請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28264完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王淑珍 | |
| dc.contributor.author | Jia-Yi Chen | en |
| dc.contributor.author | 陳佳宜 | zh_TW |
| dc.date.accessioned | 2021-06-13T00:03:54Z | - |
| dc.date.available | 2007-07-31 | |
| dc.date.copyright | 2007-07-31 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-28 | |
| dc.identifier.citation | Aloni B, Daie J, Wyse RE (1986) Enhancement of [14 C] sucrose export from source leaves of Vicia faba by gibberellic acid. Plant Physiol 82:962-966
Aoki N, Hirose T, Scofield GN, Whitfeld PR, Furbank RT (2003) The sucrose transporter gene family in rice. Plant Cell Physiol 44:223-232 Aoki N, Scofield GN, Wang XD, Offler CE, Patrick JW, Furbank RT (2006) Pathway of sugar transport in germinating wheat seeds. Plant Physiol 141:1255-1263 Arnim AV and Deng XW (1996) Light control of seedling development. Annu Rev Plant Physiol Plant Mol Biol 47:215-43 Atanassova R, Leterrier M, Gaillard C, Agasse A, Sagot E, Coutos-The´venot P, Delrot S (2003) Sugar-regulated expression of a putative hexose transport gene in grape. Plant Physiol 131:326-334 Barker L, Kühn C, Weise A, Schulz A, Gebhardt C, Hirner B, Hellmann H, Schulze W, Ward JM, Frommer WB (2000) SUT2, a putative sucrose sensor in sieve elements. Plant Cell 12:1153-1164 Baud SB, Wuille`me S, Lemoine R, Kronenberger J, Caboche M, Lepiniec L, Rochat C (2005) The AtSUC5 sucrose transporter specifically expressed in the endosperm is involved in early seed development in Arabidopsis. Plant J 43:824–836 Borello U, Ceccarelli E and Giuliano G (1993) Constitutive, light-responsive and circadian clock-responsive factors compete for the different I box elements in plant light-regulated promoters. Plant J 4:611-619 Bürkle L, Hibberd JM, Quick WP, Kühn C, Hirner B, Frommer WB (1998) The H+-Sucrose cotransporter NtSUT1 is essential for sugar export from Tobacco leaves. Plant Physiol 118:59-68 Carpaneto A, Geiger D, Bamberg E, Sauer N, Fromm J, Hedrich R (2005) Phloem-localized, proton-coupled sucrose carrier ZmSUT1 mediates sucrose efflux under the control of the sucrose gradient and the proton motive force. J Biol Chem 280:21437-21443 Claeyssen É, Rivoal J (2007) Isozymes of plant hexokinase: Occurrence, properties and fuctions. Phytochemistry 68:709-731 Cock JH, Yoshida S (1972) Accumulation of 14C-labelled carbohydrate before flowering and its subsequent redistribution and respiration in the rice plant. Proc Crop Sci Soc Jpn 41:226-234 Chen PW, Chiang CM, Tseng TH, Yu SM (2006) Interaction between rice MYBGA and the gibberellins response element controls tissue-specific sugar sensitivity of α-amylase genes. Plant Cell 18:2326-2340 Chiou TJ, Bush DR (1998) Sucrose is a signal molecule in assimilate partitioning. Proc Natl Acad Sci USA 95:4784-4788 Choi YH, Sakurai A (1996) Endogenous gibberellin A1 level and alpha amylase activity in germinating rice seeds. J Plant Growth Regul 15:147-151 Dian W, Jiang H, Chen Q, Liu F, Wu P (2003) Cloning and characterization of the granule-bound starch synthase II gene in rice: gene expression is regulated by the nitrogen level, sugar and circadian rhythm. Planta 218:261-268 Edelman J, Shibko SI, Keys AJ (1959) The roles of the scutellum of cereal seedlings in the synthesis and trnaport of sucrose. J Exp Bot 10:179-189 Furbank RT, Scofield GN, Hirose T, Wang X-D, Patrick JW, Offler CE (2001) Cellular localisation and function of a sucrose transporter OsSUT1 in developing rice grains. Aust J Plant Physiol 28:1187-1196 Grignon N, Touraine B, Durand M (1989) 6(5)Carboxyfluorescein as a tracer of phloem sap translocation. Am J bot 76:871-877 Hirose T, Imaizumi N, Scofield GN, Furbank RT, Ohsugi R (1997) cDNA cloning and tissue specific expression of a gene for sucrose transporter from rice (Oryza sativa L.). Plant Cell Physiol 38:1389-1396 Ishimaru K, Hirose T, Aoki N, Takahashi S, Ono K, Yamamoto S, Wu J, Saji S, Baba T, Ugaki M, Matsumoto T, Ohsugi R (2001) Antisense expression of a rice sucrose transporter OsSUT1 in rice (Oryza sativa L.) Plant Cell Physiol 42:1181-1185 Jang JC, León P, Li Zhou, Sheen J (1997) Hexokinase as a sugar sensor in higher plants. Plant Cell 9:5-19 Karrer EE, Litts JC, Rodriguez RL (1991) Differential expression ofα-amylase genes in germinating rice and barley seeds. Plant Mol Biol 16:797-805 Karrer EE, Rodriguez RL (1992) Metabolic regulation of rice α-amylase and sucrose synthase genes in planta. Plant J 2:517-523 Kühn C, Franceschi VR, Schulz A, Lemoine R, Frommer WB (1997) Macromolecular trafficking indicated by localization and turnover of sucrose transporters in enucleate sieve elements. Science 275:1298-1300 Lalonde S, Boles E, Hellmann H, Barker L, Patrick JW , Frommer WB, Ward JM (1999) The dual function of sugar carriers: transport and sugar sensing. Plant cell 11:707-726 Lee S, Cheng H, King KE, Wang W, He Y, Hussain A, Lo J, Harberd NP, Peng J (2002) Gibberellin regulates Arabidopsis seed germination via RGL2, a GAI/RGA-like gene whose expression is up-regulated following imbibition. Gen Dev 16:646-658 Li C, Shi JX, Weiss D, Goldschmidt EE (2003) Sugars regulate sucrose transporter gene expression in citrus. Biochem Biophys Res Commun 306:402-407 Lim JD, Cho J, Park Y, Hahn TR, Choi SB, Jeon JS (2006) Sucrose transport from source to sink seeds in rice. Physiol Plant 126:572-584 Loreti E, Alpi A, Perata P (2000) Glucose and disaccharide-sensing mechanisms modulate the expression of α-amylase in barley embryos. Plant Physiol 123:939-948 Maley F, Lardy HA (1954) Synthesis of N-substituted glucosamines and their effect on hexokinase. J Biol Chem 1955 214:765-773 Mäkelä P, Mclaughlin JE, Boyer JS (2005) Imaging and quantifying carbohydrate transport to the developing ovaries of maize. Ann bot 96:939-949 Matsukura C, Saitoh T, Hirose T, Ohsugi R, Perata P, Yamaguchi J (2000) Sugar uptake and transport in rice embryo: expression of companion cell-specific sucrose transporter (OsSUT1) induced by sugar and light. Plant Physiol 124:85-93 Murata T (1968) Enzymic mechanism of starch breakdown in germinating rice seeds I. An analytical study. Plant Physiol 43:1899-1905 Nomura T, Konol Y, Akazawa T (1969) Enzymic Mechanism of starch breakdown in germinating rice seeds II. Scutellum as the site of sucrose synthesis Plant Physiol 44:765-769 Oparka KJ, Duckett CM, Prior DAM, Fisher DB (1994) Real-time imaging of phloem unloading in the root tip of Arabidopsis. 6:759-766 özcan S, Dover J, Johnston M (1998) Glucose sensing and signaling by two glucose receptors in the yeast Saccharomyces cerevisiae. EMBO J 17:2566-2573 Rogers LA, Dubos C, Cullis I F, Surman C, Poole M, Willment J, Mansfield SD, Campbell MM (2005) Light, the circadian clock, and sugar perception in the control of lignin biosynthesis. J Exp Bot 416:1651-1663 Rolland F, Moore B, Sheen J (2002) Sugar sensing and signaling in plants. Plant Cell S185-S205 Rolland F, Elena BG, Sheen J (2006) Sugar sensing and signaling in plants: conserves and novel mechanisms. Annu Rev Plant Biol 57:675-709 Riesmeier JW, Willmitzer L, Frommer WB (1992) Isolation and characterization of a sucrose carrier cDNA from spinach by functional expression in yeast. EMBO J 11: 4705-4713 Sauer N (2007) Molecular physiology of higher plant sucrose transporters. FEBS in press Scofiled GN, Aoki N, Hirose T, Takano M, Jenkins CLD, Furbank RT (2007) The role of the sucrose transporter, OsSUT1, in germination and early seedling growth and development of rice plants. J Exp Bot 58:483-495 Sheen J, Zhou L, Jang JC (1999) Sugars as signaling molecules. Curr Opin Plant Biol 1999 2:410-418 Shakya R, Sturm A (1998) Characterization of source- and sink-specific sucrose/H+ symporters from carrot. Plant Physiol 118:1473-1480 Sivitz AB, Reinders A, Johnson ME, Krentz AD, Grof CPL, Perroux JM, Ward JM (2007) Arabidopsis sucrose transporter AtSUC9. High-affinity transport activity, intragenic control of expression, and early flowering mutant phenotype. Plant Physiol 143:188-198 Takeda T, Toyofuku K, Matsukura C, Yamaguchi J (2001) Sugar transporters involved in flowering and grain development of rice. J Plant Physiol 158:465-470 Togari Y, Sato K (1954) Studies on the production and behavior of carbohydrate in rice plant. Ⅱ On the accumulation and distribution of starches in the organs of rice plant with its development of growth. Proc Crop Sci Soc Japan 22:98-99 Thomas BR, Rodriguez R (1994) Metabolite signals regulate gene expression and source/sink relations in cereal seedlings. Plant Physiol 106:1235-1239 Umemura T, Perata P, Futsuhara Y, Yamagucji J (1998) Sugar sensing and α-amylase gene repression in rice embryos. Planta 204:420-428 Wang SJ, Yeh KW, Tsai CY (2004) Circadian control of sweet potato granule-bound starch synthase I gene in Arabidopsis plants. J Plant Grow Regul 42:161-168. Weber H, Borisjuk L, Heim U, Sauer N, Wobusa U (1997) A role for sugar transporters during seed development: molecular characterization of a hexose and a sucrose carrier in fava bean seeds. Plant Cell 9:895-908 Weise A, Barker L, Ku¨hn C, Lalonde S, Buschmann H, Frommer WB, Ward JM (2000) A new subfamily of sucrose transporters, SUT4, with low affinity/high capacity localized in enucleate sieve elements of plants. Plant Cell 12:1345-1355 Yu SM, Tzou WS, Lo WS, Kuo YH, Lee HT, Wu R (1992) Regulation of α-amylase-encoding gene expression in germinating seeds and culture cells of rice. Gene 122:247-253 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28264 | - |
| dc.description.abstract | 水稻種子發芽時期依賴的養分為胚乳澱粉所分解的醣類。由胚乳澱粉所分解而來的葡萄糖將在胚中之胚盤(Scutellum)中重新合成蔗糖,而蔗糖會進一步轉運至幼芽及根部做為幼苗生長所需之養分來源,顯示蔗糖於組織間的轉運效率為影響水稻發芽及幼苗生長之重要因子。為了解水稻發芽種子中醣類的運輸機制,本論文以carboxyfluorescein diacetate (CFDA)觀察醣分子利用原生質絲在各組織間運送之情形,另一方面,亦用real-time RT-PCR分析在種子發芽過程中,水稻蔗糖轉運蛋白基因家族(sucrose transporter gene family; OsSUTs)之表現,並利用各種醣類及其類似物處理水稻分離胚以探討OsSUT基因表現受醣類調控之情形及訊息傳導機制。種子由開始浸潤後直至四葉齡,胚乳、胚與莖部及根部之間可利用原生質絲進行醣類的運輸,並由螢光定量的結果推測胚乳醣份運送至幼芽及根部的比例會隨生長階段而有所不同。此外,在蔗糖轉運蛋白基因表現分析中,發現種子浸潤後,在胚中的 OsSUT1、2及4的表現量遠比OsSUT3及5高。其中,OsSUT2之表現明顯地隨種子浸潤後之天數而增加。外加各種醣類於培養分離胚(isolated embryo)的培養基中,發現100 mM葡萄糖、蔗糖皆會促使OsSUT1及2基因表現,但OsSUT1與2之表現對醣類反應的敏感度不同,而OsSUT4僅受100 mM葡萄糖之影響,並不受蔗糖調控。葡萄糖對OsSUT1的影響是藉由糖解作用中之中間產物進行訊息傳導;而葡萄糖調控OsSUT2及4則是藉由hexokinase-indepdent pathway。除了醣類分子,GA與光照亦為調控OsSUT基因表現之因子,GA會促使OsSUT4的表現上昇,而光照會促使OsSUT1及2的表現量增高。綜合實驗結果發現,雖然OsSUT1、2及4基因均在種子發芽時期明顯表現,但此三基因之表現調控機制卻有顯著地差異。 | zh_TW |
| dc.description.abstract | Sugars degraded from endosperm starch are the major nutrient source for rice seed germination. Since glucose transported from endosperm to scutellum would be resynthesized to sucrose in scutellum and further transported to shoot and root for seedling growth, the efficiency of sucrose transport between different tissues could be an important factor to determine seedling establishment and growth. In order to clarify the mechanism of sucrose transport during rice seed germination, an effort was made to apply carboxyfluorescein diacetate (CFDA) into seeds for monitoring sugar transport from endosperm to embryo, shoot and root. In addition, the expressions of sucrose transporter family genes (OsSUTs) were analyzed by real-time RT-PCR during seed germination. To identify the sugar effect on OsSUT gene expressions and the signal transduction pathway involved in the sugar-mediated regulation, various sugar molecules and their analogs were supplied to isolated embryos cultures. The data presented in this thesis indicated that sugars can be transported from endosperm to embryo、stem and root mediated by plasmodemata before 4 leaf-old stage. The ratio of endosperm sugar transported to shoot and to root would be changed at different growth stages. During seed germination, the expression levels of OsSUT1、2 and 4 in embryos were higher than OsSUT3 and 5. OsSUT1 and 2 expressions could be enhanced by 100 mM glucose and sucrose, but their sensitivities in response to sugar were different. OsSUT4 expression was also up-regulated by glucose but not by sucrose. Even glucose was a common factor to control the expression of OsSUT1, 2 and 4, the sugar-mediated signal transduction pathways were different. The intermediate product of glycolysis was an essential signal for enhancing OsSUT1 expression. On the other hand, glucose-enhanced OsSUT2 and 4 expressions were controlled by hexokinase -independent pathway. In addition to sugar effect, GA and light effects on OsSUTs genes were also identified in this study. The results showed the expression of OsSUT4 could be enhanced by GA, and expressions of OsSUT1 and 2 could be stimulated by light. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T00:03:54Z (GMT). No. of bitstreams: 1 ntu-96-R94621103-1.pdf: 2043998 bytes, checksum: ac8b9adaa4bb170c5cc98bf49208fe14 (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 目錄-------------------------------------------------------------------------------------------------Ⅰ
圖表目錄-------------------------------------------------------------------------------------------Ⅲ 縮寫對照表----------------------------------------------------------------------------------------Ⅳ 中文摘要-------------------------------------------------------------------------------------------Ⅴ 英文摘要-------------------------------------------------------------------------------------------Ⅵ 壹、 前言------------------------------------------------------------------------------------------1 貳、 材料方法 Ⅰ、 植物材料-----------------------------------------------------------------------------10 Ⅱ、 水稻種子內澱粉分佈情形的觀測-----------------------------------------------10 Ⅲ、 水稻胚乳醣類經由原生質絲轉運之分析--------------------------------------10 Ⅳ、 水稻蔗糖轉運蛋白(Sucrose transporter; OsSUT )家族基因及Ubiquitin cDNA 片段的選殖----------------------------------------------------------------11 Ⅴ、 OsSUT家族基因的表現分析----------------------------------------------------15 Ⅵ、基因表現量的均值檢定-------------------------------------------------19 Ⅶ、 OsSUT家族基因啟動子的序列分析--------------------------------------------19 參、 結果 Ⅰ、 水稻種子內澱粉分佈之情形-----------------------------------------------------20 Ⅱ、 利用carboxyfluorescein diacetate (CFDA) 模擬醣類藉由原生質絲從胚乳轉運至幼芽及根部-----------------------------------------------------------------20 Ⅲ、 水稻種子浸潤後0至5天,胚部OsSUT家族基因表現-------------------21 Ⅳ、 不同醣類對分離胚中OsSUT1、2及4表現之影響---------------------------22 Ⅴ、 醣類調控OsSUT1、2及4基因表現之訊息傳導途徑------------------------23 Ⅵ、 不同濃度GA對分離胚中OsSUT1、2及4表現之影響-----------------------25 Ⅶ、 光對分離胚中OsSUT1、2及4表現之影響-------------------------------------25 Ⅷ、 OsSUT1、2及4啟動子之分析-------------------------------------------------26 肆、 圖表-----------------------------------------------------------------------------------------28 伍、 討論-----------------------------------------------------------------------------------------57 參考文獻------------------------------------------------------------------------------------------64 | |
| dc.language.iso | zh-TW | |
| dc.subject | 蔗糖轉運蛋白 | zh_TW |
| dc.subject | sucrose transporter | en |
| dc.title | 水稻種子發芽時期胚中蔗糖轉運蛋白基因之表現調控機制 | zh_TW |
| dc.title | Regulation of Sucrose Transporter Genes in Rice Embryos during Seed Germination | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蘇睿智,王愛玉,劉麗飛 | |
| dc.subject.keyword | 蔗糖轉運蛋白, | zh_TW |
| dc.subject.keyword | sucrose transporter, | en |
| dc.relation.page | 69 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-07-31 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農藝學研究所 | zh_TW |
| 顯示於系所單位: | 農藝學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 2 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
