., An Introduction to Reliability and Maintainability Engineering, McGraw-Hill, 1997.
24. 核能實務與理論,行政院原子能委員會,1993。
25. Analysis of Capsule W from the Taiwan Power Company Maashan Unit 1 Reactor Vessel Radiation Surveillance Program, 1999.
26. Chang, S. J., “Fracture probability integral applied to reactor vessel life estimate,” ASME Journal of Pressure Vessel Technology, Vol. 123, pp. 346-354, 2001.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28349-
dc.description.abstract反應器壓力槽為核能電廠蒸汽供應系統中極為重要的壓力邊界組件,在電廠長期運轉後,反應器壓力槽會面臨各種老化問題,而影響電廠之安全;其中,輻射脆化為反應器壓力槽最主要之老化機制。目前國內電廠係依據美國核能管制委員會所制訂的規範,以定論式的分析方法,針對反應器壓力槽之輻射脆化問題,定期進行老化評估,期能確保其在運轉期間之安全。本研究根基於現行定論式之評估模式,建構一套反應器壓力槽之機率式評估模式,據以估算壓力槽因輻射脆化而超出法規規定之可能性。本研究以國內壓水式核能電廠之反應器壓力槽為案例進行此項分析與評估,並針對其結果加以討論。研究結果顯示,在合理的假設下,若以「參考溫度」評估,該反應器壓力槽於設計壽命終期時,有3.42×10^7因輻射脆化至超出法規規定之可能性;但若以「上限衝擊能量」評估,則有1×10^4 超出法規規定之可能性。因為現行法規主要仍根基於傳統保守式的定論分析觀念,所以反應器壓力槽因輻射脆化而導致破壞的機率應仍小於以上數據。zh_TW
dc.description.abstractThe reactor pressure vessel (RPV) is an extremely important component in the steam supply system of a nuclear power plant. However, after a long period of operation, it will face various aging problems that would affect the safety of the plant. Among them, radiation embrittlement is considered the major aging mechanism of the reactor pressure vessels. To evaluate the degree of radiation embrittlement and ensure the safety of the vessels, the domestic nuclear power plants adopt the standard set by the United States Nuclear Regulatory Commission (USNRC) and carry out aging assessment programs periodically. Based on the deterministic assessment procedure as required by USNRC, the present study proposes a probabilistic aging assessment model to estimate the probability of outrunning the required values set by USNRC in consideration of radiation embrittlement of reactor pressure vessels. Taking the domestic pressurized water nuclear power plant as an example, the present study shows that, under a reasonable assumption and based on the consideration of adjusted reference temperature (ART), the reactor pressure vessel might outrunning the code-required value with a probability of 3.42×10^7 at the end of its design life. If the calculation is based on the consideration of upper shelf energy (USE), the probability would become 1×10^4 . Since the required values set by USNRC are based on the rather conservative deterministic consideration, the real failure probability of the studied vessel owing to radiation embrittlement must be lower than the above mentioned values.en
dc.description.provenanceMade available in DSpace on 2021-06-13T00:05:48Z (GMT). No. of bitstreams: 1
ntu-96-R94522515-1.pdf: 2826519 bytes, checksum: 36a2dbbb92baebc970cf92b2c6a87d19 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents口試委員會審定書…………………………………………………………………Ⅰ
誌謝…………………………………………………………………………………Ⅱ
中文摘要……………………………………………………………………………Ⅲ
Abstract……………………………………………………………………………Ⅳ
目錄………………………………….……………………………………………….Ⅴ
表目錄……………………………….……………………………………………….Ⅶ
圖目錄………………………………………………………………………………..Ⅷ
符號說明……………………………………………………………………………Ⅹ
第一章 緒論………………………………………………………………………1
1.1 研究動機與目的…………………………………………………………1
1.2 文獻回顧…………………………………………………………………3
1.3 本文內容…………………………………………………………………5
第二章 反應器壓力槽之老化機制………………………………………………7
2.1 反應器壓力槽簡介………………………………………………………7
2.2 老化機制…………………………………………………………………7
2.2.1 輻射脆化……………………………………………………………8
2.2.2 熱老化………………………………………………………………10
2.2.3 回火脆化……………………………………………………………11
2.2.4 疲勞…………………………………………………………………11
2.2.5 腐蝕…………………………………………………………………12
2.2.6 磨耗…………………………………………………………………12
第三章 反應器壓力槽之老化評估…………………………………………17
3.1 現行老化評估……………………………………………………………17
3.1.1 反應器壓力槽材料監測……………………………………………17
3.1.2 老化評估模式………………………………………………………20
3.1.3 老化評估準則………………………………………………………24
3.2 失效機率分析………………………………………………………24
3.2.1 應力-強度干涉理論………………………………………………25
3.2.2 蒙地卡羅模擬………………………………………………………26
3.2.3 機率圖法……………………………………………………………26
3.2.4 卡方檢定…………………………………………………………29
3.2.5 失效準則……………………………………………………………29
第四章 老化評估結果與討論………………………………………………37
4.1 現行老化評估結果………………………………………………………37
4.2 失效機率分析結果………………………………………………………39
4.3 討論………………………………………………………………………42
第五章 結論……………………………………………………………………66
參考文獻……………………………………………………………………………68
附錄 A 模擬ART'與USE之完整數據……………………………………………………………………………72
dc.language.isozh-TW
dc.title反應器壓力槽之老化評估研究zh_TW
dc.titleAgeing Assessment of Reactor Pressure Vesselsen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.coadvisor游章雄(Jang-Shyong You)
dc.contributor.oralexamcommittee黃金城
dc.subject.keyword壓力槽,核能反應器,脆化,輻射影響,機率,zh_TW
dc.subject.keywordPressure vessels,Nuclear reactors,Embrittlement,Radiation effects,Probability,en
dc.relation.page71
dc.rights.note有償授權
dc.date.accepted2007-07-30
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  目前未授權公開取用
2.76 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved