請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28214完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張瑞益(Ray-I Chang) | |
| dc.contributor.author | Shu-Yu Lin | en |
| dc.contributor.author | 林書宇 | zh_TW |
| dc.date.accessioned | 2021-06-13T00:02:52Z | - |
| dc.date.available | 2009-07-31 | |
| dc.date.copyright | 2007-07-31 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-29 | |
| dc.identifier.citation | 1. Al-kazemi, B., and Mohan, C. K., Multi-phase generalization of the particle swarm optimization algorithm, IEEE Evolutionary Computation, 1, pp.489-494, 2002.
2. Angeline, P. J., Evolutionary Optimization Versus Particle Swarm Optimization: Philosophy and Performance Differences, Evolutionary Programming VII, pp.601-610, 1998. 3. Angeline, P. J., Using selection to improve particle swarm optimization, IEEE Evolutionary Computation, pp. 84-89, 1998. 4. Chang, R. I., and Hsiao, P. Y., Unsupervised query-based learning of neural networks using selective-attention and self-regulation, IEEE Trans. Neural Networks, 18,2, pp.205-217, 1997. 5. Chang, R. I., Liang, L. B., Su, W. D., Wang, J. C., and Kouh, J. S., Intrusion De- tection by Backpropagation Neural Networks with Sample-Query and Attribute- Query, International Journal of Computational Intelligence Research, 2006. 6. Chunming, Y., and Dan S., A New Particle Swarm Optimization Technique, 18th International Conference on Systems Engineering, pp. 164-169, 2005. 7. Clerc, M., Discrete Particle Swarm Optimization Illustrated by the Traveling Sa- lesman Problem, http://www.maurieeclerc.net, 2000. 8. Clerc, M., and Kennedy, J., The particle swarm-explosion, stability, and con- vergence in a multidimensional complex space, IEEE transactions on evolutionary computation , 6, 1, pp. 58-73, 2002. 9. Clerc, M., The Swarm and the Queen: Towards a Deterministic and Adaptive Par- ticle Swarm Optimization, Proc of the Congress of Evolutionary Computation, pp. 195l-1957, 1999. 10. Eberhart, R. C., and Shi, Y., Comparison between Genetic Algorithms and Particle Swarm Optimization, Proceedings of the 7th International Conference on Evo- lutionary Programming VII, pp. 611–616, 1998. 11. F Van den Bergh, and Engelbrech, A. P., A New Locally Convergent Particle Swarm Optimizers, IEEE Systems, Man and Cybernetics, 3, pp.6, 2002. 12. F Van den Bergh, and Engelbrech, A. P., Cooperative Learning in Neural Net- works using Particle Swarm Optimizers, South African Computer Journal, 2000. 13. F, Van den Bergh, and Engelbrecht, A. P., Training Product Unit Networks Using Cooperative Particle Swarm Optimizers, IEEE International Joint Conference on Neural Networks, pp.126-131, 200l. 14. Heppner, F., and Grenander U., A stochastic nonlinear model for coordinated bird flocks, The Ubiquity of Chaos, AAAS Publications, 1990. 15. Higashi, N., and Iba, H., Particle swarm optimization with Gaussian mutation, Swarm Intelligence Symposium, pp. 72-79, 2003. 16. Iristian, C. T., The particle swarm optimization algorithm: convergence analysis and parameter selection, Information Processing Letters, 85, 6, pp 317-325, 2003. 17. Jiang, M., Luo, Y. P., and Yang, S.Y., Stochastic convergence analysis and parameter selection of the standard particle swarm optimization algorithm, Information Processing Letters, 102, pp. 8-16, 2007. 18. Kennedy, J., and Eberhart, R., A Discrete Binary Version of the Particle Swarm Algorithm, IEEE Int'l Conference on Computational Cybernetics and Simulation, pp. 4104-4108, 1997. 19. Kennedy, J., Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance, IEEE Evolutionary Computation, 3, pp.1931-1938, 1999. 20. Kennedy, J., Stereotyping: improving particle swarm performance with cluster analysis, IEEE Evolutionary Computation, 2, pp. 1507-1512, 2000. 21. Kennedy, J., and Eberhart, R., Particle Swarm Optimization, IEEE Conference on Neural Networks, pp.1942-948, 1995. 22. Kennedy, J., and Eberhart, R. C., Swarm intelligence SanFrancisco, Morgan Kau- fmann, 2001. 23. Liang, Y. C., An Ant Colony Approach to the Orienteering Problem, 工業工程學刊, 23, 5, pp. 401-403,2006. 24. Lovbjerg, M., Rasmussen, T. K., and Krink, T., Hybrid Particle Swarm Optimiser With Breeding and Subpopulations, Proc of the third Genetic and Evolutionary Computation Conference, 2001. 25. Marco, D., Mauro, B., and Thomas, S., Ant colony optimization, IEEE Computa- tional Intelligence Magazine, 1, 4, pp. 28 -39, 2006. 26. Matthew, S., and Terence, S., Breeding swarms: a GA/PSO hybrid, Genetic And Evolutionary Computation, pp. 161 – 168, 2005. 27. Messerschmidt, L., and Engelbrecht, A. P., Learning to play games using a PSO-based competitive learning approach,IEEE Evolutionary Computation, 8, 3, pp. 280-288, 2004 28. Millonas, M. M., Swarms, Phase Transitions and Collective Intelligence, Artificial Life III, pp. 417-445, 1994. 29. PARSOPOULOS, K. E., and VRAHATIS, M. N., Recent approaches to global op- timization problems through Particle Swarm Optimization, Natural Computing, 1, pp. 235-306, 2002. 30. Reynolds C., Flocks,birds,and schools-a distributed behavioral model, Computer Graphics, 21, 4, pp. 25-34, 1987. 31. Shi, Y., and Eberhart, R. C., A modified particle swarm optimizer, IEEE World Congress on Computational Intelligence, pp. 69-73, 1998. 32. Shi, Y. H., and Eberhart, R. C., Comparison between genetic algorithm and particle swarm optimization, Lecture Notes In Computer Science, 1447, pp.611-616, 1998. 33. Shi, Y. H., and Eberhart, R. C., Comparing inertia weights and constriction factors in particle swarm optimization, IEEE Evolutionary Computation, 1, pp.84-88, 2000. 34. Shi, Y., and Eberhart, R. C., Fuzzy Adaptive Particle Swarm Optimization, Proc Congress on Evolutionary Computation, July 23-26, pp. 101-106, 2000. 35. Shi, Y. H., and Eberhart, R. C., Parameter selection in particle swarm optimization, Lecture Notes In Computer Science, 1447, pp. 591-600, 1998. 36. Stacey, A., Jancic, M. and Grundy, I., Particle swarm optimization with mutation, IEEE Evolutionary Computation, 2, pp. 1425-1430, 2003. 37. Wei J., Xue, Y. C., and Qian, J. X., An improved particle swarm optimization algorithm with neighborhoods topologies, IEEE Machine Learning and Cybernetics, 4, pp. 2332- 2337, 2004. 38. Wilson, E. O., Sociobiology: The new synthesis, Belknap Press of Harvard Uni- versity Press, 1975. 39. Xie, X. F., Zhang, W. J., and Yang, Z. L., Adaptive particle swarm optimization on individual level, Conference on IEEE Signal Processing, 2, pp. 1215-1218, 2002. 40. Xiaohui H., and Eberhart, R., Multiobjective optimization using dynamic neigh- borhood particle swarm optimization, IEEE Evolutionary Computation, 2, pp. 1677-1681, 2002. 41. Xie, X. F., Zhang, W. J., and Yang, Z. L., A Dissipative Particle Swarm Optimi- zation, IEEE Evolutionary Computation, 2, pp. 1456-1461, 2002. 42. Xie, X. F., Zhang, W. J., and Yang, Z. L., Hybrid particle swarm optimizer with mass extinction, IEEE Communications, Circuits and Systems and West Sino Expositions, 2, pp. 1170- 1173, 2002. 43. Yuhui, S., and Eberhart, R. C., Empirical Study of Particle Swarm Optimization, IEEE Evolutionary Computation, 3, pp. 1945-1950, 1999. 44. Zhihua, C., and Jianchao, Z., A modified particle swarm optimization predicted by velocity, Genetic And Evolutionary Computation, pp. 277-278, 2005. 45. 王敬育,一個關於使用群體智慧解決非線性資源分配問題的研究,國立暨南國際大學資訊管理學系碩士論文,2005。 46. 李愛國、覃征、鮑複民、賀升平,粒子群優化演算法,計算機工程與應用,38期,第1-3頁,2002。 47. 基於主體的仿真與群集智慧的研究,http://www.swarmagents.com/complex/bo ttomup/ ants&birds.htm。 48. 柳依旻等,粒子族群最佳化的視覺化及開發工具,國立暨南大學資訊管理系,2005。 49. 郭信川等,粒子群演算法於最佳化問題之研究,台灣作業研究學會學術研討會暨科技與管理學術研討會,2004。 50. 楊維、李歧強,粒子群優化演算法綜述,中國工程科學,第6卷第5期,第87-93頁,2004。 51. 賴良賓,詢問式倒傳遞類神經網路在資料挖掘的應用,國立中央大學資訊管理所碩士論文,2003。 52. 鄧永亟、戴兢志,利用PSO演算法探討高速銑削最佳化,中國機械工程學會第二十一屆全國學術研討會,2004。 53. 鄭毅、吳斌,群體智慧應用綜述,冶金自動化,第7-10頁,2005。 54. 謝長泰,發展粒子引導式演化策略演算法以處理實數參數之全域最佳化問題,國立交通大學資訊工程學系碩士畢業論文,2006。 55. 蘇軾詠,結合群體智慧與自我組織映射圖的資料視覺化研究,國立中央大學資訊工程研究所碩士論文,2004。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28214 | - |
| dc.description.abstract | 動機:粒子群最佳化(particle swarm optimization, PSO)演算法是目前人工智慧研究方面極受重視的子領域之ㄧ。其求解快速有效率近年來在國際間得到認同與肯定,也有許多學者提出相關缺失,本論文探討PSO演算法的缺點並提出解決的方法,以提升其效能。
作法:本研究結合所發展的詢問式學習法則,試圖透過含糊地帶的加強學習,擴展尋優廣度,藉此提高演算法整體的求解精準度。傳統粒子群演算法容易使粒子陷入局部最佳解陷阱,使所有粒子走向錯誤的方向。我們的方法則可以走出此陷阱,提高搜尋到真正解答的可能性。論文中以容易理解的二維函數配合二維的實驗結果來做說明。 成果:本論文為首度將詢問式學習觀念應用到粒子群演算法,實驗結果顯示,我們的方法在整體表現上都優於傳統的PSO。透過粒子群主動進行詢問式學習,以目前尚含糊不清的解空間區域做為學習的指引,本研究所提出的機制確實改善粒子群演算法陷入局部最佳解缺點,並在整體求解精準度獲得改善。 | zh_TW |
| dc.description.abstract | Motivation: PSO (particle swarm optimization) is one of the most important research topics on artificial intelligence. PSO still remain some disadvantages. This paper tries to discuss the disadvantages of PSO and to find a solution for improving its performance.
Method: We apply the query-based learning method proposed in our previous papers to PSO. It leads the particles to extend their search area. Thus, not only the precision of solution but also the time consumed is improved. We visualize the mechanism through a two-dimension PSO and verify the mechanism by several functions. Conventional PSO usually leads the particles go into the wrong direction of evolution. To resolve this drawback, when particles tend to converge, we spread some particles into ambiguous solution space. Furthermore, PSO has been well improved. Achievement: This thesis, in our knowledge, is the first study that applies the QBL concept in Particle Swarm Optimization. The experiment results show the proposed approach is able to prevent the system from falling into local optimal and improve the performance of PSO. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T00:02:52Z (GMT). No. of bitstreams: 1 ntu-96-R94525055-1.pdf: 1801844 bytes, checksum: 8f8949a38d6c27400288a4f67bf1651d (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 志謝 Ⅰ
摘要 Ⅱ Abstract Ⅲ 圖目錄 Ⅵ 表目錄 Ⅷ 第一章 緒論 1 1.1 前言 1 1.2 研究背景與動機 2 1.3 論文架構 2 第二章 文獻探討 4 2.1 基本粒子群演算法 4 2.1.1 PSO發展背景與概念 4 2.1.2 PSO演算法理論 6 2.2 PSO相關知識研究 9 2.2.1 PSO收斂性相關探討 9 2.2.2 PSO改善發展相關研究 10 2.3 詢問式學習 14 第三章 研究架構與設計 16 3.1 研究方法概念 16 3.2 PSO with Crowd Redistribution (PSOCR) 17 3.2.1 PSOCR整體求解流程 17 3.2.2 粒子收斂趨勢與收斂指數計數器 19 3.2.3 CR機制 20 3.2.4 解空間使用經驗運作 22 3.2.5 新生粒子群之運作 23 3.2.6 PSO初始化參數 23 第四章 例證與實驗說明 25 4.1 實驗與評估方式說明 25 4.1.1 實驗方式說明 25 4.1.2 評估方式說明 25 4.2 測試資料說明 26 4.2.1 Shubert Function 27 4.2.2 Rastrign Function 28 4.2.3 Griewank Function 29 4.2.4 Michalewicz Function 30 4.2.5 Sphere Function 31 4.2.6 Easom Function 32 4.3 實驗結果 33 4.3.1 實驗進行與設定說明 33 4.3.2 第一階段實驗結果與分析說明 34 4.3.3 第二階段實驗結果與分析說明 37 4.3.4 第三階段實驗結果與分析說明 46 4.3.5 延伸實驗結果與分析說明 54 4.4 綜合實驗分析與結論 56 第五章 結論與未來展望 58 5.1 結論與貢獻 58 5.2 未來研究展望 59 5.2.1 高維度實現與最佳化架構 59 5.2.2 機制智慧型自動化 59 5.2.3 詢問式學習的優化 60 5.3 總結 60 參考文獻 61 | |
| dc.language.iso | zh-TW | |
| dc.subject | 粒子群演算法 | zh_TW |
| dc.subject | 人工智慧 | zh_TW |
| dc.subject | 詢問式學習 | zh_TW |
| dc.subject | Query-based learning | en |
| dc.subject | PSO | en |
| dc.subject | Artificial intelligence | en |
| dc.subject | Particle Swarm Optimization | en |
| dc.title | 以詢問式學習法改良粒子群演算法 | zh_TW |
| dc.title | Improving PSO by Query-Based Learning | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃乾綱(Chien-Kang Huang),林正偉(Jeng-Wei Lin),王家輝(Chia-Hui Wang) | |
| dc.subject.keyword | 人工智慧,粒子群演算法,詢問式學習, | zh_TW |
| dc.subject.keyword | Artificial intelligence,PSO,Query-based learning,Particle Swarm Optimization, | en |
| dc.relation.page | 64 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-07-31 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 1.76 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
