請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28161完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李世光 | |
| dc.contributor.author | Chung-Han Chiou | en |
| dc.contributor.author | 邱崇瀚 | zh_TW |
| dc.date.accessioned | 2021-06-13T00:01:54Z | - |
| dc.date.available | 2017-07-30 | |
| dc.date.copyright | 2007-08-03 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-30 | |
| dc.identifier.citation | [1] B. Arman, J. J. Wollan, G. W. Swift, and S. Backhaus, 'Thermoacoustic natural gas liquefiers and recent developments,' Hangzhou, China, 2003.
[2] S. Backhaus and G. W. Swift, 'A thermoacoustic-stirling heat engine: Detailed study,' Journal of the Acoustical Society of America, vol. 107, pp. 3148-3166, 2000. [3] S. Backhaus and G. W. Swift, 'Thermoacoustic Stirling heat engine,' Nature, vol. 399, pp. 335-338, 1999. [4] S. Backhaus and G. W. Swift, 'Heat transfer with thermoacoustic self-circulating heat exchangers,' San Francisco, CA, United States, 2005. [5] S. Backhaus and G. W. Swift, 'Fabrication and use of parallel plate regenerators in thermoacoustic engines,' Savannah, GA, United States, 2001. [6] S. Backhaus and G. W. Swift, 'An acoustic streaming instability in thermoacoustic devices utilizing jet pumps,' Journal of the Acoustical Society of America, vol. 113, pp. 1317-1324, 2003. [7] S. Backhaus, G. W. Swift, and R. S. Reid, 'High-temperature self-circulating thermoacoustic heat exchanger,' Applied Physics Letters, vol. 87, pp. 014102, 2005. [8] V. Bellucci, B. Schuermans, D. Nowak, P. Flohr, and C. O. Paschereit, 'Thermoacoustic modeling of a gas turbine combustor equipped with acoustic dampers,' Journal of Turbomachinery, vol. 127, pp. 372-379, 2005. [9] G. Benvenuto and G. Bisio, 'Thermoacoustic systems, Stirling engines and pulse-tube refrigerators: Analogies and differences in the light of generalized thermodynamics,' Washington, DC, USA, 1989. [10] T. Biwa, 'Energy flow measurements in acoustic waves in a duct,' Ultrasonics, vol. 44, pp. 1523-1526, 2006. [11] T. Biwa, Y. Ueda, T. Yazaki, and U. Mizutani, 'Work flow measurements in a thermoacoustic engine,' Cryogenics, vol. 41, pp. 305-310, 2001. [12] G. B. Chen and T. Jin, 'Experimental investigation on the onset and damping behavior of the oscillation in a thermoacoustic prime mover,' Cryogenics, vol. 39, pp. 843-846, 1999. [13] D. L. Gardner and G. W. Swift, 'A cascade thermoacoustic engine,' Journal of the Acoustical Society of America, vol. 114, pp. 1905-1919, 2003. [14] D. A. Geller and G. W. Swift, 'Thermodynamic efficiency of thermoacoustic mixture separation,' Journal of the Acoustical Society of America, vol. 112, pp. 504-510, 2002. [15] D. A. Geller and G. W. Swift, 'Thermoacoustic enrichment of the isotopes of neon,' Journal of the Acoustical Society of America, vol. 115, pp. 2059-2070, 2004. [16] M. Hatazawa, 'Oscillatory flow in thermoacoustic sound wave generator,' Journal of Thermal Science, vol. 15, pp. 92-96, 2006. [17] Z. J. Hu, Q. Li, Q. Li, and Z. Y. Li, 'A high frequency cascade thermoacoustic engine,' Cryogenics, vol. 46, pp. 771-777, 2006. [18] S. Hyun, D.-R. Lee, and B.-G. Loh, 'Investigation of convective heat transfer augmentation using acoustic streaming generated by ultrasonic vibrations,' International Journal of Heat and Mass Transfer, vol. 48, pp. 703-718, 2005. [19] C. Jensen, R. Raspet, and W. Slaton, 'Temperature gradient integration in thermoacoustic stacks,' Applied Acoustics, vol. 67, pp. 689-699, 2006. [20] H. Lei, D. Henry, and H. BenHadid, 'Numerical study of the influence of a longitudinal sound field on natural convection in a cavity,' International Journal of Heat and Mass Transfer, vol. 49, pp. 3601-3616, 2006. [21] E. Luo, W. Dai, Y. Zhang, and H. Ling, 'Thermoacoustically driven refrigerator with double thermoacoustic-Stirling cycles,' Applied Physics Letters, vol. 88, pp. 074102, 2006. [22] E. C. Luo, W. Dai, Y. Zhang, and H. Ling, 'Experimental investigation of a thermoacoustic-Stirling refrigerator driven by a thermoacoustic-Stirling heat engine,' Ultrasonics, vol. 44, pp. 1531-1533, 2006. [23] E. C. Luo, H. Ling, W. Dai, and G. Y. Yu, 'Experimental study of the influence of different resonators on thermoacoustic conversion performance of a thermoacoustic-Stirling heat engine,' Ultrasonics, vol. 44, pp. 1507-1509, 2006. [24] G. Mozurkewich, 'Heat transport by acoustic streaming within a cylindrical resonator,' Applied Acoustics, vol. 63, pp. 713-735, 2002. [25] E. C. Nsofor, S. Celik, and X. Wang, 'Forced convection heat transfer at the heat exchanger of the thermoacoustic refrigerating system,' San Francisco, CA, United States, 2006. [26] E. C. Nsofor, P. R. Gurijala, and Z. Jiang, 'Design, construction and heat transfer analysis of a thermoacoustic refrigeration system,' New Orleans, LA, United States, 2002. [27] E. C. Nsofor and X. Wang, 'Oscillatory heat transfer at the heat exchangers of the thermoacoustic refrigeration system,' Washington, DC., United States, 2003. [28] J. R. Olson and G. W. Swift, 'Acoustic streaming in pulse tube refrigerators: tapered pulse tubes,' Cryogenics, vol. 37, pp. 769-776, 1997. [29] J. C. Ordonez, A. Rivera, F. Chejne, and A. F. Hill, 'Maquinas termoacusticas Thermoacoustic engines,' Informacion Tecnologica, vol. 9, pp. 361-368, 1998. [30] L. M. Qiu, D. M. Sun, W. L. Yan, P. Chen, Z. H. Gan, X. J. Zhang, and G. B. Chen, 'Investigation on a thermoacoustically driven pulse tube cooler working at 80 K,' Cryogenics, vol. 45, pp. 380-385, 2005. [31] R. S. Reid and G. W. Swift, 'Experiments with a flow-through thermoacoustic refrigerator,' Journal of the Acoustical Society of America, vol. 108, pp. 2835-2842, 2000. [32] B. L. Smith and G. W. Swift, 'Power dissipation and time-averaged pressure in oscillating flow through a sudden area change,' Journal of the Acoustical Society of America, vol. 113, pp. 2455-2463, 2003. [33] B. L. Smith and G. W. Swift, 'A comparison between synthetic jets and continuous jets,' Experiments in Fluids, vol. 34, pp. 467-472, 2003. [34] J. H. So, G. W. Swift, and S. Backhaus, 'An internal streaming instability in regenerators,' Journal of the Acoustical Society of America, vol. 120, pp. 1898-1909, 2006. [35] P. S. Spoor and G. W. Swift, 'Thermoacoustic separation of a He-Ar mixture,' Physical Review Letters, vol. 85, pp. 1646-1649, 2000. [36] G. W. Swift, 'Thermoacoustic engines and refrigerators,' Physics Today, vol. 48, pp. 22-28, 1995. [37] G. W. Swift, 'Analysis and performance of a large thermoacoustic engine,' Journal of the Acoustical Society of America, vol. 92, pp. 1551, 1992. [38] G. W. Swift and S. Backhaus, 'A resonant, self-pumped, circulating thermoacoustic heat exchanger,' Journal of the Acoustical Society of America, vol. 116, pp. 2923-2938, 2004. [39] G. W. Swift, D. L. Gardner, and S. Backhaus, 'Acoustic recovery of lost power in pulse tube refrigerators,' Journal of the Acoustical Society of America, vol. 105, pp. 711-724, 1999. [40] G. W. Swift and D. A. Geller, 'Continuous thermoacoustic mixture separation,' Journal of the Acoustical Society of America, vol. 120, pp. 2648-2657, 2006. [41] G. W. Swift and R. M. Keolian, 'Thermoacoustics in pin-array stacks,' Journal of the Acoustical Society of America, vol. 94, pp. 941-943, 1993. [42] M. E. H. Tijani, J. C. H. Zeegers, and A. T. A. M. De Waele, 'Construction and performance of a thermoacoustic refrigerator,' Cryogenics, vol. 42, pp. 59-66, 2002. [43] Q. Tu, Q. Li, F. Guo, J. Wu, and J. Liu, 'Temperature difference generated in thermo-driven thermoacoustic refrigerator,' Cryogenics, vol. 43, pp. 515-522, 2003. [44] Q. Tu, Q. Li, F. Wu, and F. Z. Guo, 'Network model approach for calculating oscillating frequency of thermoacoustic prime mover,' Cryogenics, vol. 43, pp. 351-357, 2003. [45] W. C. Ward and G. W. Swift, 'Design environment for low-amplitude thermoacoustic engines,' Journal of the Acoustical Society of America, vol. 95, pp. 3671, 1994. [46] J. Wheatley, T. Hofler, G. W. Swift, and A. Migliori, 'INTRINSICALLY IRREVERSIBLE THERMOACOUSTIC HEAT ENGINE,' Journal of the Acoustical Society of America, vol. 74, pp. 153-170, 1983. [47] J. H. Xiao, 'Thermoacoustic heat transportation and energy transformation part 3: adiabatic wall thermoacoustic effects,' Cryogenics, vol. 35, pp. 27-29, 1995. [48] J. H. Xiao, 'Thermoacoustic heat transportation and energy transformation part 2: isothermal wall thermoacoustic effects,' Cryogenics, vol. 35, pp. 21-26, 1995. [49] J. H. Xiao, 'Thermoacoustic heat transportation and energy transformation part 1: formulation of the problem,' Cryogenics, vol. 35, pp. 15-19, 1995. [50] Lord Rayleigh (J. W.Strutt), The Theory of Sound, 2nd ed., Vol. 2, Sec. 322, Dover, New York, 1945. [51] Rott, N.,“ Lamped and Thermally Driven Acoustic Oscillations in Wide and Narrow Tubes,” Z. Angew. Math. Phys. 20, pp. 230-243, 1969. [52] 陳冠勛, '熱驅動熱聲冷凍實驗設備之設計與性能實驗', 1999 [53] 蔡尚諺, '微機電製程製作stack應用於微熱聲冷凍儀器實驗', 2000 [53] 許力仁, '駐波型熱聲致冷機之設計與性能分析', 2000 [54] 黃家斌, '駐波型熱聲制冷機之數值模擬分析', 2002 [55] 陳國邦,湯珂,金滔, “熱聲發動機及其驅動脈管制冷機研究進展,” 科學通報, vol. 9, pp. 825-834, 2004. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28161 | - |
| dc.description.abstract | 熱聲效應在兩百多年前,經由玻璃工人工作時所聽到的高音而發現,這兩百年來,經過前人的努力研究,我們目前已經對此一效應有了相當完整的定性解釋,除此之外,整合熱力學、流體力學、熱傳學、再加上聲學理論,此一領域的理論架構業已進展成為一套名為「熱聲學」的數學模型。熱聲效應顧名思義便是熱能與聲能的互相轉換,利用一定溫差可以在共振管內產生駐波聲波以及聲流現象,一般稱此為熱機模式。反之,利用輸入的聲波能量,也可以在共振管內產生一溫差,此一現象稱為冷機模式。冷機模式目前已經被利用於開發熱聲冰箱,且已獲得相當不錯的卡諾冷機效率。本論文則將從熱機模式出發,探討熱力學、流體力學、聲學、以及熱聲學,並將應用面著眼於散熱,試圖了解影響熱聲效應的所有重要參數。最後還將利用本論文所提及之各種理論,配合上實驗數據的佐證,確認了熱聲效應發生時的熱滯後效應以及影響熱聲效應的因子,大致上可以歸納為:臨界溫度梯度、共振管長度、工作流體、片堆材料、厚度與孔隙等。本論文同時還將藉由前述參數來找尋熱聲散熱裝置的最佳化設計。 | zh_TW |
| dc.description.abstract | Thermoacoustic effect has already been discovered by glassmakers for more than 200 years. Through many scholars’ research effort, detailed qualitative analysis of thermoacoustic effect has been developed over the years. The theory of thermoacoustic and its mathematic model were developed by integrating thermodynamics, fluid mechanics, heat transfer, and acoustics. As implied by the name, thermoacoustic effect is the transformation between heat energy and acoustical energy. Thermoacoustic heat engine can generate acoustic standing waves and acoustic streaming by a temperature difference located between heated side and cool side of a stack in a resonance tube. On the contrary, acoustic standing waves in a resonance tube can generate a temperature difference between heated side and cool side of stack. While thermoacoustic refrigerant was well developed, thermoacoustic heat engine remains within the development stage. This thesis discusses the thoughts behind the intention to integrate thermodynamics, fluid mechanics, heat transfer, acoustics, and thermoacoustics to examine cooling efficiency improvement in heat piles. In addition, it transforms thermoacoustic heat engine system to thermoacoustic cooling system. Utilizing the theory of thermoacoustic and experimental investigation, it identifies a hysteretic loop of onset and termination of thermoacoustic effect and it concludes by identifying some factors which may influence the behaviors of thermoacoustic effect. These newly identified factors include critical temperature difference, length of the resonance tube, working fluid and stack’s material, thickness, and porosity. By means of these factors, it tries to optimize the design of thermoacoustic cooling system. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T00:01:54Z (GMT). No. of bitstreams: 1 ntu-96-R93525055-1.pdf: 2246568 bytes, checksum: 763a2e0ec8eb966cf8a8ba28a7c94a93 (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 目錄
致謝 i 摘要 iii Abstract iv 目錄 v 表目錄 x 第一章 緒論 1 1-1研究背景與動機 1 1-2 文獻回顧與熱聲學演進 2 第二章 基礎理論 4 2-1 基礎熱力學 4 2-2熱聲學理論 8 2-3聲學概述 19 2-4聲流現象 21 第三章 理論數學模型與數值計算 26 3-1 熱聲效應方程式 26 3-1-1流體區內 26 3-1-2多孔材料片堆區 26 3-2 數值計算DELTAE/DSTAR 程式介紹 30 4-1 熱聲熱機裝置介紹 34 4-1-1片堆 34 4-1-2 共振管 40 4-1-3 加熱方法 44 4-2 實驗與量測設備介紹 51 第五章 實驗結果與分析討論 59 5-1 熱聲效應之啟動 59 5-2 熱聲效應啟動後的穩定狀態與熱滯後現象 62 5-3 有無熱聲效應之分析 68 5-4 片堆厚度對於熱聲效應之影響 70 5-5 片堆孔徑對於熱聲效應之影響 73 5-6 共振管長度對熱聲效應之影響 80 5-7 實驗結果總結與趨勢分析 83 第六章 結論與未來展望 86 6-1 結論 86 6-2 未來發展 87 參考文獻 88 | |
| dc.language.iso | zh-TW | |
| dc.subject | 熱聲熱機 | zh_TW |
| dc.subject | 臨界溫度梯度 | zh_TW |
| dc.subject | 熱聲效應 | zh_TW |
| dc.subject | 片堆 | zh_TW |
| dc.subject | thermoacoustic effect | en |
| dc.subject | critical temperature difference | en |
| dc.subject | thermoacoustic heat engine | en |
| dc.subject | stack | en |
| dc.title | 以熱聲效應提升熱堆散熱效率之研發 | zh_TW |
| dc.title | Research and Development on Improving Heat Dissipation Efficiency of Heat Piles by Use of a Thermoacoustic Effect | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳文中,王安邦,楊燿州 | |
| dc.subject.keyword | 熱聲效應,熱聲熱機,臨界溫度梯度,片堆, | zh_TW |
| dc.subject.keyword | thermoacoustic effect,thermoacoustic heat engine,critical temperature difference,stack, | en |
| dc.relation.page | 91 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-07-31 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 2.19 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
