Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28287
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳復國
dc.contributor.authorChien-Chih Liaoen
dc.contributor.author廖建智zh_TW
dc.date.accessioned2021-06-13T00:04:23Z-
dc.date.available2009-08-02
dc.date.copyright2007-08-02
dc.date.issued2007
dc.date.submitted2007-07-29
dc.identifier.citation參考文獻
[1] 廖志杰,“ 鎂鋰合金板材沖壓成形性之研究 ”, 國立台灣大學機械工程研究所碩士論文,2005.
[2] 陳信宏,“ 鎂合金薄板沖壓成形性之研究 ”,國立台灣大學機械工程研究所碩士論文,2002.
[3] 張志坤,“ 鎂合金沖壓模具設計之研究 ”,國立台灣大學機械工程研究所碩士論文,2002.
[4] 陳信吉,陳復國,“ AZ系鎂合金沖鍛成形之研究 ”,工業材料雜誌,198期,pp.126-132,2003.
[5] 王紹駿,“ 鎂合金板材沖鍛成形模具設計之研究 ”,國立台灣大學機械工程研究所碩士論文,2004.
[6] 邱垂泓,“ 鎂板的應用及其製造方法 ”,工業材料雜誌,190期,pp.164-168,2002.
[7] 邱垂泓,“ 鎂合金之鍛造、擠型及軋延加工 ”,工業材料雜誌,203期,pp.130-136,2003.
[8] F.K. Chen, T.B. Huang and C.K. Chang, “ Deep drawing of square cups with magnesium alloy AZ31 sheets ”, International Journal of Machine Tools & Manufacture, Vol.43, pp.1553-1559, 2003.
[9] F.K. Chen and T.B. Huang, “ Formability of stamping magnesium-alloy AZ31 sheets ”, Journal of Materials Processing Technology, Vol.142, pp.643-647, 2003.
[10] H. Somekawa, M. Kohz, S. Tanaba and K. Higashi, ” The press formability in magnesium alloy AZ31 ”, Materials Science Forum, Vol.350-351, pp.177-182, 2000.
[11] M. Takaya, “ Recent tendency of surface treatment technology for magnesium “, Journal of Institute of Light Metals, Vol.50, No.11, pp.567-567, 2000.
[12] I. Takano, H. Ohnuki and M. Kobayashi, ” Deep-drawability of cup on AZ31 magnesium alloy plate ”, Journal of Japan Institute of light Metals, Vol.50, No.9, pp.456-461, 2000.
[13] N. Osada and K. Ohtooshi, “ The influence of the annealing temperature on uniaxial and biaxial deformation of the AZ31 magnesium alloy sheet ”, Journal of Japan Institute of light Metals, Vol.50, No.9, pp.60-64, 2000.
[14] E. Doege and K. Droder, “ Sheet metal forming of magnesium wrought alloys-formability and Process Technology ”, Journal of Materials Processing Technology, Vol.115, pp.14-19, 2001.
[15] J. Kaneko, M. Sugamata, M. Numa, Y. Nishikawa and H. Takada, “Effect of Texture on the Mechanical Properties and Formability of Magnesium Wrought Materials.” Journal of JILM,Vol. 64, No. 2 , pp.141-147,2000.
[16] T. Ohwue, S. Sekiguchi, M. Kikuchi and S. Itoh, “Formability of AZ31 Magnesium Alloy Sheets under Warm Working Conditions.” Journal of the JSTP ,vol. 42 no. 482 , pp. 246-248,2001.
[17] H. Takuda, H. Mastusaka, S. Kikuchi and K. Kubota, “ Tensile properties of a few Mg-Li-Zn alloy thin sheets ”, Journal of Materials Science, Vol.37, pp.51-57, 2002.
[18] H. Takuda, T. Enami, K. Kubota and N. Nata, “ The formability of a thin sheet of Mg-8.5Li-1Zn alloy ”, Journal of Materials Processing Technology, Vol.101, pp.281-286, 2000.
[19] H. Takuda, S. Kikuchi, T. Tsukada, K. Kubota and N. Hatta, “ Effect of strain rate on deformation behavior of a Mg-8.5Li-1Zn alloy sheet at room temperature ”, Materials Science and Engineering, Vol.271, pp.251-256, 1999.
[20] F.W. Bach, S. Mirko and J. Christian, “ Influence of lithium on hcp magnesium alloys ”, Material Science Forum, Vol.419-422, pp.1037-1042, 2003.
[21] J.Y. Wang, W.P. Hong, P.C. Hsu, C.C. Hsu and S. Lee, “ Microstructures and mechanical behavior of processed Mg-Li-Zn alloy ”, Material Science Forum, Vol.419-422, pp.165-170, 2003.
[22] N. Saito, M. Mabuchi, M. Nakanishi, K. Kubota and K. Higashi, “ The aging behavior and the mechanical properties of the Mg-Li-Al-Cu alloy ”, Scripta Materialia, Vol.36, pp.551-555, 1997.
[23] Z. Drozd, Z. Trojanová and S. Kúdela, “ Deformation of behavior of Mg-Li-Al alloy ”, Journal of Materials and Compounds, Vol.378, pp.192-195, 2004.
[24] H. Haferkamp, R. Boehm, C. Jaschik, U. Holzkamp, V. Kases and M. Niemeyer, “ Alloy development, processing and applications in magnesium lithium alloys ”, Materials Transactions, Vol.42, pp.1160-1166, 2001.
[25] T. Useugi, M. Kohyama, M. Kohzu and K. Higashi, “ Ab initio calculation on the structure and elastic properties of a magnesium-lithium alloy ”, Materials Transactions, Vol.42, pp.1167-1171, 2001.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28287-
dc.description.abstract摘 要
近年來,因要求輕薄短小的3C產業快速發展,鎂合金逐漸受到產業界的重視,加速了鎂合金的應用,目前用於沖壓製程之鎂板以AZ31為主,然因其原子結構屬於六方最密堆積(HCP),在常溫的成形性甚差,必須加溫至200℃以上方具備良好之成形性。但藉由鋰元素之添加,增加了體心立方(BCC)之原子結構,由於BCC可供滑移的系統眾多,因此鎂鋰合金之常溫成形性較佳,可採用一般塑性加工方式成形。
筆記型電腦外殼因為有兩個幾何特徵比較複雜的形狀,所以在沖壓過程中更增加其困難度。其中一個幾何特徵複雜部分是因為底部圓角半徑太小所造成,因而使衝壓過程中產生皺褶及底部圓角破裂情形,而影響此一參數設計有壓料板之力量、胚料板之尺寸大小及壓料阻條之所在位置,然而這個破裂問題是比較容易解決,從漸進式改變衝頭圓角大小、胚料板尺寸之最佳化設計及增加壓料力方式來解決。此外,另一個幾何特徵複雜部分是因為鉸鍊凸緣之位置太過靠近邊緣造成圓角之幾何半徑變化過於劇烈所造成,因此在沖壓過程中會產生鉸鍊凸緣部分有破裂情況,而影響此一設計參數有鉸鍊凸緣與邊緣之距離位置、母模之圓角半徑、衝頭角隅半徑、模擦係數及潤滑劑,此一問題可藉由成形過程中切割局部胚料板方式來解決,至於所切割位置則需使用有限元素分析來模擬。
本研究將進行實際開設模具來進行沖壓為以驗證有限元素之分析結果,因此共開設三組模具,板材使用鎂合金LZ91薄板,模具設計製作參數完全採用有限元素分析結果,並經實際沖壓結果證實使用有限元素分析軟體來進行鎂合金LZ91薄板沖壓之模具設計之正確性。
zh_TW
dc.description.abstractAbstract
Due to its lightweight and high specific strength, magnesium alloys have been widely used for structural components. However, because of the hexagonal closed-packed (HCP) crystal structures, magnesium alloys show low ductility at room temperature, and require thermal activation to increase their formability. It is well known that ductility of magnesium alloys can be improved with addition of lithium which develops the formation of body centered-cubic (BCC) crystal structures. The BCC crystal structure gives rise to high formability at room temperature.
In the present study, the forming process was examined by the finite element simulations. According to finite element simulation analysis, two features in the notebook case were found to be relatively complex geometrically and were thus more difficult to form in the stamping forming. One of the complex features was caused by the small radius of the bottom, which would cause fracture and wrinkling during the stamping forming process. The process parameters resulting in the fracture defect were blank-holder force, blank size, and the location of draw-bead. However, this fracture defect could be easily removed by changing the punch comer radius, optimum blank size, and decreasing the blank-holder force. The other geometric complexity was caused by the dramatic change in the corner radius when the flange of hinge got too close to the edge of the notebook, which would easily cause the fracture defect around the flange of hinge during stamping forming process. Process parameters causing this defect includes the distance between the flange of hinge and the edge of the notebook, die corner radius, punch comer radius, friction coefficient, and lubricity. This fracture defect around the flange of hinge was eliminated through local trim of blank during the stamping forming process. As for the optimum position distance of local trim blank, it was determined based on the finite element simulation results.
To validate the finite element simulation results, an actual stamping process for producing notebook cases was performed. Three sets of tooling were machined to the profiles according to the finite element simulation results. The LZ91 sheets were then stamped into the shapes of notebook cases with the process parameters determined above. The experiment results have validated the finite element analysis for the process design for stamping LZ91 magnesium alloy sheets.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T00:04:23Z (GMT). No. of bitstreams: 1
ntu-96-R94522511-1.pdf: 5677373 bytes, checksum: c6ac755c8641af2f8bd867ab85067d34 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents目錄
目錄-----------------------------------------------------Ⅰ
圖表目錄-------------------------------------------------Ⅳ
第一章 緒論
1.1 前言--------------------------------------------------1
1.2 研究動機與目的--------------------------------------3
1.3 文獻回顧--------------------------------------------6
1.4 研究方法與步驟--------------------------------------9
1.5 論文總覽-------------------------------------------13
第二章 材料機械性質實驗
2.1. 拉伸試驗------------------------------------------14
2.1.1 應力-應變曲線---------------------------------14
2.1.2 加工硬化指數(n 值)---------------------------21
2.1.3 塑性應變比值(r 值)---------------------------23
2.2 成形極限實驗---------------------------------------26
2.2.1 圓格分析法-----------------------------------26
2.2.2 成形極限曲線之判讀---------------------------27
第三章 筆記型電腦外殼之鉸鍊凸緣沖壓成形製程分析
3.1 載具決定-------------------------------------------29
3.2 CAE模擬方式之建立----------------------------------31
3.2.1有限元素模擬軟體PAM-STAMP簡介------------------31
3.3鉸鍊凸緣成形參數探討--------------------------------33
3.3.1模型幾何外形之建立-----------------------------33
3.2.2外框與成形性之關係-----------------------------36
3.2.3不同沖頭圓角半徑之模擬與探討-------------------37
3.2.4不同凸緣尺寸之模擬與探討-----------------------39
3.2.5不同凸緣R角之模擬與探討------------------------41
3.2.6凸緣R角與凸緣尺寸交互影響之模擬與探討----------43
3.4鉸鍊凸緣沖壓成形深度之探討--------------------------45
3.5鉸鍊凸緣距邊界距離對成形性之影響--------------------47
第四章 筆記型電腦外殼之CAE沖壓模具設計
4.1筆記型電腦外殼模擬模型之建立與初步模擬結果----------50
4.2 CAE沖壓模具設計--先沖側壁再成形凸緣----------------53
4.3 CAE沖壓模具設計--多道次預成形折邊模----------------55
4.3.1第一道次--預成形模具設計----------------------56
4.3.2第二道次--凸緣整形模具設計--------------------74
4.3.3第三道次--折邊模具設計------------------------75
4.3.4第四道次—整形模具設計------------------------80
4.3.5多道次預成形折邊模結論------------------------82
4.4 CAE沖壓模具設計--突破刃(Lancing)模具設計-----------83
4.4.1 Lancing時機之探討----------------------------85
4.4.2 Lancing流速之探討----------------------------90
4.4.3 第二道次整形製程探討-------------------------90
4.4.4 Lancing製程結論------------------------------93
第五章 有限元素模擬實驗驗證
5.1板材來源--------------------------------------------94
5.2簡易模實驗驗證--------------------------------------95
5.2.1 SPCEN模擬結果探討----------------------------98
5.2.2 LZ91模擬結果探討-----------------------------99
5.3多道次預成形折邊模實驗驗證-------------------------101
5.3.1實驗設備與模具-------------------------------101
5.3.2實驗結果探討---------------------------------104
5.3.3不同沖壓製程比較-----------------------------107
5.3.3實際產品外形沖壓試驗-------------------------109
第六章 結論---------------------------------------------111
參考文獻------------------------------------------------113
dc.language.isozh-TW
dc.subject有限元素法zh_TW
dc.subject沖壓模具設計zh_TW
dc.subject鉸鍊凸緣zh_TW
dc.subject鎂合金LZ91zh_TW
dc.subject筆記型電腦外殼zh_TW
dc.subjectflange of hingeen
dc.subjectMagnesium Alloy LZ91en
dc.subjectFinite Element Methoden
dc.subjectnotebook caseen
dc.subjectDie Design for Stampingen
dc.titleLZ91鎂合金筆記型電腦蓋板之沖壓模具設計zh_TW
dc.titleStamping Die Design for the Notebook Case with
LZ91 Magnesium Alloy Sheets
en
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee向四海,洪景華,黃永茂
dc.subject.keyword鎂合金LZ91,有限元素法,筆記型電腦外殼,鉸鍊凸緣,沖壓模具設計,zh_TW
dc.subject.keywordMagnesium Alloy LZ91,Finite Element Method,notebook case,flange of hinge,Die Design for Stamping,en
dc.relation.page116
dc.rights.note有償授權
dc.date.accepted2007-07-30
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
5.54 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved