請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28277
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳建德 | |
dc.contributor.author | Hsiang-Jen Cheng | en |
dc.contributor.author | 鄭翔仁 | zh_TW |
dc.date.accessioned | 2021-06-13T00:04:11Z | - |
dc.date.available | 2007-07-31 | |
dc.date.copyright | 2007-07-31 | |
dc.date.issued | 2007 | |
dc.date.submitted | 2007-07-28 | |
dc.identifier.citation | 黃裕銘。2004。作物營養及肥料。國立中興大學土壤與環境科學系,24-26 頁。臺中,臺灣。
蘇彥碩。2005。逆境下菸草 (Nicotiana benthamiana) 脯胺酸代謝基因之調控。國立臺灣大學研究所碩士論文。臺北,臺灣。 Ahsan, N., D.G. Lee, S.H. Lee, K.Y. Kang, J.J. Lee, P.J. Kim, H.S. Yoon, J.S. Kim and B.H. Lee. 2007. Excess copper induced physiological and proteomic changes in germinating rice seeds. Chemosphere 67:1182-1193. Alia, S. P. P. 1991. Proline accumulation under heavy-metal stress. J. Plant Physiol. 138:554-558. Alloway, B.J. 1995. Soil processes and the behavior of metals. p.11-37. In B.J. Alloway (ed.). Heavy metals in soils. Blackie Academic & Professional, Glasgow, UK. Barcelo, J. and C. Poschenrieder. 1990. Plant water relations as affected by heavy-metal stress - a review. J. Plant Nutr. 13:1-37. Barcelo, J., C. Poschenrieder, I. Andreu and B. Gunse. 1986. Cadmium-induced decrease of water-stress resistance in bush bean-plants (Phaseolus-vulgaris L cv contender) effects of Cd on water potential, relative water-content, and cell-wall elasticity. J. Plant Physiol. 125:17-25. Barcelo, J., M.D. Vazquez and C. Poschenrieder. 1988. Structural and ultrastructural disorders in cadmium-treated bush bean-plants (Phaseolus-vulgaris L). New Phytol. 108:37-49. Bates, L.S., R.P. Waldren and I.D. Teare. 1973. Rapid determination of free proline for water-stress studies. Plant Soil 39:205-207. Bradford, M.M. 1976. Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal. Biochem. 72:248-254. Chen, C.T., L.M. Chen, C.C. Lin and C.H. Kao. 2001. Regulation of proline accumulation in detached rice leaves exposed to excess copper. Plant Sci. 160:283-290. Drazic, G.. and N. Mihailovic. 2005. Modification of cadmium toxicity in soybean seedlings by salicylic acid. Plant Sci. 168:511-517. Erturk, U., C. Yerlikaya and N. Sivritepe. 2007. In vitro phytoextraction capacity of blackberry for copper and zinc. Asian J. Chem. 19:2161-2168. Fernandes, J.C. and F.S. Henriques. 1991. Biochemical, physiological, and structural effects of excess copper in plants. Bot. Rev. 57:246-273. Gallego, S.M., M.P. Benavides and M.L. Tomaro. 1996. Effect of heavy metal ion excess on sunflower leaves: Evidence for involvement of oxidative stress. Plant Sci. 121:151-159. Garnett, M.R., S.J. Murch, S. KrishnaRaj, M.A. Dixon and P.K. Saxena. 2002. The rhizofiltration of sodium from hydroponic fluid using scented geraniums. Water Air Soil Pollut. 140:343-366. Hansen, D., P.J. Duda, A. Zayed and N. Terry. 1998. Selenium removal by constructed wetlands: Role of biological volatilization. Environ. Sci. Technol. 32:591-597. Heath, R.L. and L. Packer. 1968. Photoperoxidation in isolated chloroplasts .i. kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125:189-198. Hollenbach, B., L. Schreiber, W. Hartung and K.J. Dietz. 1997. Cadmium leads to stimulated expression of the lipid transfer protein genes in barley: implications for the involvement of lipid transfer proteins in wax assembly. Planta 203:9-19. Iglesias, A.A. and C.S. Andreo. 1984. Inhibition of zea-mays phosphoenolpyruvate carboxylase by copper and cadmium ions. Photosynthetica 18:134-138. Jones, J. B. Jr. 1998. Plant Nutrition Manual. CRC Press, New York, USA Kabata-Pendias, A. and H. Pendia. 2001. Trace elements in plants. p.73-98. In A. Kabata-Pendias and H. Pendia (eds.). Trace element in soils and plants. (3rd edition). CRC Press, Boca Raton, FL, USA. Kesseler, A. and M.D. Brand. 1994. Quantitative-determination of the regulation of oxidative-phosphorylation by cadmium in potato-tuber mitochondria. Eur. J. Biochem. 225:923-935. Krupa, Z. 1999. Cadmium against higher plant photosynthesis - a variety of effects and where do they possibly come from? Zeit. Fur Natur. C-a J. of Biosci. 54:723-729. Lanaras, T., M. Moustakas, L. Symeonidis, S. Diamantoglou and S. Karataglis. 1993. Plant metal content, growth-responses and some photosynthetic measurements on field-cultivated wheat growing on ore bodies enriched in cu. Physiol. Plant. 88:307-314. Lin, C.C., Y.T. Hsu and C.H. Kao. 2002. The effect of NaCl on proline accumulation in rice leaves. Plant Growth Regul. 36:275-285. Lin, Z.Q., R.S. Schemenauer, V. Cervinka, A. Zayed, A. Lee and N. Terry. 2000. Selenium volatilization from a soil-plant system for the remediation of contaminated water and soil in the San Joaquin Valley. J. Environ. Qual. 29:1048-1056. Luna, C.M., C.A. Gonzalez and V.S. Trippi. 1994. Oxidative damage caused by an excess of copper in oat leaves. Plant Cell Physiol. 35:11-15. Luo, Y.M. and D.L. Rimmer. 1995. Zinc copper interaction affecting plant-growth on a metal-contaminated soil. Environ. Pollut. 88:79-83. Maksymiec, W., R. Russa, T. Urbaniksypniewska and T. Baszynski. 1994. Effect of excess cu on the photosynthetic apparatus of runner bean-leaves treated at 2 different growth-stages. Physiol. Plant. 91:715-721. Malkowski, E., A. Kita, W. Galas, W. Karcz and J.M. Kuperberg. 2002. Lead distribution in corn seedlings (Zea mays L.) and its effect on growth and the concentrations of potassium and calcium. Plant Growth Regul. 37:69-76. Mallick, N. and F.H. Mohn. 2000. Reactive oxygen species: response of algal cells. J. Plant Physiol. 157:183-193. McKenna, I.M., R.L. Chaney and F.M. Williams. 1993. The effects of cadmium and zinc interactions on the accumulation and tissue distribution of zinc and cadmium in lettuce and spinach. Environ. Pollut. 79:113-120. Meers, E., B. Vandecasteele, A. Ruttens, J. Vangronsveld and F.M.G. Tack. 2007. Potential of five willow species (Salix spp.) for phytoextraction of heavy metals. Environ. Exp. Bot. 60:57-68. Michalska, M. and H. Asp. 2001. Influence of lead and cadmium on growth, heavy metal uptake, and nutrient concentration of three lettuce cultivars grown in hydroponic culture. Commun. Soil Sci. Plant Anal. 32:571-583. Miller, R.J., J.E. Bittell and D.E. Koeppe. 1973. Effect of cadmium on electron and energy-transfer reactions in corn mitochondria. Physiol. Plant 28:166-171. Moustakas, M., T. Lanaras, L. Symeonidis and S. Karataglis. 1994. Growth and some photosynthetic characteristics of field-grown avena-sativa under copper and lead stress. Photosynthetica 30:389-396. Nieboer E. and D.H.S. Richardson 1980. The replacement of the nondescriptive term 'heavy metals' by a biologically and chemically significant classification of metal ions. Environ. Pollut. Ser. 1: 3-26 Nogales, R., F. GallardoLara, E. Benitez, J. Soto, D. Hervas and A. Polo. 1997. Metal extractability and availability in a soil after heavy application of either nickel or lead in different forms. Water Air Soil Pollut. 94:33-44. Patsikka, E., E.M. Aro and E. Tyystjarvi. 1998. Increase in the quantum yield of photoinhibition contributes to copper toxicity in vivo. Plant Physiol. 117:619-627. Pilon-Smits, E. 2005. Phytoremediation. Annual Review of Plant Biology 56:15-39. Prasad, D.D.K. and A.R.K. Prasad. 1987. Altered delta-aminolevulinic-acid metabolism by lead and mercury in germinating seedlings of bajra (Pennisetum typhoideum). J. Plant Physiol. 127:241-249. Rivetta, A., N. Negrini and M. Cocucci. 1997. Involvement of Ca2+-calmodulin in Cd2+ toxicity during the early phases of radish (Raphanus sativus L) seed germination. Plant Cell Environ. 20:600-608. Schutzendubel, A. and A. Polle. 2002. Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J. Exp. Bot. 53:1351-1365. Sharma, S.S., H. Schat, R. Vooijs and L.M. Van Heerwaarden. 1999. Combination toxicology of copper, zinc, and cadmium in binary mixtures: concentration-dependent antagonistic, nonadditive, and synergistic effects on root growth in silene vulgaris. Environ. Toxicol. Chem.. 18:348-355. Shukla, U.C., J. Singh, P.C. Joshi and P. Kakkar. 2003. Effect of bioaccumulation of cadmium on biomass productivity, essential trace elements, chlorophyll biosynthesis, and macromolecules of wheat seedlings. Biol. Trace Elem. Res. 92:257-273. Smith, K.L., G.W. Bryan and J.L. Harwood. 1985. Changes in endogenous fatty-acids and lipid-synthesis associated with copper pollution in fucus spp. J. Exp. Bot. 36:663-669. Stein, K. and G. Ohlenbusch. 1997. Inhibition of the enzyme phosphoenolpyruvate- carboxylase (PEPC) by different pollutants. Talanta 44:475-481. Stiborova, M., R. Hromadkova and S. Leblova. 1986. Effect of ions of heavy-metals on the photosynthetic characteristics of maize (Zea mays L). Biologia 41:1221-1228. Tanyolac, D., Y. Ekmekci and S. Unalan. 2007. Changes in photochemical and antioxidant enzyme activities in maize (Zea mays L.) leaves exposed to excess copper. Chemosphere 67:89-98. Yoon, J., X.D. Cao, Q.X. Zhou and L.Q. Ma. 2006. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci. Total Environ. 368:456-464. Yoshihara, T., H. Hodoshima, Y. Miyano, K. Shoji, H. Shimada and F. Goto. 2006. Cadmium inducible Fe deficiency responses observed from macro and molecular views in tobacco plants. Plant Cell Rep. 25:365-373. Zengin, F.K. and O. Munzuroglu. 2005. Effects of some heavy metals on content of chlorophyll, proline and some antioxidant chemicals in bean (Phaseolus vulgaris L.) seedlings. Acta Biologica Cracoviensia Series Botanica. 47:157-164. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28277 | - |
dc.description.abstract | 銅、鋅、鎘為台灣常見之重金屬污染物。在目前研究植生復育的技術中,多半是針對單一重金屬作為研究,但在重金屬污染的環境中是含有多種的重金屬。因此,在多種重金屬的影響下,重金屬彼此是否會產生競爭或協同運輸的情況,尚未完全明瞭。故本試驗的目的即在探討混合的銅、鋅、鎘三種重金屬對於菸草吸收重金屬的交互影響。試驗材料為圓葉菸草 (Nicotiana benthamiana),種子發芽後一週移植於三吋塑膠盆中,以根基旺3號為栽培介質。菸草種植於自然光照之溫室中,溫度控制在24℃到30℃。幼苗種植六週後,在盆中加入 100 mL 單一的銅、鋅、鎘溶液或是混合的銅與鎘、銅與鋅溶液等處理。分析項目有植物萎凋程度、植物鮮重、植物乾重、葉綠素含量、可溶性蛋白質含量、脯氨酸含量、脂質過氧化程度和植體金屬離子含量。重金屬處理三天後的結果顯示,隨銅處理濃度增加,菸草萎凋程度加劇。鎘僅在濃度為 10 mM 的處理下萎凋程度才與 control 有差異,而鋅處理不會對菸草產生萎凋的現象,表示銅對菸草的毒性最大,依次為鎘與鋅。然而,在混合的重金屬處理中發現,鎘處理可以減緩銅處理所誘導的葉片萎凋。鋅處理則需要在 10 mM 銅濃度處理下,方可以減緩銅處理所誘導的葉片萎凋。分析植體中金屬離子含量發現,鎘處理並未降低菸草葉片的銅含量,反而增加銅含量。鋅處理在 10 mM 銅濃度處理下亦增加菸草葉片的銅含量。據以推測,鎘、鋅處理減緩銅處理所誘導的葉片萎凋,不是競爭銅的吸收所致,而可能是干擾銅對菸草的毒害機制。菸草葉片葉綠素及蛋白質含量與脂質過氧化程度不受重金屬處理影響,推測三天的處理下受損的部位僅及於菸草根部,對地上部的影響不顯著。而脯胺酸的含量與植物萎凋程度成正相關,因此菸草中脯胺酸的累積可能與植物萎凋有關。另外,分析植體中金屬離子含量發現,銅處理會增加菸草莖部及葉片的鋅含量,但僅增加莖部的鎘含量。混合重金屬處理下,菸草內的鉀、鈣、鎂、鐵、錳含量,都有增加的趨勢。 | zh_TW |
dc.description.abstract | Copper, zinc and cadmium are common heavy metal pollutants in Taiwan. In the resent studies of phytoremediation, most of them were focus on the act of single heavy metal in soil, but in many cases, heavy metal pollution was the combination of multielement. Thus, whether the interaction of multiple heavy metals was an antagonistic effect or a synergistic effect needed to be discussed. The aims of this study assess the interaction of copper, zinc and cadmium to the uptake of heavy metal in tobacco. In this study, Nicotiana benthamiana was the test plant and grew in greenhouse with sunlight, and with temperature controlled between 24 to 30 ℃. After grew in the soilless culture for six weeks, tobacco was treated with heavy metal solution where copper, zinc and cadmium were added singly or in the combination of copper with zinc or cadmium. The growth of tobacco was monitored with plant wilting level, fresh weight and dry weight. The physiological status was expressed with chlorophyll content, protein content, proline content and lipid peroxidation level. The metal ion contents were also analyzed at the end of experiment. The result showed that plant wilting level increased with the increase of copper concentration. Cadmium increased plant wilting level only under 10 mM cadmium treatment and zinc did not affect plant wilting level, that implying copper was more toxic than cadmium and zinc to tobacco. Cadmium could reduce Cu-induced plant wilting level. Zinc also ccould reduce Cu-induced plant wilting level, but only at 10 mM copper treatment. Surprisingly, cadmium or zinc also increased copper content in Cu-treated tobacco leaf and stem, suggesting cadmium and zinc reduce Cu-induce plant wilting level was not due to the competition with Cu absorption, but the interfering on Cu toxicity. Chlorophyll content, protein content and lipid peroxidation level did not change after treated with heavy metal for 3d. It’s seemed that it was not the shoot affected by heavy metal after 3d treatment, but the root. Proline content was highly correlated with plant wilting level, thus the proline accumulation may relate to plant wilting level. Copper increased zinc content in Zn-treated tobacco leaf and stem. Copper also increased cadmium content in Cd-treated tobacco stem, but not in leaf. The combined heavy metals treatments also increased the content of potassium, calcium, magnesium, iron and manganese in tobacco. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T00:04:11Z (GMT). No. of bitstreams: 1 ntu-96-R94623013-1.pdf: 687175 bytes, checksum: 5b3aa8be179dd5731d534e57dff06314 (MD5) Previous issue date: 2007 | en |
dc.description.tableofcontents | 摘要 I
ABSTRACT II 目錄 IV 圖目錄 VI 表目錄 IX 附錄目錄 X 第一章 前言 1 第二章 前人研究 2 第三章 材料與方法 7 試驗材料 7 試驗方法 7 重金屬處理 7 分析項目 7 一、植物萎凋程度 7 二、樣品處理 10 三、植體金屬離子濃度分析 10 (一) 樣品分解 10 (二) 樣品分析 10 四、植物葉綠素、蛋白質、脯胺酸含量和脂質過氧化程度測定 10 (一) 葉綠素含量測定 10 (二) 蛋白質含量分析 11 (三) 脯胺酸含量測定 11 (四) 脂質過氧化程度之測定 11 五、統計分析 12 第四章 結果與討論 13 一、重金屬處理對菸草生長的影響 13 (一) 植物萎凋程度 13 (二) 植物鮮重 13 (三) 植物乾重 13 (四) 植物含水百分率 17 (五) 綜合討論 17 二、重金屬處理對菸草生理的之影響 19 (一) 植物葉綠素含量 19 (二) 植物脂質過氧化程度 19 (三) 植物可溶性蛋白質含量 19 (四) 植物脯胺酸含量 20 (五) 綜合討論 20 三、重金屬處理對菸草重金屬吸收之影響 27 (一) Cu 的吸收 27 (二) Cd 的吸收 35 (三) Zn 的吸收 41 (四) 綜合討論 49 四、多重重金屬處理對菸草吸收鉀、鈣、鎂、鐵、錳的影響 50 (一) 鉀的吸收 50 (二) 鈣的吸收 51 (五) 錳的吸收 72 (六) 綜合討論 75 第五章 結論 78 參考文獻 79 附錄 85 | |
dc.language.iso | zh-TW | |
dc.title | 銅、鋅、鎘對菸草吸收重金屬之交互影響 | zh_TW |
dc.title | The interaction of copper, zinc and cadmium on the uptake of heavy metals in Nicotiana benthamiana | en |
dc.type | Thesis | |
dc.date.schoolyear | 95-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 鍾仁賜,邱志郁 | |
dc.subject.keyword | 銅:鋅,鎘:重金屬吸收:菸草, | zh_TW |
dc.subject.keyword | copper,zinc,cadmium,heavy metal uptake,Nicotiana benthamiana, | en |
dc.relation.page | 84 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2007-07-30 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 農業化學研究所 | zh_TW |
顯示於系所單位: | 農業化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-96-1.pdf 目前未授權公開取用 | 671.07 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。