請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28221完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 余佳慧 | |
| dc.contributor.author | Yin-Chung Au | en |
| dc.contributor.author | 區曣中 | zh_TW |
| dc.date.accessioned | 2021-06-13T00:03:00Z | - |
| dc.date.available | 2007-08-08 | |
| dc.date.copyright | 2007-08-08 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-30 | |
| dc.identifier.citation | US cancer statistics 2003 Incidence and Mortality. 2003.
Alan Aderem & Richard J.Ulevitch. Toll-like receptors in the induction of the innate immune response. Nature 406[17], 782-787. 2000. Aoki K. A study of endotoxemia in ulcerative colitis and Crohn's disease. I. Clinical study. Acta Med Okayama 32[2], 147-158. 1978. Balish E, Warner T. Enterococcus faecalis induces inflammatory bowel disease in interleukin-10 knockout mice. Am J Pathol 2002 Jun;160(6):2253-7. 160[6], 2253-2257. 2002. Barkett M, Gilmore TD. Control of apoptosis by Rel/NF-kappaB transcription factors. Oncogene 18[49], 6910-6924. 1999. Berkes J, Viswanathan VK Savkovic SD Hecht G. Intestinal epithelial responses to enteric pathogens: effects on the tight junction barrier, ion transport, and inflammation. Gut 2003 Mar;52(3):439-51 52[3], 439-451. 2003. Berne RM & Levy MN 5th edition, 2003 CV Mosby. 2003. Physiology. St. Louis : Elsevier Mosby. Bernstein CN, Blanchard JF Kliewer E Wajda A. Cancer risk in patients with inflammatory bowel disease: a population-based study. Cancer 91[4], 854-862. 2001. Beutler B. Tlr4: central component of the sole mammalian LPS sensor. Curr Opin Immunol 12[1], 20-26. 2000. Bocker U, Yezerskyy O Feick P Manigold T Panja A Kalina U Herweck F Rossol S Singer MV. Responsiveness of intestinal epithelial cell lines to lipopolysaccharide is correlated with Toll-like receptor 4 but not Toll-like receptor 2 or CD14 expression. Int J Colorectal Dis 18[1], 25-32. 2003. Bogunovic M, Dave' SH Tilstra JS Chang DT Harpaz N Xiong H Mayer LF Plevy SE. Enteroendocrine cells express functional Toll-like receptors. Am J Physiol Gastrointest Liver Physiol 292[6], G1770-G1783. 2007. Brozovic S, Sahoo R Barve S Shiba H Uriarte S Blumberg RS Kinane DF. Porphyromonas gingivalis enhances FasL expression via up-regulation of NFkappaB-mediated gene transcription and induces apoptotic cell death in human gingival epithelial cells. Microbiology 152[Pt 3], 797-806. 2006. Bubici C, Papa S Dean K Franzoso G. Mutual cross-talk between reactive oxygen species and nuclear factor-kappa B: molecular basis and biological significance. Oncogene 25[51], 6731-6748. 2006. Cario E, Podolsky DK. Differential alteration in intestinal epithelial cell expression of toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease. Infect Immun 68[12], 7010-7017. 2000. Cario E, Rosenberg IM Brandwein SL Beck PL Reinecker HC Podolsky DK. Lipopolysaccharide activates distinct signaling pathways in intestinal epithelial cell lines expressing Toll-like receptors. J Immunol 164[2 ], 966-972. 2000. Cereijido M, Valde's J Shoshani L Contreras RG. Role of tight junctions in establishing and maintaining cell polarity. Annu Rev Physiol 1998;60:161-77 60, 161-177. 1998. Chaudhary PM, Ferguson C Nguyen V Nguyen O Massa HF Eby M Jasmin A Trask BJ Hood L Nelson PS. Cloning and characterization of two Toll/Interleukin-1 receptor-like genes TIL3 and TIL4: evidence for a multi-gene receptor family in humans. Blood 91[11], 4020-4027. 1998. Chiao PJ, Na R Niu J Sclabas GM Dong Q Curley SA. Role of Rel/NF-kappaB transcription factors in apoptosis of human hepatocellular carcinoma cells. Cancer 98[8], 1696-1705. 2002. Chin AC, Teoh DA Scott KG Meddings JB Macnaughton WK Buret AG. Strain-dependent induction of enterocyte apoptosis by Giardia lamblia disrupts epithelial barrier function in a caspase-3-dependent manner. Infect Immun 70[7], 3673-3680. 2002. Choi PM, Zelig MP. Similarity of colorectal cancer in Crohn's disease and ulcerative colitis: implications for carcinogenesis and prevention. Gut 35[7], 950-954. 1994. Chow JC, Young DW Golenbock DT Christ WJ Gusovsky F. Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. J Biol Chem 274[16], 10689-10692. 1999. Clevers H. At the crossroads of inflammation and cancer. Cell 118[6], 671-674. 2004. Cruz-Correa M, Hylind LM Romans KE Booker SV Giardiello FM. Long-term treatment with sulindac in familial adenomatous polyposis: a prospective cohort study. Gastroenterology 122[3], 641-645. 2002. Culmsee C, Siewe J Junker V Retiounskaia M Schwarz S Camandola S El-Metainy S Behnke H Mattson MP Krieglstein J. Reciprocal inhibition of p53 and nuclear factor-kappaB transcriptional activities determines cell survival or death in neurons. J Neurosci 23[24], 8586-8595. 2003. Cuzzocrea S, Chatterjee PK Mazzon E Dugo L Serraino I Britti D Mazzullo G Caputi AP Thiemermann C. Pyrrolidine dithiocarbamate attenuates the development of acute and chronic inflammation. Br J Pharmacol 135[2 ], 496-510. 2002. Danner RL, Joiner KA Rubin M Patterson WH Johnson N Ayers KM Parrillo JE. Purification, toxicity, and antiendotoxin activity of polymyxin B nonapeptide. Antimicrob Agents Chemother 33[9], 1428-1434. 1989. Darfeuille-Michaud A, Neut C Barnich N Lederman E Di Martino P Desreumaux P Gambiez L Joly B Cortot A Colombel JF. Presence of adherent Escherichia coli strains in ileal mucosa of patients with Crohn's disease. Gastroenterology 115[6], 1405-1413. 1998. D'Argenio G, Farrace MG Cosenza V De Ritis F Della Valle N Manguso F Piacentini M. Expression of apoptosis-related proteins in rat with induced colitis. Int J Colorectal Dis 19[5], 451-460. 2004. De Plaen IG, Qu XW Wang H Tan XD Wang L Han XB Rozenfeld RA Hsueh W. Endotoxin, but not platelet-activating factor, activates nuclear factor-kappaB and increases IkappaBalpha and IkappaBbeta turnover in enterocytes. Immunology 106[4], 577-583. 2002. Dieguez-Acun~a FJ, Polk WW Ellis ME Simmonds PL Kushleika JV Woods JS. Nuclear factor kappaB activity determines the sensitivity of kidney epithelial cells to apoptosis: implications for mercury-induced renal failure. Toxicol Sci 82[1], 114-123. 2004. Dong QG, Sclabas GM Fujioka S Schmidt C Peng B Wu T Tsao MS Evans DB Abbruzzese JL McDonnell TJ Chiao PJ. The function of multiple IkappaB : NF-kappaB complexes in the resistance of cancer cells to Taxol-induced apoptosis. Oncogene 21[42], 6510-6519. 2002. Eckmann L, Kagnoff MF Fierer J. Epithelial cells secrete the chemokine interleukin-8 in response to bacterial entry. Infect Immun 61[11], 4569-4574. 1993. Elewaut D, DiDonato JA Kim JM Truong F Eckmann L Kagnoff MF. NF-kappa B is a central regulator of the intestinal epithelial cell innate immune response induced by infection with enteroinvasive bacteria. J Immunol 163[3], 1457-1466. 1999. Evertsson S, Sun XF. Protein expression of NF-kappaB in human colorectal adenocarcinoma. Int J Mol Med 10[5], 547-550. 2007. Fasano A, Nataro JP. Intestinal epithelial tight junctions as targets for enteric bacteria-derived toxins. Adv Drug Deliv Rev 56[6 ], 795-807. 2004. Fort MM, Mozaffarian A Sto ver AG Correia Jda S Johnson DA Crane RT Ulevitch RJ Persing DH Bielefeldt-Ohmann H Probst P Jeffery E Fling SP Hershberg RM. A synthetic TLR4 antagonist has anti-inflammatory effects in two murine models of inflammatory bowel disease. J Immunol 174[10], 6416-6423. 2005. Franchimont D, Vermeire S El Housni H Pierik M Van Steen K Gustot T Quertinmont E Abramowicz M Van Gossum A Deviere J Rutgeerts P. Deficient host-bacteria interactions in inflammatory bowel disease? The toll-like receptor (TLR)-4 Asp299gly polymorphism is associated with Crohn's disease and ulcerative colitis. Gut 53[7], 987-992. 2004. Funda DP, Tuckova' L Farre' MA Iwase T Moro I Tlaskalova'-Hogenova' H. CD14 is expressed and released as soluble CD14 by human intestinal epithelial cells in vitro: lipopolysaccharide activation of epithelial cells revisited. Infect Immun 69[6], 3772-3781. 2001. Gadjeva M, Tomczak MF Zhang M Wang YY Dull K Rogers AB Erdman SE Fox JG Carroll M Horwitz BH. A role for NF-kappa B subunits p50 and p65 in the inhibition of lipopolysaccharide-induced shock. J Immunol 173[9], 5786-5793. 2004. Gazouli M, Mantzaris G Kotsinas A Zacharatos P Papalambros E Archimandritis A Ikonomopoulos J Gorgoulis VG. Association between polymorphisms in the Toll-like receptor 4, CD14, and CARD15/NOD2 and inflammatory bowel disease in the Greek population. World J Gastroenterol 11[5], 681-685. 2005. Ghosh S, Karin M. Missing pieces in the NF-kappaB puzzle. Cell 109, S81-96. 2002. Greten FR, Eckmann L Greten TF Park JM Li ZW Egan LJ Kagnoff MF Karin M. IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118[3], 285-296. 2004. Guignot J, Breard J Bernet-Camard MF Peiffer I Nowicki BJ Servin AL Blanc-Potard AB. Pyelonephritogenic diffusely adhering Escherichia coli EC7372 harboring Dr-II adhesin carries classical uropathogenic virulence genes and promotes cell lysis and apoptosis in polarized epithelial caco-2/TC7 cells. Infect Immun 68[12], 7018-7027. 2000. Guiney DG, Kagnoff MF. Host/pathogen interactions: series introduction. J Clin Invest. 99[2], 155. 1997. Guy-Grand D, DiSanto JP Henchoz P Malassis-Se'ris M Vassalli P. Small bowel enteropathy: role of intraepithelial lymphocytes and of cytokines (IL-12, IFN-gamma, TNF) in the induction of epithelial cell death and renewal. Eur J Immunol 28[2], 730-744. 1998. Hague A, Moorghen M Hicks D Chapman M Paraskeva C. BCL-2 expression in human colorectal adenomas and carcinomas. Oncogene 9[11], 3367-3370. 1994. Hailman E, Lichenstein HS Wurfel MM Miller DS Johnson DA Kelley M Busse LA Zukowski MM Wright SD. Lipopolysaccharide (LPS)-binding protein accelerates the binding of LPS to CD14. J Exp Med 179[1], 269-277. 1994. Heimesaat MM, Fischer A Jahn HK Niebergall J Freudenberg M Blaut M Liesenfeld O Schumann RR Go bel UB Bereswill S. Exacerbation of murine ileitis by Toll-like receptor 4 mediated sensing of lipopolysaccharide from commensal Escherichia coli. Gut 56[7], 941-948. 2007. Hendrickson BA, Gokhale R Cho JH. Clinical aspects and pathophysiology of inflammatory bowel disease. Clin Microbiol Rev 15[1], 79-94. 2002. Hofman P, Le Negrate G Mograbi B Hofman V Brest P Alliana-Schmid A Flatau G Boquet P Rossi B. Escherichia coli cytotoxic necrotizing factor-1 (CNF-1) increases the adherence to epithelia and the oxidative burst of human polymorphonuclear leukocytes but decreases bacteria phagocytosis. J Leukoc Biol 68[4], 522-528. 20000. Hornef MW, Frisan T Vandewalle A Normark S Richter-Dahlfors A. Toll-like receptor 4 resides in the Golgi apparatus and colocalizes with internalized lipopolysaccharide in intestinal epithelial cells. J Exp Med 195[5], 559-570. 2002. Hornef MW, Normark BH Vandewalle A Normark S. Intracellular recognition of lipopolysaccharide by toll-like receptor 4 in intestinal epithelial cells. J Exp Med 198[8], 1225-1235. 2003. Huang WC, Ju TK Hung MC Chen CC. Phosphorylation of CBP by IKKalpha promotes cell growth by switching the binding preference of CBP from p53 to NF-kappaB. Mol Cell 26[1], 75-87. 2007. Ikeda A, Sun X Li Y Zhang Y Eckner R Doi TS Takahashi T Obata Y Yoshioka K Yamamoto K. p300/CBP-dependent and -independent transcriptional interference between NF-kappaB RelA and p53. Biochem Biophys Res Commun 272[2], 375-379. 2000. Janssen-Heininger YM, Persinger RL Korn SH Pantano C McElhinney B Reynaert NL Langen RC Ckless K Shrivastava P Poynter ME. Reactive nitrogen species and cell signaling: implications for death or survival of lung epithelium. Am J Respir Crit Care Med 166[12 Pt 2], S9-S16 . 2002. Jin F, Liu X Zhou Z Yue P Lotan R Khuri FR Chung LW Sun SY. Activation of nuclear factor-kappaB contributes to induction of death receptors and apoptosis by the synthetic retinoid CD437 in DU145 human prostate cancer cells. Cancer Res 65[14], 6354-6363. 2005. Jobin C, Sartor RB. The I kappa B/NF-kappa B system: a key determinant of mucosalinflammation and protection. Am J Physiol Cell Physiol 278[3], C451-462. 2000. Kagnoff MF, Eckmann L. Epithelial cells as sensors for microbial infection. J Clin Invest 100[1], 6-10. 1997. Kagnoff MF. Microbial-epithelial cell crosstalk during inflammation: the host response. Ann N Y Acad Sci 1072, 313-320. 2006. Karin M, Greten FR. NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 5[10], 749-759. 2005. Keenan KP, Sharpnack DD Collins H Formal SB O'Brien AD. Morphologic evaluation of the effects of Shiga toxin and E coli Shiga-like toxin on the rabbit intestine. Am J Pathol 125[1], 69-80. 1986. Kim JM, Eckmann L Savidge TC Lowe DC Witthoft T Kagnoff MF. Apoptosis of human intestinal epithelial cells after bacterial invasion. J Clin Invest 102[10], 1815-1823. 1998. Kucharczak J, Simmons MJ Fan Y Ge'linas C. To be, or not to be: NF-kappaB is the answer--role of Rel/NF-kappaB in the regulation of apoptosis. Oncogene 22[56], 8961-8982. 2003. Kucharzik T, Maaser C Lu gering A Kagnoff M Mayer L Targan S Domschke W. Recent understanding of IBD pathogenesis: implications for future therapies. Inflamm Bowel Dis 12[11], 1068-1083. 2006. La Ferla K, Seegert D Schreiber S. Activation of NF-kappaB in intestinal epithelial cells by E. coli strains isolated from the colonic mucosa of IBD patients. Int J Colorectal Dis 19[4], 334-342. 2004. Lakatos PL, Fischer S Lakatos L Gal I Papp J. Current concept on the pathogenesis of inflammatory bowel disease-crosstalk between genetic and microbial factors: pathogenic bacteria and altered bacterial sensing or changes in mucosal integrity take 'toll' ? World J Gastroenterol 12[12], 1829-1841. 2006. Latz E, Visintin A Lien E Fitzgerald KA Monks BG Kurt-Jones EA Golenbock DT Espevik T. Lipopolysaccharide rapidly traffics to and from the Golgi apparatus with the toll-like receptor 4-MD-2-CD14 complex in a process that is distinct from the initiation of signal transduction. J Biol Chem 277[49], 47834-47843. 2002. Lawen A. Apoptosis-an introduction. Bioessays 25[9 ], 888-896. 2003. Lee JY, Kim JS Kim JM Kim N Jung HC Song IS. Simvastatin inhibits NF-kappaB signaling in intestinal epithelial cells and ameliorates acute murine colitis. Int Immunopharmacol 7[2], 241-248. 2007. Le'Negrate G, Ricci V Hofman V Mograbi B Hofman P Rossi B. Epithelial intestinal cell apoptosis induced by Halicobacter pylori depends on expression of the cag pathogenicity island phenotype. Infection and Immunity 69[8], 5001-5009. 2001. Li JH, Yu JP Yu HG Xu XM Yu LL Liu J Luo HS. Melatonin reduces inflammatory injury through inhibiting NF-kappaB activation in rats with colitis. Mediators Inflamm 2005[4], 185-193. 2005. Li Q, Yu YY Zhu ZG Ji YB Zhang Y Liu BY Chen XH Lin YZ. Effect of NF-kappaB constitutive activation on proliferation and apoptosis of gastric cancer cell lines. Eur Surg Res 37[2], 105-110. 2007. Li YQ, Zhang ZX Xu YJ Ni W Chen SX Yang Z Ma D. N-Acetyl-L-cysteine and pyrrolidine dithiocarbamate inhibited nuclear factor-kappaB activation in alveolar macrophages by different mechanisms. Acta Pharmacol Sin 27[3], 339-346. 2006. Liu SF, Ye X Malik AB. Pyrrolidine dithiocarbamate prevents I-kappaB degradation and reduces microvascular injury induced by lipopolysaccharide in multiple organs. Mol Pharmacol 55[4], 658-667. 1999. Loftus EV. Clinical epidemiology of inflammatory bowel disease: Incidence, prevalence, and environmental influences. Gastroenterology 126[6], 1504-1517. 2004. Luo JL, Kamata H Karin M. IKK/NF-kappaB signaling: balancing life and death--a new approach to cancer therapy. J Clin Invest 115[10], 2625-2632. 2005. Madara J. Building an intestine--architectural contributions of commensal bacteria. N Engl J Med 351[16], 1685-1686. 2004. Maeda S, Yoshida H Mitsuno Y Hirata Y Ogura K Shiratori Y Omata M. Analysis of apoptotic and antiapoptotic signalling pathways induced by Helicobacter pylori. Mol Pathol 55[5], 286-293. 2002. Maihofner C, Charalambous MP Bhambra U Lightfoot T Geisslinger G Gooderham NJ and Colorectal Cancer Group. Expression of cyclooxygenase-2 parallels expression of interleukin-1beta, interleukin-6 and NF-kappaB in human colorectal cancer. Carcinogenesis 24[4], 665-671. 2003. Malago JJ, Koninkx JF van Dijk JE. The heat shock response and cytoprotection of the intestinal epithelium. Cell Stress Chaperones 7[2], 191-199. 2002. Martin-Villa JM, Ferre-Lopez S Lopez-Suarez JC Corell A Perez-Blas M Arnaiz-Villena A. Cell surface phenotype and ultramicroscopic analysis of purified human enterocytes: a possible antigen-presenting cell in the intestine. Tissue Antigens 50[6], 586-592. 1997. Matsuda H, Fujiyama Y Andoh A Ushijima T Kajinami T Bamba T. Characterization of antibody responses against rectal mucosa-associated bacterial flora in patients with ulcerative colitis. J Gastroenterol Hepatol 15[1], 61-68. 2000. Medzhitov R, Preston-Hurlburt P Janeway CA. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388[6640], 394-397. 1997. Nagata S. Apoptotic DNA fragmentation. Exp Cell Res. 256[1], 12-18. 2000. Nemeth ZH, Deitch EA Szabo C Hasko G. Pyrrolidinedithiocarbamate inhibits NF-κB activation and IL-8 production in intestinal epithelial cells. Immunology letters 85, 41-46. 2003. Neurath MF, Fuss I Schu rmann G Pettersson S Arnold K Mu ller-Lobeck H Strober W Herfarth C Bu schenfelde KH. Cytokine gene transcription by NF-kappa B family members in patients with inflammatory bowel disease. Ann N Y Acad Sci 859, 149-159. 1998. Ogawa M, Sasakawa C. Intracellular survival of Shigella. Cell Microbiol 8[2], 177-184. 2006. Ogura E, Senzaki H Yamamoto D Yoshida R Takada H Hioki K Tsubura A. Prognostic significance of Bcl-2, Bcl-xL/S, Bax and Bak expressions in colorectal carcinomas. Oncol Rep 6[2], 365-369. 1999. Onderdonk AB, Franklin ML Cisneros RL. Production of experimental ulcerative colitis in gnotobiotic guinea pigs with simplified microflora. Infect Immun 32[1], 225-231. 1981. O'Rourke B, Cortassa S Aon MA. Mitochondrial ion channels: gatekeepers of life and death. Physiology (Bethesda) 20, 303-315. 2005. Palsson-McDermott EM, O'Neill LA. Signal transduction by the lipopolysaccharide receptor, Toll-like receptor-4. Immunology 113[2], 153-162. 2004. Panwala CM, Jones JC Viney JL. A novel model of inflammatory bowel disease: mice deficient for the multiple drug resistance gene, mdr1a, spontaneously develop colitis. J Immunol 161[10], 5733-5744. 1998. Paraskeva E, Atzberger A Hentze MW. A translational repression assay procedure (TRAP) for RNA-protein interactions in vivo. Proc Natl Acad Sci U S A. 95[3], 951-956. 2007. Paul-Samojedny M, Kokociska D Samojedny A Mazurek U Partyka R Lorenz Z Wilczok T. Expression of cell survival/death genes: Bcl-2 and Bax at the rate of colon cancer prognosis. Biochim Biophys Acta 1741[1-2], 25-29. 2007. Poltorak A, Ricciardi-Castagnoli P Citterio S Beutler B. Physical contact between lipopolysaccharide and toll-like receptor 4 revealed by genetic complementation. Proc Natl Acad Sci U.S.A. 97[5], 2163-2167. 2000. Poltorak A, He X Smirnova I Liu MY Van Huffel C Du X Birdwell D Alejos E Silva M Galanos C Freudenberg M Ricciardi-Castagnoli P Layton B Beutler B. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282[11], 2085-2088. 1998. Ramachandran A, Madesh M Balasubramanian KA. Apoptosis in the intestinal epithelium: its relevance in normal and pathophysiological conditions. J Gastroenterol Hepatol. 15[2], 109-120. 2000. Ribeiro MB, Greenstein AJ Sachar DB Barth J Balasubramanian S Harpaz N Heimann TM Aufses AH. Colorectal adenocarcinoma in Crohn's disease. Ann Surg 223[2], 186-193. 1996. Ross MJ, Martinka S D'Agati VD Bruggeman LA. NF-kappaB regulates Fas-mediated apoptosis in HIV-associated nephropathy. J Am Soc Nephrol 16[8], 2403-2411. 2007. Rumio C, Besusso D Arnaboldi F Palazzo M Selleri S Gariboldi S Akira S Uematsu S Bignami P Ceriani V Me'nard S Balsari A. Activation of smooth muscle and myenteric plexus cells of jejunum via Toll-like receptor 4. J Cell Physiol 208[1], 47-54. 2006. Sandborn WJ, Targan SR. Biologic therapy of inflammatory bowel disease. Gastroenterology 122[6], 1592-1608. 2002. Sasaki N, Morisaki T Hashizume K Yao T Tsuneyoshi M Noshiro H Nakamura K Yamanaka T Uchiyama A Tanaka M Katano M. Nuclear factor-kappaB p65 (RelA) transcription factor is constitutively activated in human gastric carcinoma tissue. Clin Cancer Res 7[12], 4136-4142. 2001. Savkovic SD, Koutsouris A Hecht G. Activation of NF-kappaB in intestinal epithelial cells by enteropathogenic Escherichia coli. Am J Physiol 273[4 Pt 1], C1160-C1167. 1997. Schreiber S, Nikolaus S Hampe J. Activation of nuclear factor kappa B inflammatory bowel disease. Gut 42[4], 477-484. 1998. Schuerer-Maly CC, Eckmann L Kagnoff MF Falco MT Maly FE. Colonic epithelial cell lines as a source of interleukin-8: stimulation by inflammatory cytokines and bacterial lipopolysaccharide. Immunology 81[1], 85-91. 1994. Schulte R, Autenrieth IB. Yersinia enterocolitica-induced interleukin-8 secretion by human intestinal epithelial cells depends on cell differentiation. Infect Immun 66[3], 1216-1224. 1998. Seimon TA, Obstfeld A Moore KJ Golenbock DT Tabas I. Combinatorial pattern recognition receptor signaling alters the balance of life and death in macrophages. Proc Natl Acad Sci U S A 103[52], 19794-19799. 2006. Seldenrijk CA, Morson BC Meuwissen SG Schipper NW Lindeman J Meijer CJ. Histopathological evaluation of colonic mucosal biopsy specimens in chronic inflammatory bowel disease: diagnostic implications. Gut 32[12], 1514-1520. 1991. Sellon RK, Tonkonogy S Schultz M Dieleman LA Grenther W Balish E Rennick DM Sartor RB. Resident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin-10-deficient mice. Infect Immun 66[11], 5224-5231. 1998. Shukla S, MacLennan GT Fu P Patel J Marengo SR Resnick MI Gupta S. Nuclear factor-kappaB/p65 (Rel A) is constitutively activated in human prostate adenocarcinoma and correlates with disease progression. Neoplasia 6[4], 390-400. 2004. Smalley W, Ray WA Daugherty J Griffin MR. Use of nonsteroidal anti-inflammatory drugs and incidence of colorectal cancer: a population-based study. Arch Intern Med 159[2], 161-166. 1999. Solomon KR, Kurt-Jones EA Saladino RA Stack AM Dunn IF Ferretti M Golenbock D Fleisher GR Finberg RW. Heterotrimeric G proteins physically associated with the lipopolysaccharide receptor CD14 modulate both in vivo and in vitro responses to lipopolysaccharide. J Clin Invest 102[11], 2019-2027. 1998. Solomon MJ, Schnitzler M. Cancer and inflammatory bowel disease: bias, epidemiology, surveillance, and treatment. World J Surg 22[4], 352-358. 1998. Stark LA, Reid K Sansom OJ Din FV Guichard S Mayer I Jodrell DI Clarke AR Dunlop MG. Aspirin activates the NF-kappaB signalling pathway and induces apoptosis in intestinal neoplasia in two in vivo models of human colorectal cancer. Carcinogenesis 28[5], 968-976. 2007. Strater J, Wedding U Barth TF Koretz K Elsing C Moller P. Rapid onset of apoptosis in vitro follows disruption of beta 1-integrin/matrix interactions in human colonic crypt cells. Gastroenterology 110[6], 1776-1784. 1996. Strater J, Wellisch I Riedl S Walczak H Koretz K Tandara A Krammer PH Moller P. CD95 (APO-1/Fas)-mediated apoptosis in colon epithelial cells: a possible role in ulcerative colitis. Gastroenterology 113[1], 160-167. 1997. Strober W, Fuss IJ Blumberg RS. The immunology of mucosal models of inflammation. Annu Rev Immunol 20, 495-549. 2002. Susin SA, Daugas E Ravagnan L Samejima K Zamzami N Loeffler M Costantini P Ferri KF Irinopoulou T Pre'vost MC Brothers G Mak TW Penninger J Earnshaw WC Kroemer G. Two distinct pathways leading to nuclear apoptosis. J Exp Med 192[4], 571-580. 2000. Suzuki M, Hisamatsu T Podolsky DK. Gamma interferon augments the intracellular pathway for lipopolysaccharide (LPS) recognition in human intestinal epithelial cells through coordinated up-regulation of LPS uptake and expression of the intracellular Toll-like receptor 4-MD-2 complex. Infect Immun 71[6], 3503-3511. 2003. Tapping RI, Akashi S Miyake K Godowski PJ Tobias PS. Toll-like receptor 4, but not toll-like receptor 2, is a signaling receptor for Escherichia and Salmonella lipopolysaccharides. J Immunol 165[10], 5780-5787. 2000. Thanos D, Maniatis T. NF-kappa B: a lesson in family values. Cell 80[4], 529-532. 1995. Torok HP, Glas J Tonenchi L Mussack T Folwaczny C. Polymorphisms of the lipopolysaccharide-signaling complex in inflammatory bowel disease: association of a mutation in the Toll-like receptor 4 gene with ulcerative colitis. Clin Immunol 112[1], 85-91. 2004. Ulevitch RJ, Tobias PS. Recognition of gram-negative bacteria and endotoxin by the innate immune system. Curr Opin Immunol 11[1], 19-22. 1999. van der Woude CJ, Kleibeuker JH Jansen PL Moshage H. Chronic inflammation, apoptosis and (pre-)malignant lesions in the gastro-intestinal tract. Apoptosis 9[2], 123-130. 2004. Vaux DL, Korsmeyer SJ. Cell death in development. Cell 96[2], 245-254. 1999. Waidmann M, Bechtold O Frick JS Lehr HA Schubert S Dobrindt U Loeffler J Bohn E Autenrieth IB. Bacteroides vulgatus protects against Escherichia coli-induced colitis in gnotobiotic interleukin-2-deficient mice. Gastroenterology 125[1], 162-177. 2003. Wasserman SA. Nature's fortress against infection. Nat Immunol 5[5], 474-475. 2004. Williams CS, Smalley W DuBois RN. Aspirin use and potential mechanisms for colorectal cancer prevention. J Clin Invest 100[6], 1325-1329. 1997. Woods JS, Dieguez-Acun a FJ Ellis ME Kushleika J Simmonds PL. Attenuation of nuclear factor kappa B (NF-kappaB) promotes apoptosis of kidney epithelial cells: a potential mechanism of mercury-induced nephrotoxicity. Environ Health Perspect 110[Suppl 5], 819-822. 2002. Wright SD, Ramos RA Tobias PS Ulevitch RJ Mathison JC. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 249[4975], 1431-1433. 1990. Wu CY, Wang CJ Tseng CC Chen HP Wu MS Lin JT Inoue H Chen GH. Helicobacter pylori promote gastric cancer cells invasion through a NF-kappaB and COX-2-mediated pathway. World J Gastroenterol 11[21], 3197-3203. 2005. Yagi OK, Akiyama Y Nomizu T Iwama T Endo M Yuasa Y. Proapoptotic gene BAX is frequently mutated in hereditary nonpolyposis colorectal cancers but not in adenomas. Gastroenterology 114[2], 268-274. 1998. Yan SR, Joseph RR Rosen K Reginato MJ Jackson A Allaire N Brugge JS Jobin C Stadnyk AW. Activation of NF-kappaB following detachment delays apoptosis in intestinal epithelial cells. Oncogene 24[43], 6482-6491. 2005. Yang HB, Chow NH Sheu BS Chan SH Chien CH Su IJ. The role of bcl-2 in the progression of the colorectal adenoma-carcinoma sequence. Anticancer Res 79[1B], 727-730. 1999. Yang Z, Breider MA Carroll RC Miller MS Bochsler PN. Soluble CD14 and lipopolysaccharide-binding protein from bovine serum enable bacterial lipopolysaccharide-mediated cytotoxicity and activation of bovine vascular endothelial cells in vitro. J Leukoc Biol 59[2], 241-247. 1996. Yu HG, Yu LL Yang Y Luo HS Yu JP Meier JJ Schrader H Bastian A Schmidt WE Schmitz F. Increased expression of RelA/nuclear factor-kappa B protein correlates with colorectal tumorigenesis. Oncology 65[1], 37-45. 2003. Yu LC, Flynn AN Turner JR Buret AG. SGLT-1-mediated glucose uptake protects intestinal epithelial cells against LPS-induced apoptosis and barrier defects: a novel cellular rescue mechanism? FASEB J. 19[13], 1822-1835. 2005. Yu LC, Turner JR Buret AG. LPS/CD14 activation triggers SGLT-1-mediated glucose uptake and cell rescue in intestinal epithelial cells via early apoptotic signals upstream of caspase-3. Exp Cell Res 312[17], 3276-3286. 2006. Yu LL, Yu HG Yu JP Luo HS Xu XM Li JH. Nuclear factor-kappaB p65 (RelA) transcription factor is constitutively activated in human colorectal carcinoma tissue. World J Gastroenterol 10[22], 3255-3260. 2004. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28221 | - |
| dc.description.abstract | 單層的腸道上皮細胞不但具有消化、吸收、分泌的功能,更是面對腔管內有害刺激之第一道防線。腸道上皮細胞凋亡過多會導致防禦功能的喪失,若凋亡不足則與癌化有密切關係。過往利用腸道上皮細胞株之研究發現細菌內毒素(lipopolysaccharide, LPS)在腸腔面的刺激會增加細胞凋亡的現象並呈現時間與濃度之依賴性,另一方面亦有文獻指出LPS能活化細胞中促發炎反應之轉錄因子nuclear factor kappa B (NFκB)。而兩種反應之間的關聯性不明。至於NFκB之於腸道上皮細胞是促使其凋亡抑或存活,迄今尚未定論。本研究的第一個目標即為檢驗NFκB在兩種人類腸道上皮細胞株T84及Caco-2中調控細胞凋亡之角色;其次,欲比較兩種細胞株在遭受LPS刺激下,細胞凋亡與NFκB活化現象之發生,並探討不同的LPS受體複合物分子在各別細胞株之表現。
在第一部份研究,使用NFκB 抑制劑pyrrolidinedithiocarbamate (PDTC) (0-50μM)處理腸道癌上皮細胞株T84與Caco-2, 以檢測NFκB活化與細胞凋亡之關聯性。首先,PDTC處理細胞後,分離萃取其胞核蛋白進行NFκB p65次單元之核轉移偵測與p50次單元DNA結合能力之定量。西方墨點實驗結果發現兩者細胞株皆有常態性p65之核表現,而PDTC以時間依賴形式降低p65之核轉移。此外,PDTC處理使p50對DNA結合之活性降低。以Hoechst、TUNEL染色法與免疫酵素分析法偵測發現,PDTC以濃度依賴形式引發核濃縮、DNA斷裂等細胞凋亡表徵,以及細胞剝落。綜上,PDTC降低T84與Caco-2細胞株中之NFκB活化程度,並引起細胞凋亡,顯示常態性活化之NFκB在腸道上皮癌化細胞中具有促進細胞存活之功能。 研究之第二部分以大腸桿菌LPS (血清型O26:B6) (0-50 ug/ml) 經由腸腔面刺激T84與Caco-2細胞,於15和60分鐘後分析NFκB p65之核轉移量,並於24小時後檢視細胞凋亡之程度。實驗結果發現在Caco-2 細胞中,LPS刺激以濃度依賴形式導致細胞凋亡與剝落,但不增加NFκB之核轉移。而T84細胞則反之,LPS刺激會引起大量NFκB之活化,卻無細胞凋亡的現象。此外,免疫螢光染色顯示T84和Caco-2表現不同的LPS受體複合物分子。T84細胞表現Toll-like receptor (TLR)-4,但無CD14。Caco-2細胞上則只表現CD14,而無TLR4。過去許多文獻指出LPS處理引發之NFκB活化主要由TLR4所媒介作用,本研究利用抗體遏阻實驗發現LPS在Caco-2引起之細胞凋亡與CD14有關,而不經由TLR4。綜言之,兩種細胞株對LPS刺激之相異反應可能歸因於不同的LPS受體複合分子之表現。 | zh_TW |
| dc.description.abstract | The intestinal epithelial monolayer not only serves for digestive, absorptive and secretive functions, but also acts as the first line of defense against luminal noxious stimuli. Excessive epithelial apoptosis may compromise this barrier function, whereas delayed apoptosis is in part involved in intestinal carcinogenesis. Previous studies have documented that luminal exposure to bacterial lipopolysaccharide (LPS) augments enterocytic cell death in dose- and time-dependent manner, whereas others reported the activation of a pro-inflammatory transcription factor, i.e. nuclear factor kappa B (NFκB) upon LPS challenge, in intestinal epithelial cell lines. The relationship between the two phenomena is still not understood. It remains elusive whether NFκB is pro- or anti-apoptotic in enterocytes. The first aim of the study was to examine the role of NFκB in modulating apoptosis in two intestinal epithelial cell lines, i.e. T84 and Caco-2, in constitutional growth. The second aim was to characterize the phenomena of enhanced cell apoptosis and NFκB activation induced by LPS in these two cell lines.
In the first part of the study, colonic carcinoma T84 and Caco-2 cell lines were treated with an NFκB inhibitor, pyrrolidinedithiocarbamate (PDTC), at 0-50μM for various time points to examine its effect on cell apoptosis. The effect of PDTC in modulating nuclear translocation and DNA binding activity of NFκB (heterodimer of p50 and p65 subunits) was first verified. Western blotting results revealed constitutive nuclear translocation of p65 in the two cell lines, which is reduced by PDTC in a time-dependent fashion. The DNA binding activity of p50 was also decreased in cells treated with PDTC. Our results showed that PDTC dose-dependently induced apoptosis, i.e. nuclear condensation and DNA fragmentation, in both T84 and Caco-2 cell as evidenced by Hoechst and TUNEL staining, as well as Cell death ELISA. These results indicated that constitutive NFκB activation plays a pro-survival role in intestinal epithelial carcinoma cell lines. In the second part of the study, confluent T84 and Caco-2 cells were luminally exposed to bacterial LPS (from E. coli, O26:B6 serotype) at 0-50 ug/ml. The level of NFκB activation was examined at 15 and 60 mins post challenge and cell death was examined at 24 hrs after LPS exposure. LPS dose-dependently triggered cell apoptosis, but failed to enhance nuclear translocation of NFκB in Caco-2 cells. In contrast, LPS exposure increased NFκB activation in T84 cells, whereas the level of apoptosis did not change compared to untreated controls. Moreover, immunofluorescent staining showed differential expression of LPS receptor components on the two cell lines. In line with previous reports, the expression of Toll-like receptor (TLR)-4 was detected in T84, but none was seen in Caco-2 cells. On the other hand, expression of CD14 was observed on Caco-2, but not T84 cells. Previous studies have demonstrated that TLR-4 is the main receptor component responsible for inducing downstream NFκB activation. Our current study using functional blocking antibodies revealed that CD14 is involved in the induction of apoptosis by LPS challenge in Caco-2 cells. Taken together, the distinct response in T84 and Caco-2 cells upon LPS challenge may be attributed to the differential expression of LPS receptor components. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T00:03:00Z (GMT). No. of bitstreams: 1 ntu-96-R93441008-1.pdf: 2213866 bytes, checksum: eba5e1e0ec5bd539a1d7d7980370eeda (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 論文口試委員審定書........................................I
中文摘要.................................................II 英文摘要.................................................IV 謝辭.....................................................VI 圖次....................................................VII 第一章 緒論.............................................1 1 腸道上皮細胞之生理功能..................................1 2 腸道上皮細胞之生存與死亡................................2 2-1 細胞凋亡概述:形態變化與機制..........................2 2-2 腺窩-絨毛軸...........................................3 2-3 病理狀況..............................................3 2-3-1 癌化與細胞存活......................................3 2-3-2 病原與細胞凋亡......................................4 2-3-3 發炎性腸疾 (inflammatory bowel disease, IBD)........5 3 Nuclear factor kappa B之活化............................7 3-1 Nuclear factor kappa B (NFκB)概述.....................7 3-2 NFκB活化與腸道發炎現象................................8 3-2-1 細菌內毒素 (LPS)引發NFκB活化........................9 3-3 NFκB活化與細胞之生存凋亡..............................9 3-3-1 NFκB活化抑制細胞凋亡................................9 3-3-2 NFκB活化促進細胞凋亡...............................10 4 LPS及其受體複合分子....................................11 5 研究目標...............................................12 第二章 材料與方法.......................................14 細胞培養 (Cell culture)..................................14 藥劑 (Reagents)..........................................14 Hoechst螢光染色法 (Hoechst staining).....................15 TUNEL 染色法 (TUNEL staining)............................15 細胞凋亡免疫酵素分析法 (Cell death ELISA)................16 全細胞蛋白質萃取 (Extraction of whole cell proteins).....17 細胞核與細胞質蛋白質之萃取 (Fractionation of nuclear and cytoplasmic proteins)....................................18 西方墨點法 (Western blotting)............................19 NFκB活性試驗 (NFκB activity assay)......................20 細胞免疫螢光染色 (Immunocytochemistry)...................21 第三章 結果...........................................23 1 PDTC抑制常態生長腸道上皮細胞株T84與Caco-2中NFκB之活化:核內總量與DNA結合能力......................................23 2 PDTC處理引起腸道上皮細胞T84與Caco-2之凋亡..............23 3 LPS處理引起T84細胞NFκB核內總量增加與DNA結合能力升高,此現象未見於Caco-2細胞.......................................24 4 LPS處理引起Caco-2細胞凋亡,此現象未見於T84細胞.........24 5 LPS受體複合物分子TLR4與CD14在T84與Caco-2細胞之表現不同.25 6 抗CD14之抗體抑制LPS刺激在Caco-2細胞造成之凋亡效應......26 第四章 討論...........................................27 圖表.....................................................33 參考文獻.................................................50 | |
| dc.language.iso | zh-TW | |
| dc.subject | CD14 | zh_TW |
| dc.subject | 細胞凋亡 | zh_TW |
| dc.subject | TLR4 | zh_TW |
| dc.subject | NFkappa B | zh_TW |
| dc.subject | 細菌內毒素 | zh_TW |
| dc.subject | 腸道上皮細胞 | zh_TW |
| dc.subject | LPS | en |
| dc.subject | TLR4 | en |
| dc.subject | apoptosis | en |
| dc.subject | NFκB | en |
| dc.subject | intestinal epithelial cells | en |
| dc.subject | CD14 | en |
| dc.title | 兩種腸道上皮細胞株在常態生長與細菌內毒素刺激下NF kappa B活化及細胞凋亡現象關聯性之探討 | zh_TW |
| dc.title | Differential Responses of NF kappa B Activation and Cell Apoptosis in Constitutional Growth and upon LPS Challenge in Two Intestinal Epithelial Cell Lines | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳青周,游偉絢 | |
| dc.subject.keyword | 腸道上皮細胞,細菌內毒素,NFkappa B,細胞凋亡,TLR4,CD14, | zh_TW |
| dc.subject.keyword | intestinal epithelial cells,LPS,NFκB,apoptosis,TLR4,CD14, | en |
| dc.relation.page | 67 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-07-31 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生理學研究所 | zh_TW |
| 顯示於系所單位: | 生理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 2.16 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
