請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28289完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林達德 | |
| dc.contributor.author | Tai-Lin Wu | en |
| dc.contributor.author | 吳岱霖 | zh_TW |
| dc.date.accessioned | 2021-06-13T00:04:26Z | - |
| dc.date.available | 2007-08-23 | |
| dc.date.copyright | 2007-08-03 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-30 | |
| dc.identifier.citation | 1.王建勝、林達德。1992。對流式低溫顯微鏡冷凍臺與溫控系統之設計。農業機械學刊1(1):42-49。
2.天地致冷。2003。致冷力'Q'與電流'I'的關係。台北:天地致冷。網址:http://www.tande.com.tw/te-freetalk.htm#a14。上網日期:2005-9-25。 3.江衍樹。2002。熱電致冷低溫顯微鏡之研製與應用。碩士論文。臺北:國立臺灣大學生物產業機電工程學研究所。 4.吳昌宏。2005。熱電致冷低溫顯微鏡改良與其應用於斑馬魚胚體冷凍實驗。碩士論文。臺北:國立台灣大學生物產業機電工程研究所。 5.呂家穎。2005。含薑黃素萃取物幾丁聚糖奈米粒之製備及其特性之探討。碩士論文。基隆:國立海洋大學食品科學系。 6.林達德。1991。微電腦低溫顯微鏡系統之研製與應用。國立台灣大學農學院研究報告31(2):88-104。 7.林達德。1992。生物細胞內凍結現象之機率模式與分析。農業機械學刊1(4):11-21。 8.林虔宏。2001。蛋黃卵磷脂微膠囊之製作及其物理性質之探討。碩士論文。台中:國立中興大學畜產學系。 9.林昆標。2004。熱電致冷器之三維暫態模擬分析。碩士論文。臺南:國立成功大學機械工程學系。 10.林基龍。2006。除草劑Alachlor膠囊懸著劑研究。碩士論文。台中:朝陽科技大於應用化學系。 11.東華大學。2005。熱電材料應用簡介。花蓮:東華大學。網址:http://www.ndhu.edu.tw/~ykkuo/thermoelectric.pdf。上網日期:2005-11-14。 12.邱欣怡。2004。藉最適化方法探討添加益菌質於囊壁材質對微膠囊化原生菌之影響。碩士論文。台北:國立台灣大學蓄產學研究所。 13.張道弘 編譯。1997。PID控制理論與實務。2-35。台北:全華科技圖書股份有限公司。 14.張瑚松。1998。熱電式冷氣機設計在快速原型機溫控的應用。碩士論文。台北:國立台灣大學農業機械工程學研究所。 15.蔡富雄、王大鵬、藍陳鎔和王兆寧。2000。聚合物微膠囊化技術於疫苗發展上之潛力。醫藥醫學17(3):164-171。 16.賴姻足。2004。以固定化綠膿桿菌球移除溶液中之重金屬(Pb2+)。碩士論文。國立雲林科技大學化學工程系。 17.劉永慶。2003。香味印花香飄四逸。廣東印刷2003(2):62-63。 18.龍侃、林達德。1994。方向式低溫顯微鏡系統之研製與應用。農業機械學刊2(4):15-24。 19.ADVANTECH. 1997. ADAM 4000 Series User’s Manual. Taiwan: ADVANTECH. 20.Arakawa, T., J. F. Carpenter, Y. A. Kita, and J. H. Crowe. 1990. The basis of toxicity of certain cryoprotectants: a hypothesis. Cryobiology 27: 401-415. 21.Bai, N., Y. Xu, L. Qin, and C. Xu. 1994. Design of a cryogenic videocamera-recorder and image processing system and calculation of volumes of red cells. Cryobiology 31: 549-556. 22.Bennett, S. 1988. Real-time computer control: An introduction. 99-125. United Kingdom: Prentice Hall International (UK) Ltd. 23.Cheetham, P. S. J., K. W. Blunk, and C. Bucke. 1979. Physical studies on cell immobilization using calcium alginate gels. Biotechnol Bioeng 21: 2155-2168. 24.Chen, G.. Z., M. S. P. Shaffer D. Coleby, et al., 2000, Carbon nanotubes and polypyrrole composites: coating and doping [J]. Adv Mater, 12: 522-526. 25.Chen, K., and S. B. Gwilliam. 1996. An analysis of the heat transfer rate and efficiency of TE (Thermoelectric) cooling systems. International Journal of Energy Research 20: 399-417. 26.Choi, M. K. 2000. Thermal considerations of SWIFT XRT radiator at ‐35℃ or colder in low earth orbit. Energy Conversion Engineering Conference and Exhibit, IECEC 35th Intersociety 1: 585-594. 27.Deasy, P. B. 1984. General introduction. pp.1-19. Deasy P. B. (Ed), In “Microencapsulation and related drug processes”. Marcel Dekker, Inc., New York. 28.Diller, K. R., and E. G. Cravalho. 1970. A cryomicroscope for the study of freezing and thawing processes in biological cells. Cryobiology. 7: 191-199. 29.Dziezak, J. D. 1988. Microencapsulation and encapsulated ingredients. Food Tech. April: 136-148. 30.Fahy, G. M., D. R. MacFarlenc, C. A. Angell, and H. T. Meryman. 1984. Vitrification as an approach to cryopreservation. Cryobiology 21: 407-426. 31.Farrant, J., and G. J. Morris. 1973. Thermal shock and dilution shock as the causes of freezing injury. Cryobiology 10: 134-140. 32.Fumi, M. D., E. Ragg, G.. Battistotti, and O. Colagrande. 1994. Alginate immobilized saccharo, yces cerevisiae cell alterations during alcoholic fermentation. Ital J. Food Sci 3: 325-338. 33.Gibbs, B. F., S. Kermasha, I. Alli, and C. N. Mulligan. 1999. Encapsulation in the food industry: a review. Int. J. Food Sci. Nutr. 50: 213-224. 34.Grant, G. T., E. R. Morris, D. A. Rees, P. J. Smith, and D. Thom. 1973. Biological interactions between polysaccharides and divalent cations. Egg-box Model. FEBS Lett 32: 195. 35.Grant, L. A., and Burns J. 1994. Application of coating. Krochta JM, Baldwin EA, Nisperos-Carriedo MO, editors . Edible coatings and films to improve food quality. Capter 8. Techhomic Publishing CO INC, USA. 189-200. 36.Hou, R. C. W., M. Y. Lin, M. M. C. Wang, and J. T. C. Tzen. 2003. Increase of viability of entrapped cells of lactobacillus delbrueckii ssp. Bulgaricus in artificial sesame oil emulsions. J. Dairy Sci. 86: 424-428. 37.Kebary, K. M., S. A. Hussein, and R. M. Badawi. 1998. Improving viability of Bifidobacteria and their effect on frozen ice milk. Egypt. J. Dairy Sci. 26(5): 319-337. 38.Kim, I., and D. Lee. 1997. An analysis for geometrical effects on the cooling performance of -based thin film thermoelectric modules. Materials Research Society 12(2): 423-429. 39.King, A. H. 1995. Encapsulation of food ingredients: a review od available technology, focusing on hydrocolloids. In Encapsulation and control release of food ingredients, ed. S. J. Risch and G. A. Reineccius, 213-220.Washington DC: American Chemical Society. 40.Korber, C., M. W. Scheiwe, and K. Wollhover. 1984. A cryomicroscope for the analysis of solute polarization during freezing. Cryobiology 21: 68-80. 41.Kuo, B. C., and G. F., 2004. Automatic Control Systems. 8th ed., 529-576. USA: WILEY. 42.Mark, H. F. 1966. Encyclopedia of Polymer Science and Technology. Vol.4 ed. New York: Wiley. 43.Mazur, P. 1970. Cryobiology: The freezing of biological systems. Science 168: 939-949. 44.Mazur, P., Rall, W. F., and Leibo, S. P. 1984. Konetics of water loss and the likelifood of intracellular freezing in mouse ova:influence of the method of calculating the temperature dependence of water permeability. Cell Biophysic. 6: 197-213. 45.McGann, L. E. 1979. A versatile microcomputer-based temperature and cooling/warming rate controller. Cryobiology 16: 97-100. 46.McGrath, J. J., E. G.. Cravalho, and C. E. Huggins. 1975. An experimental comparison of intracellular ice formation and freeze-thaw survival of Hela S-3 cells. Cryobiology 12: 540-550. 47.McGrath, J. J. 1985. Temperature-controlled cryogenic light microscopy. In: The Effects of Low Temperatures in Biological Systems, 234-236, London. Edward Arnold. 48.Miller, R. H., and Mazur, P. 1976. Survival of frozen-thawed human red cells as a function of cooling and warming velocities. Cryobiology 13:404-414. 49.Norman, S. Nise. 1994. Control system engineering. 2nd ed., 4-6. USA: SUPPLEMENTS. 50.Phelan, P. E., V. Chiriac, and T. Lee. 2001. Current and future miniature refrigeration cooling technologies for high power microelectronics. Semiconductor Thermal Measurement and Management Symposium, Seventeenth Annual IEEE. 158-167. 51.Pitt, R. E., and V. P. L. Steponkus. 1989. Quantitative analysis of the probability of intracellular ice formation during freezing of isolated protoplasts. Cryobiology 26: 44-63. 52.Polge, C., A. U. Smith, and A. S. 1949. Revival of spermatozoa after vitrification and dehydration at low temperatures[J]. Nature 164 : 666-676. 53.Potschke P., T. D. Fornes, and D. R. Paul. 2001. Rheological behaviorof multiwalled carbon nanotube/polycarbonate composites[J]. Polymer 43 : 3247-3255. 54.Potapov, P. L. 1998. Thermoelectric triggering of phase transformations in Ni-Ti shape memory alloy. Materials Science and Engineering B52: 195-201. 55.Polge, C. 1977. The freezing of mammalian embryos: perspectives and possibilities. In “The freezing of mammalian embryos”. 3-18. Amsterdam: Elsevier. 56.Rubinsky, B. and M. Ikeda. 1985. A cryomicroscope using directional solidification for the controlled freezing of biological material. Cryobiology 22: 55-68. 57.Scheiwe, M. W., and C. Körber. 1981. Thermally defined cryomicroscopy and some applications on human leucocytes. Journal of Microscopy 126: 29-44. 58.Scott, C. D. 1987. Immobilized cells: a review of recent literature. Enzyme Microb Technol 9: 66-73. 59.Semenyuk, V., J. G. Stockholm, and F. Gerard. 1999. Thermoelectric cooling of high power extremely localized heat sources: System aspects. 18th International Conference on Thermoelectrics 40-44. 60.Smidsrød, O., and G. Skjåk-Bræk. 1990. Alginate as immobilization matrix for cells. Trends Biotechnol 8: 71-78. 61.Steponkus, P. L., M. F. Dowgert, and W. J. Gordon-Kamm. 1983. Destabilization of the plasma membrane of isolated plant protoplasts during a freeze-thaw cycle: the influence of cold acclimation. Cryobiology 20: 448-465. 62.Steponkus, P. L., M. F. Dowgert, J. R. Ferguson, and R. L. Levin.1984. Cryomicroscope of isolated plant protoplast. Cryobiology 21: 209-233. 63.Steponkus, P. L. 1992. Advances in low temperature biology. JAI. Press Ltd. 64.Takahashi, Y., M. Rabins, and D. Auslander. 1970. Control and Dynamic Systems. Reading. Massachusetts: Addison-Wesley. 65.Takenaka, H., Y. Kawashima, and S. Y. Lin. 1979. Micromeritic properties of sulfamethoxazole microcapsules prepared by gelatin-acacia coacervation. Pharmaceutical Sciences 69(5): 513-516. 66.Thies, C. 1996. A survey of microencapsulation. Pp. 1-19. Benita, S. (Ed.), In “Microencapsulation: Methods and Industrial Applications”. Marcel Dekker, Inc., New York. 67.Wright, J. M. 1985. Commercial freezing of bovine embryos in straw. Theiogenology 23: 17-29. 68.Zocher, H., and C. Török. 1966. Crystals of higher order and their relation to other superphases. Acta Cryst (1967)22: 751-755. 69.Ziegler, J. G., and N. B. Nichols. 1942. Optimum Settings for Automatic Controllers. Trans. ASMS 64: 759-768. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28289 | - |
| dc.description.abstract | 本研究利用調整熱電致冷晶片的電流大小與方向即可控制表面溫度升降之特性,將其應用於低溫顯微鏡系統的冷凍台及冷卻系統改良設計,同時配合溫控電路與軟體程式達到升降溫之控制,最後並將整個系統模組化以增加使用上的便利性。改良之系統捨棄以往利用液態氮和加熱器來達到溫度控制的方式,並取代使用水浴循環機帶走廢熱的方法,以熱電致冷晶片設計完成小體積的冷卻系統,成功將系統總體積縮小,並可依實驗需求將冷凍臺替換為單層或三層熱電致冷晶片。改良後的低溫顯微鏡系統可達到之最低溫度為−68.6°C,最快降溫速率為 −120°C/min,恆溫控制溫度誤差均小於0.1°C,最大平均絕對誤差為0.0647°C。在本研究中亦以褐藻酸鈉為材料製作不同大小微膠囊以模擬人工細胞,並以低溫顯微鏡系統進行其低溫冷凍實驗,實驗結果顯示微膠囊會因為內外滲透壓不同而發生水分遷移現象,且當觸發囊壁外過冷水溶液時,囊壁外冰晶形成會隨即造成微膠囊發生細胞內凍結現象(IIF)。以不同濃度甘油改變微膠囊懸浮水溶液的濃度,將會隨水溶液濃度提高而降低水溶液的凍結點,因此也降低了微膠囊的IIF溫度。若使用乙醇為懸浮水溶液將囊壁外冰晶觸發IIF之因素剔除,微膠囊體積越小者,發生細胞內凍結之溫度越低,且體積接近之微膠囊,發生細胞內凍結的溫度範圍亦十分接近。另外,實驗結果亦顯示利用滲透壓特性令甘油或乙醇滲入囊壁內,可延緩囊壁外水溶液觸發結冰對於微膠囊發生細胞內凍結的時間與降低其IIF溫度,提高微膠囊內部的甘油或乙醇濃度,均可使得微膠囊發生IIF之溫度明顯降低。 | zh_TW |
| dc.description.abstract | In this study, we use the thermoelectric cooler (TEC) whose surface temperature can be controlled by adjusting the direction and magnitude of its current to improve the cold stage and cooling system of a cryomicroscope system. The temperature control circuit and the integrated software were also elaborated to make the cryomicroscope a modular system which is convenient to use. The original temperature control system using liquid nitrogen, heater and refrigerated circulation bath were replaced by the small-size TEC cold stage and cooling system. For different experimental demands, the TEC on the cold stage can be changed from single-stage TEC to tri–stage TEC. The lowest temperature achieved was −68.6°C while the highest cooling rate was −120°C/min. For the isothermal control of the cryomicroscope, the error of temperature was less than 0.1°C and the absolute mean error was 0.0647°C. Experiments were also performed to study the IIF behavior of microcapsules of various sizes by the cryomicroscope. It was observed that the microcapsules behaved as osmometers that water migrated across the cell wall when there was an osmotic potential. During freezing, IIF phenomenon of microcapsules occurred immediately after the ice front touched the microcapsule following the seeding of the supercooled solution. When the external solution was changed to glycerol solution of different concentrations, the IIF temperature decreased as the concentration of glycerol solution increased. When alcohol was used as external solution to preclude external ice formation during freezing, we observed that the smaller the microcapsule the lower the IIF temperature, and the variation of IIF temperature for microcapsules of the same size was small. When glycerol or alcohol was permeated into microcapsules due to the principle of osmolarity, the time when IIF occurred was delayed as well as the IIF temperature was lowered when the ice front touched microcapsules during freezing. Additionally, when we increased the concentrations of glycerol or alcohol concentration inside the microcapsules by permeation, the IIF temperatures of microcapsules decreased noticeably when the concentration increased. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T00:04:26Z (GMT). No. of bitstreams: 1 ntu-96-R94631031-1.pdf: 29725030 bytes, checksum: 66eb2b0ddf72c5136519bff0b19cc670 (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii ABSTRACT iii 目 錄 iv 圖 目 錄 ix 表 目 錄 xiv 第一章 前言與研究目的 1 1.1 前言 1 1.2 研究目的 2 第二章 文獻探討 5 2.1低溫顯微鏡(Cryomicroscope)介紹 5 2.1.1 低溫顯微鏡簡介 5 2.1.2 對流式(Convection)低溫顯微鏡 6 2.1.3 傳導式(Conduction)低溫顯微鏡 7 2.1.4 方向式低溫顯微鏡 10 2.1.5 熱電致冷式低溫顯微鏡 11 2.1.6 低溫顯微鏡相關比較討論 15 2.2 熱電致冷晶片(Thermoelectric Cooler, TEC) 15 2.2.1 熱電致冷晶片簡介 17 2.2.2 熱電致冷晶片相關效應 18 2.2.2.1 Seebeck效應 18 2.2.2.2 Peliter效應 19 2.2.2.3 Thomson效應 19 2.2.3熱電致冷晶片原理與架構 20 2.2.4 熱電致冷晶片應用 22 2.3 比例微分積分(PID)控制理論 23 2.3.1 PID控制簡介 24 2.3.2 PID相關特性 25 2.3.3 PID控制法則 27 2.3.4 PID參數求法 30 2.4 低溫保存(Cryopreservation) 33 2.4.1 低溫保存簡介 33 2.4.2 影響低溫保存之因子 35 2.4.2.1 細胞內凍結 35 2.4.2.2 溶液效應 36 2.5 微膠囊(Microcapsules)介紹 36 2.5.1 微膠囊簡介 37 2.5.2 微膠囊製作 38 2.5.2.1 化學法 38 2.5.2.2 物理法 39 2.5.2.3 物理化學法 40 2.5.3 微膠囊應用 42 2.5.4 褐藻酸鈣簡介 42 第三章 研究設備與方法 47 3.1 實驗設備 47 3.1.1 冷凍臺系統 48 3.1.2 冷卻系統 58 3.1.4 影像擷取系統 75 3.1.5 系統整合 75 3.1.6 溫控軟體 77 3.2 研究方法 81 3.2.1 溫度校正 81 3.2.2 參數調整 82 3.2.3 控制策略 86 3.2.4 控制目的 90 3.3 樣本準備 92 3.3.1 實驗材料 92 3.3.2 微膠囊製作 93 3.3.2 微膠囊尺寸篩選 96 第四章 結果與討論 99 4.1 系統測試 99 4.1.1 降溫速率 99 4.1.2 恆溫控制 104 4.2 微膠囊冷凍實驗 111 4.2.1 脫水實驗 112 4.2.2 微膠囊細胞內凍結實驗 113 4.2.3 冰晶觸發實驗 116 4.2.4 體積大小與細胞內凍結實驗 124 4.2.5 抗凍劑濃度與細胞內凍結實驗 130 第五章 結論與建議 133 5.1 結論 133 5.2 建議 136 參考文獻 139 | |
| dc.language.iso | zh-TW | |
| dc.subject | 熱電致冷晶片 | zh_TW |
| dc.subject | 滲透作用 | zh_TW |
| dc.subject | 低溫顯微鏡 | zh_TW |
| dc.subject | 細胞內凍結 | zh_TW |
| dc.subject | 微膠囊 | zh_TW |
| dc.subject | Thermoelectric Cooler | en |
| dc.subject | Microcapsule | en |
| dc.subject | Permeation | en |
| dc.subject | Intracellular Ice Formation | en |
| dc.subject | Cryomicroscope | en |
| dc.title | 熱電致冷低溫顯微鏡系統模組化設計與微膠囊冷凍實驗 | zh_TW |
| dc.title | Modular Design of a TEC Cryomicroscope System and Freezing Experiments of Microcapsules | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 趙乃賢,江昭皚 | |
| dc.subject.keyword | 熱電致冷晶片,低溫顯微鏡,細胞內凍結,滲透作用,微膠囊, | zh_TW |
| dc.subject.keyword | Thermoelectric Cooler,Cryomicroscope,Intracellular Ice Formation,Permeation,Microcapsule, | en |
| dc.relation.page | 144 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-07-30 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物產業機電工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物機電工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 29.03 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
