Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28208
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張瑞益(Ray-I Chang)
dc.contributor.authorYu-Chun Wangen
dc.contributor.author王佑鈞zh_TW
dc.date.accessioned2021-06-13T00:02:45Z-
dc.date.available2013-08-09
dc.date.copyright2011-08-09
dc.date.issued2011
dc.date.submitted2011-08-08
dc.identifier.citation[1] S. Darby, 'The effectiveness of feedback on energy consumption,' 2006.
[2] J. Lifton, M. Feldmeier, Y. Ono, C. Lewis, and J. A. Paradiso, 'A platform for ubiquitous sensor deployment in occupational and domestic environments,' pp. 119-127, 2007.
[3] M. Ito, R. Uda, S. Ichimura, K. Tago, T. Hoshi, and Y. Matsushita, 'A method of appliance detection based on features of power waveform,' pp. 291-294, 2004.
[4] H. Liu and L. Yu, 'Toward integrating feature selection algorithms for classification and clustering,' Knowledge and Data Engineering, IEEE Transactions on, vol. 17, pp. 491-502, 2005.
[5] T. Kato, H. Cho, D. Lee, T. Toyomura, and T. Yamazaki, 'Appliance recognition from electric current signals for information-energy integrated network in home environments,' Ambient Assistive Health and Wellness Management in the Heart of the City, pp. 150-157, 2009.
[6] H. Serra, J. Correia, A. J. Gano, A. M. de Campos, and I. Teixeira, 'Domestic power consumption measurement and automatic home appliance detection,' pp. 128-132, 2005.
[7] T. Saitoh, Y. Aota, T. Osaki, R. Konishi, and K. Sugahara, 'Current Sensor based Non-intrusive Appliance Recognition for Intelligent Outlet,' ITC-CSCC 2008, 2008.
[8] H. H. Chang and H. T. Yang, 'Applying a non-intrusive energy-management system to economic dispatch for a cogeneration system and power utility,' Applied Energy, vol. 86, pp. 2335-2343, 2009.
[9] H. S. Matthews, L. Soibelman, M. Berges, and E. Goldman, 'Automatically disaggregating the total electrical load in residential buildings: a profile of the required solution,' Proc. Intelligent Computing in Engineering, pp. 381-389, 2008.
[10] K. D. Lee, 'Electric load information system based on non-intrusive power monitoring,' 2003.
[11] W. Lee, G. Fung, H. Lam, F. Chan, and M. Lucente, 'Exploration on load signatures,' 2004.
[12] K. D. Lee, S. B. Leeb, L. K. Norford, P. R. Armstrong, J. Holloway, and S. R. Shaw, 'Estimation of variable-speed-drive power consumption from harmonic content,' Energy Conversion, IEEE Transactions on, vol. 20, pp. 566-574, 2005.
[13] S. R. Shaw, S. B. Leeb, L. K. Norford, and R. W. Cox, 'Nonintrusive load monitoring and diagnostics in power systems,' Instrumentation and Measurement, IEEE Transactions on, vol. 57, pp. 1445-1454, 2008.
[14] M. Dash and H. Liu, 'Feature selection for classification,' Intelligent data analysis, vol. 1, pp. 131-156, 1997.
[15] M. Bao, L. Guan, X. Li, J. Tian, and J. Yang, 'Feature Extraction Using Histogram Entropies of Euclidean Distances for Vehicle Classification,' Computational Intelligence and Security, pp. 1085-1096, 2007.
[16] J. D. Shie and S. M. Chen, 'Feature subset selection based on fuzzy entropy measures for handling classification problems,' Applied Intelligence, vol. 28, pp. 69-82, 2008.
[17] H. Peng, F. Long, and C. Ding, 'Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy,' IEEE Transactions on pattern analysis and machine intelligence, pp. 1226-1238, 2005.
[18] H. T. Yang, H. H. Chang, and C. L. Lin, 'Design a neural network for features selection in non-intrusive monitoring of industrial electrical loads,' pp. 1022-1027, 2007.
[19] M. Baranski and J. Voss, 'Genetic algorithm for pattern detection in NIALM systems,' pp. 3462-3468 vol. 4, 2004.
[20] M. Berges, E. Goldman, H. S. Matthews, and L. Soibelman, 'Learning systems for electric consumption of buildings,' 2009.
[21] G. Lin, S. Lee, and J. Y. Hsu, 'Sensing from the panel: Applying the Power Meters for Appliance Recognition.'
[22] S. Inagaki, T. Egami, T. Suzuki, H. Nakamura, and K. Ito, 'Nonintrusive Appliance Load Monitoring based on Integer Programming,' IEEJ Transactions on Power and Energy, vol. 128, pp. 1386-1392, 2008.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28208-
dc.description.abstract電器狀態辨識系統能夠透過一些電力偵測裝置,即時辨識環境中正在被使用的電器,提供住戶各項電器詳細用電資訊,減少家庭用電的浪費。但是,一些相關研究並未在特徵值的選取上進行評估或優化,無法發揮辨識系統最高的效率。更重要的,系統所需要的高精度儀器或是過度繁雜的安裝手續,都使一般住家難以接受,使此技術難以被廣泛應用。
本論文以Euclidean distance measure、Fuzzy Entropy、Max-Relevance、 mRMR等著名的特徵值評估演算法,實驗找出單維度以及多維度中,最適合使用於低解析度電器辨識的特徵值擷取方式。針對系統在實際應用的成本過高問題,本論文以低解析度的資料配合非侵入式系統,降低硬體設備的成本,提出電器組合耗能資料的模擬預測演算法,減少系統在學習上需要的資料量與訓練時間,考量連續時間上電器狀態的變化數量關係,增加辨識的準確率。
實驗結果顯示,單維度的特徵值中,電流在頻率域上的變動範圍在所有評估演算法中都獲得最高的評價;多維度的特徵值中,則以電流頻率域變動範圍、虛功時間域最小變動比例、功率因數頻率域平均值、可視功率頻率域平均值這四項特徵值所組成的特徵值子集合為最佳。而在實際辨識實驗中,本論文所提出的低成本迴路電器狀態辨識演算法,以實功平均值與可視功率平均值所組成的特徵值子集合,在兩組不同電器的實驗中達到80%左右的聯合辨識準確率。
zh_TW
dc.description.abstractAppliance state recognition method distinguishes the status of each appliance through smart meters, reduces energy consumption by providing residents with the energy information. However, most researches extract features without evaluating, and may not perform the best efficiency of their algorithm. On the other hand, high cost sensors and the difficulty in deployment not only frustrate the residents, but also decrease the user usability.
In this paper, I evaluate features of appliance power consumption with 4 evaluation functions (Euclidean distance measure、Fuzzy Entropy、Max-Relevance and mRMR), find out the best low resolution feature for appliance state recognition method. To reduce the cost, I use low resolution feature data as input of non-intrusive load monitoring (NILM) system. Provide appliances combination data predict method, avoid exhaustive training and decrease the training effort on the user. To improve accuracy, adjust weight parameters in the algorithm by comparing with last result.
The experimental results show that variance of current in frequency domain performs best when using single feature. For multi-dimension feature, the subset composed of variance of current in frequency domain, minimum variance ratio of inactive power in time domain, average of power factor in frequency domain and average of apparent power in frequency domain has the highest score in feature evaluating. In appliance state recognition, the algorithm provided in this paper reached about 80% joint accuracy in 2 dataset, using average of active power and average of apparent power as the subset of features.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T00:02:45Z (GMT). No. of bitstreams: 1
ntu-100-R98525037-1.pdf: 2759490 bytes, checksum: 60dd7fe6059ef0f3216fad17f7aadcc7 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents誌謝 i
Abstract ii
中文摘要 iii
目錄 iv
圖目錄 vi
表目錄 vii
第 1 章 前言 1
1.1 研究動機 1
1.2 預期挑戰 2
1.3 問題定義 3
1.3.1 低解析度特徵值評估選取 3
1.3.2 非侵入式辨識演算法開發 4
1.4 論文結構 5
第 2 章 文獻探討 6
2.1 電器狀態辨識簡介 6
2.2 電器狀態辨識特徵值 7
2.3 特徵值評估演算法介紹 8
2.3.1 Euclidean distance 9
2.3.2 Fuzzy Entropy 11
2.3.3 Max-Relevance 13
2.3.4 mRMR 14
2.4 電器狀態辨識演算法 14
第 3 章 研究方法 16
3.1 低解析電器狀態特徵值評估 16
3.1.1 參數選取 16
3.1.2 電壓偏移校正 17
3.1.3 特徵值擷取 18
3.2 迴路電器狀態辨識演算法 19
3.2.1 複合電器使用資料模擬 21
3.2.2 特徵值分佈機率比對 23
3.2.3 電器狀態變化比對 26
第 4 章 實驗方法與結果 28
4.1 特徵值評估實驗 28
4.1.1 單維度特徵值評估 29
4.1.2 單維度特徵值辨識實驗 32
4.1.3 多維度特徵值評估 33
4.1.4 多維度特徵值辨識實驗 34
4.2 迴路電器狀態辨識實驗 35
4.2.1 複合電器資料模擬實驗 36
4.2.2 迴路電器狀態辨識法所使用之特徵值評估與實驗 37
4.2.3 電器狀態變化關係式實驗 41
第 5 章 結論與未來發展 45
5.1 低解析度電器特徵值 45
5.2 非侵入式低解析度迴路電器狀態辨識 45
5.3 未來發展 45
REFERENCES 47
dc.language.isozh-TW
dc.subject電器狀態辨識zh_TW
dc.subjectmRMRzh_TW
dc.subjectMax-Relevancezh_TW
dc.subjectFuzzy Entropyzh_TW
dc.subjectEuclidean distance measurezh_TW
dc.subject非侵入式負載監測zh_TW
dc.subject特徵值選取zh_TW
dc.subjectAppliance Recognitionen
dc.subjectMax-Relevanceen
dc.subjectFuzzy Entropyen
dc.subjectEuclidean distance measureen
dc.subjectNon-Intrusive Load Monitoringen
dc.subjectFeature Selectionen
dc.subjectmRMRen
dc.title低解析度電器特徵值評估與迴路電器狀態辨識zh_TW
dc.titleLow Resolution Feature Evaluation and Appliance Recognitionen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee丁肇隆,黃乾綱,王家輝,林正偉
dc.subject.keyword電器狀態辨識,特徵值選取,非侵入式負載監測,Euclidean distance measure,Fuzzy Entropy,Max-Relevance,mRMR,zh_TW
dc.subject.keywordAppliance Recognition,Feature Selection,Non-Intrusive Load Monitoring,Euclidean distance measure,Fuzzy Entropy,Max-Relevance,mRMR,en
dc.relation.page48
dc.rights.note有償授權
dc.date.accepted2011-08-08
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
2.69 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved