Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28244
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張富雄(Fu-Hsiuan Chang)
dc.contributor.authorHui-Tzu Changen
dc.contributor.author張慧慈zh_TW
dc.date.accessioned2021-06-13T00:03:28Z-
dc.date.available2007-08-08
dc.date.copyright2007-08-08
dc.date.issued2007
dc.date.submitted2007-07-30
dc.identifier.citation[1] Stella M.H. and Laura H. (2003) The Future Looks Bright ... Science. 300, 75.
[2] Michalet X., Kapanidis A.N., Laurence T., Pinaud F., Doose S., Pflughoefft M., and Weiss S.(2003) The power and prospects of fluorescence microscopies and spectroscopies. Annu Rev Biophys Biomol Struct. 32, 161-182.
[3] Michalet X., Pinaud F.F., Bentolila L.A., Tsay J.M.,Doose S., Li J.J. et al. (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307: 538-44.
[4] Medintz I.L., Uyeda H.T., Goldman E.R., and Mattoussi H. (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater. 4, 435-446.
[5] Bruchez M., Jr, Moronne M., Gin P., Weiss S. and Alivisatos A.P. (1998) Semiconductor nanocrystals as fluorescent biological labels. Science. 281, 2013–2016.
[6] Chan W.C., and Nie S. (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science. 281, 2016–2018.
[7] Murray C.B., Norris D.J. and Bawendi M.G. (1993) Synthesis and characterization of nearly monodisperse CdE ( E = sulfur, selenium, tellurium ) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715.
[8] Artmeyev M.V., Gaponenko S.V., Germanenko I.N. and Kapitonov A.M. (1995) Irreversible photochemical spectral hole burning in quantum-sized CdS nanocrystals embedded in a polymeric fi lm. Chem. Phys. Lett. 243, 450–455.
[9] Hines M.A. and Guyot-Sionnest P. (1996) Synthesis and characterization of strongly luminescing ZnS-Capped CdSe nanocrystals. J. Phys. Chem. 100, 468–471.
[10] Peng X., Schlamp M.C., Kadavanich A.V. and Alivisatos A.P. (1997) Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. J. Am. Chem. Soc. 119, 7019–7029
[11] Hines M.A. and Guyot-Sionnest P. (1998) Bright UV-blue luminescent colloidal ZnSe nanocrystals. J. Phys. Chem. B 102, 3655–3657.
[12] Murray C.B., Kagan C.R. and Bawendi M.G. (2000) Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Ann. Rev. Mater. Sci. 30, 545–610.
[13] Mattoussi H., Mauro J.M., Goldman E.R., Anderson G.P., Sundar V.C., Mikulec F.V., Bawendi M.G.. (2000) Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein. J. Am. Chem. Soc. 122, 12142–12150.
[14] Suyver J.F., Wuister S.F., Kelly J.J. and Meijerink A. (2001) Synthesis and photoluminescence nanocrystalline ZnS:Mn2+. Nano Lett. 1, 429–433
[15] Peng Z.A. and Peng X. (2001) Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J. Am. Chem. Soc. 123, 183–184.
[16] Bailey R.E. and Nie S. (2003) Alloyed semiconductor quantum dots: tuning the optical properties without changing the particle size. J. Am. Chem. Soc. 125, 7100–7106.
[17] Gu H., Ho P.L., Tsang K.W.T., Wang L. and Xu B. (2003) Using Biofunctional magnetic nanoparticles to capture vancomycin-resistant enterococci and othergram-positive bacteria at ultralow concentration. J. Am. Chem. Soc. 125, 15702–15703.
[18] Gu H., Zheng R., Zhang X. and Xu B. (2004) Facile one-pot synthesis of bifunctional heterodimers of nanoparticles: A conjugate of quantum dot and magnetic nanoparticles. J. Am. Chem. Soc. 126, 5664–5665.
[19] Pinaud F., King D., Moore H.P. and Weiss S. (2004) Bioactivation and cell targeting of semiconductor CdSe/ZnS nanocrystals with phytochelatin-related peptides. J. Am. Chem. Soc. 126, 6115–6123.
[20] Tsay J.M., Pflughoefft M., Bentolila L.A. and Weiss S. (2004) Hybrid approach to the synthesis of highly luminescent CdTe/ZnS and CdHgTe/ZnS nanocrystals.J. Am. Chem. Soc. 126, 1926–1927.
[21] Xu, C., Xu, K., Gu, H., Zhong, X., Guo, Z., Zheng, R., Zhang, X., and Xu, B.(2004) Nitrilotriacetic acid- modifi ed magnetic nanoparticles as a general agent tobind histidine-tagged proteins. J. Am. Chem. Soc. 126, 3392–3393.
[22] Gu, H., Zheng, R., Zhang, X., and Xu, B. (2004) Dopamine as a robust anchor to immobilize functional molecules on the iron oxide shell of magnetic nanoparticles. J. Am. Chem. Soc. 126, 5664–5665.
[23] Kim S., Fisher B., Eisler H.J., Bawendi M. (2003) Type-II quantum dots:CdTe/CdSe(core/shell) and CdSe/ZnTe (core/shell) heterostructures.J Am Chem Soc 125, 11466–11467.
[24] Dabbousi B.O., Rodriguez-Viejo J., Mikulec F.V., Heine J.R., Mattoussi H., Ober R., Jensen K.F. and Bawendi M.G. (1997) (CdSe)ZnS core-shell quantum dots:synthesis and optical and structural characterization of a size series of highly luminescent materials. J. Phys. Chem. B 101, 9463–9475.
[25] Maysinger D., Lovric J., Eisenberg A., and Savic R. (2007) Fate of micelles and quantum dots in cells. Eur J Pharm Biopharm 65, 270-281.
[26] Pathak S., Choi S.K., Arnheim N., Thompson M.E. (2001) Self-assembly of dendron rodcoil molecules into nanoribbons. J. Am. Chem. Soc. 123, 4105-4106.
[27] Mattoussi H., Mauro J.M., Goldman E.R., Anderson G.P., Sundar V.C., Mikulec F.V. and Bawendi M.G. (2000) Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein. J. Am. Chem. Soc. 122, 12142-12150.
[28] Kim S. and Bawendi M.G. (2003) Oligomeric Ligands for Luminescent and Stable Nanocrystal Quantum Dots. J. Am. Chem. Soc. 125, 14652-14653
[29] Guo W., Li J.J., Wang Y.A., Peng X. (2003) Conjugation chemistry and bioapplications of semiconductor box nanocrystals prepared via dendrimer bridging. Chem. Mater. 15, 3125–3133
[30] Pinaud F., King D., Moore H.P., Weiss S. (2004) Bioactivation and cell targeting of semiconductor CdSe/ZnS nanocrystals with phytochelatin-related peptides. J. Am. Chem. Soc. 126, 6115-6123
[31] Wu X., Liu H., Liu J., Haley K.N., Treadway J.A., Larson J.P., Ge N., Peale F., and Bruchez M.P. (2003) Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nature Biotechnol. 21, 41-46.
[32] Gao X., Cui Y., Levenson R.M., Chung L.W.K., Nie S. (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nature Biotechnol. 22, 969-976.
[33] Gerion, D., Pinaud, F., Williams, S.C., Parak, W.J., Zanchet, D., Weiss, S., Alivisatos, A. P. (2001) Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots. J. Phys. Chem. B. 105, 8861-8871.
[34] Dubertret, B., Skourides, P., Norris, D.J., Noireaux, V., Brivanlou, A.H. and Libchaber, A. (2002) In vivo imaging of quantum dots encapsulated in phospholipid
micelles. Science. 298, 1759-1762.
[35] Osaki F., Kanamori T., Sando S., Sera T., Aoyama Y. (2004) A quantum dot conjugated sugar ball and its cellular uptake. On the size effects of endocytosis in the subviral region. J. Am. Chem. Soc. 126, 6520-6521
[36] Sukhanova A. et al. (2004) Biocompatible fluorescent nanocrystals for immunolabeling of membrane proteins and cells. Anal. Biochem. 324, 60-67
[37] Gomez N., Winter J.O., Shieh F., Saunders A.E., Korgel B.A., Schmidt C.E. (2005) Challenges in quantum dot-neuron active interfacing. Talanta, 67, 462-471.
[38] Rosenthal, S.J., Tomlinson, I., Adkins, E.M., Schroeter, S., Adams, S., Swafford, L., McBride, J., Wang, Y., DeFelice, L.J., and Blakely, R.D. (2002)Targeting cell surface receptors with ligand-conjugated nanocrystals. J. Am. Chem. Soc. 124, 4586–4594
[39] Chen F. and Gerion D. (2004) Fluorescent CdSe/ZnS nanocrystal-peptide conjugates for long-term, nontoxic imaging and nuclear targeting in living cells.Nano Lett. 4, 1827–1832.
[40] Voura E.B., Jaiswal J.K., Mattoussi H. and Simon S.M. (2004) Tracking early metastatic progression with quantum dots and emission scanning microscopy.Nature Med. 10, 993–998.
[41] Ballou B., Lagerholm B.C., Ernst L.A., Bruchez M.P., Waggoner A.S. (2004) Noninvasive Imaging of Quantum Dots in Mice. Bioconjug. Chem. 15, 79-86.
[42] Sayes, C.M., Reed, K.L., and Warheit, D.B. (2007) Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles. Toxicol Sci. 97, 163-180.
[43] Lovrić, J., Bazzi, H.S., Cuie, Y., Fortin, G.R., Winnik, F.M., and Maysinger, D. (2005) Differences in subcellular distribution and toxicity of green and redemitting CdTe quantum dots. J Mol Med 83, 377-385.
[44] Chan, W.H., Shiao, N.H., and Lu, P.Z. (2006) CdSe quantum dots induce apoptosis in human neuroblastoma cells via mitochondrial-dependent pathways andinhibition of survival signals. Toxicol Lett 167, 191-200.
[45] Choi, A.O., Cho, S.J., Desbarats, J., Lovric, J., and Maysinger, D. (2007) Quantum dot-induced cell death involves Fas upregulation and lipid peroxidation in human neuroblastoma cells. J Nanobiotechnology 5, 1-13.
[46] Hsieh, S.C., Wang, F.F., Hung, S.C., Chen, Y.J., and Wang, Y.J. (2006) The internalized CdSe/ZnS quantum dots impair the chondrogenesis of bone marrowmesenchymal stem cells. J Biomed Mater Res B Appl Biomater 79, 95-101.
[47] Vives, E., Brodin, P., and Lebleu, B. (1997) A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem 272, 16010-16017.
[48] Bergemann, A.D., Ma, Z.W., and Johnson, E.M. (1992) Sequence of cDNA comprising the human pur gene and sequence-specific single-stranded-DNA-binding properties of the encoded protein. Mol Cell Biol 12,5673-5682.
[49] Chen, Y.N., Sharma, S.K., Ramsey, T.M., Jiang, L., Martin, M.S., Baker, K., Adams, P.D., Bair, K.W., and Kaelin, W.G., Jr. (1999) Selective killing oftransformed cells by cyclin/cyclin-dependent kinase 2 antagonists. Proc Natl Acad Sci U S A 96, 4325-4329.[50] Jaiswal, J.K., Mattoussi, H., Mauro, J.M., Simon, S.M. (2003) Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat Biotechnol 21,47–51.
[51] Derfus, A.M., Chan, W.C.W., Bhatia, S.N. (2004) Intracellular delivery of quantum dots for live cell labeling and organelle tracking. Adv Mater 16, 961–966.
[52] Derfus, A.M., Chan, W.C.W., and Bhatia, S.N. (2004) Probing the cytotoxicity of semiconductor quantum dots. Nano Letters 4, 11-18.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28244-
dc.description.abstract量子點是一種由半導體金屬合成之奈米粒子。量子點具有比一般螢光物質優勢的光學與電子特性,包括:高效能的量子產率 ( quantum yield )、高莫耳消光係數 ( molar extinction coefficients )、顯著的斯托克斯位移 ( Stokes shift )、吸收光譜範圍廣且具有狹窄並對稱的螢光光譜 ( photoluminescence spectra ) 和能夠有效抵抗光褪色作用及光學或化學傷害之特性等。另外,量子點的螢光是隨著顆粒大小而不同,因此,在單一光源下可同時觀察不同大小的量子點。
這些獨特性質使量子點能被應用在生物醫學上,但關於奈米科技仍有許多未知的領域,比如人體直接暴露奈米物質可能有健康的危害性。因此,本實驗研究目的為探討以中性脂肪DPPC包覆之量子點,藉由融合蛋白Tat-SA ( Tat-streptavidin ) 攜帶量子點進入細胞後,量子點對HeLa細胞和CT26細胞的細胞毒性;並藉由動物實驗,了解量子點在動物體內分佈範圍與代謝器官。
本實驗利用MTT assay與LDH-release assay測定細胞粒腺體代謝活性與細胞存活率,作為細胞毒性的指標。首先,直接將修飾之量子點處理HeLa細胞和CT26細胞,結果發現,HeLa細胞和CT26細胞皆在特定量子點濃度下,其細胞代謝活性與存活率有明顯下降趨勢。比較不同量之融合蛋白Tat-SA攜帶量子點在細胞遞送之情況,發現細胞內量子點亮點因為融合蛋白Tat-SA而增加。分析融合蛋白Tat-SA攜帶量子點進入細胞後的細胞毒性,結果顯示,量子點的內在化對HeLa細胞和CT26細胞似乎沒有太大影響。而在動物實驗中,藉由原子吸收分析儀測定量子點的鎘含量,發現肝臟和腎臟的鎘含量最高,因而推測肝臟和腎臟可能是代謝量子點的主要器官。
藉由以上的毒性分析,將有助於量子點在細胞標定與活體實驗的應用。
zh_TW
dc.description.abstractSemiconductor nanoparticles, Quantum dots ( QDs ), have the optical and electrical properties better than the fluorescence molecules, including high quantum yield, high molar extinction coefficients, great effective Stokes shift, broad absorption with narrow, symmetric photoluminescence ( PL ) spectra spanning the UV to near-infrared ( NIR ) and resistance to photobleaching and photo- or chemical degradation. In addition, the size-tunable fluorescence properties of QDs allow detection of multiple QDs excited by a single light source.
The unique properties of QDs make them apply in biologic and medicine. But the nanotechnology frontier leaves many areas unexplored, or under-explored, such as the potential adverse human health effects resulting from exposure to novel nanomaterials. In this study, QDs were coated with neutral lipids, DPPC, and conjugated with Tat-streptavidin (Tat-SA) fusion proteins to facilitate intracellular delivery. Followed, we analyzed the cytotoxicity of HeLa cells and CT26 cells treated with QDs conjugated Tat-SA proteins. And finally, QDs were injected to the rate to see the distribution of QDs in vivo
To test the potential cytotoxicity of QDs, MTT assay and LDH-release assay were used to examine the cellular metabolic activity and cell viability. First, HeLa cells and CT26 cells were treated with different concentration of QDs/DPPC and detected the cytotoxicity by MTT assay and LDH-release assay. The results revealed that the cell viability and cellular metabolic activity of QDs-treated HeLa cells and CT26 cells decreased at QDs concentration of 1.875μg/mL and 2.5 μg/mL, respectively, compared with control. From the fluorescence images, the Tat-SA proteins actually improved the intracellular QDs density in the HeLa cells and CT26 cells, and the results of cytotoxity assays showed that ODs internalization did not affect the cellular metabolic activity and cell viability. In vivo studies, the atom absorption spectrometer ( AAS ) were used to detect cadmium (Cd2+) concentration of organs and blood. The results supported that liver and kidney were the major metabolic organs of QDs, because of the higher cadmium concentrations in these two organs.
These results of QDs cytotoxicity analysis could be used as references of QDs in cell labeling and in vivo studies.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T00:03:28Z (GMT). No. of bitstreams: 1
ntu-96-R94442017-1.pdf: 2138047 bytes, checksum: d6eae8b32414f7eb3ffa3cdf0475ddf0 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents口試委員會審定書 ............................................ ⅰ
中文摘要 ...................................... ⅲ
Abstract ..................................... ⅳ
第一章 緒論 .................................. 1
第一節 量子點 ( Quantum dots ) 之發展與應用 ............ 1
1.1 量子點在生物影像分析上之發展起源 ................ 1
1.2 量子點之物理與光學特性 ............................................................. 2
1.3 量子點之功能性修飾 ............................................................. 3
1.3.1 量子點之水溶性修飾 ............................................................. 3
1.3.2 量子點之生物性修飾 ............................................................. 4
1.4 量子點在生物學上之應用 ............................................................. 5
1.4.1 細胞標定 ............................................................. 5
1.4.2 組織標定與影像分析 ............................................................. 7
1.5 量子點毒性之探討 ............................................................. 7
第二節 研究動機與目的 ............................................................. 10
第二章 實驗材料與方法 ............................................................. 11
第一節 實驗材料 ............................................................. 11
1.1 細胞株 ............................................................. 11
1.2 質體DNA ............................................................ 11
1.3 量子點 ............................................................. 11
1.4 脂質 ............................................................. 11
1.5 實驗動物 ............................................................. 12
1.6 實驗儀器 ............................................................. 12
第二節 實驗方法 ............................................................. 13
2.1 基因轉染 ( Transformation ) ............................................... 13
2.2 蛋白質誘導表現與純化 ............................................................. 13
2.2.1 誘導蛋白質表現 ............................................................. 13
2.2.2 蛋白質純化 ............................................................. 14
2.3 蛋白質功能測定 ............................................................. 15
2.3.1 Tricine-SDS-PAGE電泳 ............................................................. 15
2.3.2 Dot-Blot assay .......................................................... 15
2.4 脂質包覆量子點之製備 ............................................................. 16
2.5 脂質修飾之量子點之細胞毒性測試 ............................................................. 17
2.5.1 MTT毒性試驗 ............................................................. 17
2.5.2 乳糖脫氫酶釋放 ( LDH-Release ) 之毒性測試 ............................... 18
2.5.3 活體動物之毒性試驗 ............................................................. 20
第三章 結果 ............................................................. 21
第一節 量子點之毒性分析 ............................................................. 21
第二節 Tat融合蛋白攜帶量子點在細胞中遞送之影像分析 ............................ 22
2.1 量子點在HeLa細胞中遞送之影像分析 ....................................... 22
2.2 量子點在CT26細胞中遞送之影像分析 ....................................... 22
第三節 Tat融合蛋白攜帶量子點在細胞內遞送之細胞毒性分析 ..................... 23
3.1 量子點在HeLa細胞中遞送之毒性分析 ........................................ 24
3.2 量子點在CT26細胞中遞送之毒性分析 ........................................ 24
第四節 量子點在動物體內之毒性分析 ............................................................. 24
第四章 討論 ............................................................. 26
第一節 量子點之毒性分析 ............................................................ 26
第二節 量子點在細胞中遞送之影像分析 .......................................................... 27
第三節 Tat融合蛋白攜帶量子點在細胞內遞送之細胞毒性分析....................... 29
第四節 動物體內量子點之毒性分析 ........................................................... 30
第五章 參考文獻 ........................................................... 31
第六章 圖表 ........................................................... 37
dc.language.isozh-TW
dc.subject脂質zh_TW
dc.subject量子點zh_TW
dc.subject細胞毒性zh_TW
dc.subjectquantum dotsen
dc.subjectlipidsen
dc.subjectcytotoxicityen
dc.title脂質修飾之量子點其毒性分析zh_TW
dc.titleThe cytotoxicity analysis of quantum dots coated with lipidsen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee莊榮輝(Rong-Huay Juang),許金玉(Jin-Yuh Shew)
dc.subject.keyword量子點,脂質,細胞毒性,zh_TW
dc.subject.keywordquantum dots,lipids,cytotoxicity,en
dc.relation.page52
dc.rights.note有償授權
dc.date.accepted2007-07-31
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生物化學暨分子生物學研究所zh_TW
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
2.09 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved