Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 口腔生物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28128
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭彥彬
dc.contributor.authorDe-Yuan Shaen
dc.contributor.author沙德媛zh_TW
dc.date.accessioned2021-06-13T00:01:25Z-
dc.date.available2009-08-08
dc.date.copyright2007-08-08
dc.date.issued2007
dc.date.submitted2007-07-30
dc.identifier.citation1. Notani, K., et al., A case of Sweet's syndrome (acute febrile neutrophilic dermatosis) with palatal ulceration. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2000. 89(4): p. 477-9.
2. Sudbo, J., [Chemoprevention of oral cancer]. Tidsskr Nor Laegeforen, 2003. 123(11): p. 1518-21.
3. Pettei, M.J., S. Daftary, and J.J. Levine, Essential fatty acid deficiency associated with the use of a medium-chain-triglyceride infant formula in pediatric hepatobiliary disease. Am J Clin Nutr, 1991. 53(5): p. 1217-21.
4. Ko, Y.C., et al., Prevalence of betel quid chewing habit in Taiwan and related sociodemographic factors. J Oral Pathol Med, 1992. 21(6): p. 261-4.
5. Shiu, S.Y., et al., Inhibition of malignant trophoblastic cell proliferation in vitro and in vivo by melatonin. Life Sci, 2000. 67(17): p. 2059-74.
6. Vokes, E.E., et al., Head and neck cancer. N Engl J Med, 1993. 328(3): p. 184-94.
7. Clayman, G.L., et al., Gene therapy for head and neck cancer. Comparing the tumor suppressor gene p53 and a cell cycle regulator WAF1/CIP1 (p21). Arch Otolaryngol Head Neck Surg, 1996. 122(5): p. 489-93.
8. Kim, E.H., et al., Modulation of antigen-specific immune responses by the oral administration of a traditional medicine, bo-yang-hwan-o-tang. Immunopharmacol Immunotoxicol, 2002. 24(3): p. 423-40.
9. Mao, C.Z., et al., Comparative mapping of QTLs for Al tolerance in rice and identification of positional Al-induced genes. J Zhejiang Univ Sci, 2004. 5(6): p. 634-43.
10. Lippman, S.M., J. Sudbo, and W.K. Hong, Oral cancer prevention and the evolution of molecular-targeted drug development. J Clin Oncol, 2005. 23(2): p. 346-56.
11. Marks, P., et al., Histone deacetylases and cancer: causes and therapies. Nat Rev Cancer, 2001. 1(3): p. 194-202.
12. Jones, P.A. and S.B. Baylin, The fundamental role of epigenetic events in cancer. Nat Rev Genet, 2002. 3(6): p. 415-28.
13. Villar-Garea, A. and M. Esteller, Histone deacetylase inhibitors: understanding a new wave of anticancer agents. Int J Cancer, 2004. 112(2): p. 171-8.
14. Lin, C.H., et al., Protein N-arginine methylation in subcellular fractions of lymphoblastoid cells. J Biochem (Tokyo), 2000. 128(3): p. 493-8.
15. Iizuka, M. and M.M. Smith, Functional consequences of histone modifications. Curr Opin Genet Dev, 2003. 13(2): p. 154-60.
16. Jenuwein, T. and C.D. Allis, Translating the histone code. Science, 2001. 293(5532): p. 1074-80.
17. Johnstone, R.W., Histone-deacetylase inhibitors: novel drugs for the treatment of cancer. Nat Rev Drug Discov, 2002. 1(4): p. 287-99.
18. Marks, P.A. and M. Dokmanovic, Histone deacetylase inhibitors: discovery and development as anticancer agents. Expert Opin Investig Drugs, 2005. 14(12): p. 1497-511.
19. Glozak, M.A., et al., Acetylation and deacetylation of non-histone proteins, in Gene. 2005. p. 15-23.
20. Mai, A., et al., Histone deacetylation in epigenetics: an attractive target for anticancer therapy. Med Res Rev, 2005. 25(3): p. 261-309.
21. Mai, R.T., et al., Hepatitis C virus core protein recruits nucleolar phosphoprotein B23 and coactivator p300 to relieve the repression effect of transcriptional factor YY1 on B23 gene expression. Oncogene, 2006. 25(3): p. 448-62.
22. Dokmanovic, M. and P.A. Marks, Prospects: histone deacetylase inhibitors. J Cell Biochem, 2005. 96(2): p. 293-304.
23. Hsu, C.H., et al., HCMV IE2-mediated inhibition of HAT activity downregulates p53 function. Embo J, 2004. 23(11): p. 2269-80.
24. Zhu, P., et al., Induction of HDAC2 expression upon loss of APC in colorectal tumorigenesis. Cancer Cell, 2004. 5(5): p. 455-63.
25. Song, J., et al., Increased expression of histone deacetylase 2 is found in human gastric cancer. Apmis, 2005. 113(4): p. 264-8.
26. Toh, Y., et al., Histone H4 acetylation and histone deacetylase 1 expression in esophageal squamous cell carcinoma. Oncol Rep, 2003. 10(2): p. 333-8.
27. Halkidou, K., et al., Upregulation and nuclear recruitment of HDAC1 in hormone refractory prostate cancer. Prostate, 2004. 59(2): p. 177-89.
28. Krusche, C.A., et al., Histone deacetylase-1 and -3 protein expression in human breast cancer: a tissue microarray analysis. Breast Cancer Res Treat, 2005. 90(1): p. 15-23.
29. Sasaki, H., et al., Histone deacetylase 1 mRNA expression in lung cancer. Lung Cancer, 2004. 46(2): p. 171-8.
30. Huang, B.H., et al., Inhibition of histone deacetylase 2 increases apoptosis and p21Cip1/WAF1 expression, independent of histone deacetylase 1. Cell Death Differ, 2005. 12(4): p. 395-404.
31. de Ruijter, W., et al., Negative and positive inotropic effects of propofol via L-type calcium channels and the sodium-calcium exchanger in rat cardiac trabeculae. Anesthesiology, 2002. 97(5): p. 1146-55.
32. Piekarz, R. and S. Bates, A review of depsipeptide and other histone deacetylase inhibitors in clinical trials. Curr Pharm Des, 2004. 10(19): p. 2289-98.
33. Hsu, S., B. Singh, and G. Schuster, Induction of apoptosis in oral cancer cells: agents and mechanisms for potential therapy and prevention. Oral Oncol, 2004. 40(5): p. 461-73.
34. Wyllie, A.H., G.J. Beattie, and A.D. Hargreaves, Chromatin changes in apoptosis. Histochem J, 1981. 13(4): p. 681-92.
35. Saunders, M.W. and M.A. Birchall, Apoptosis, matters of life and death. J Laryngol Otol, 1998. 112(9): p. 822-6.
36. Polverini, P.J. and J.E. Nor, Apoptosis and predisposition to oral cancer. Crit Rev Oral Biol Med, 1999. 10(2): p. 139-52.
37. Loro, L.L., O.K. Vintermyr, and A.C. Johannessen, Cell death regulation in oral squamous cell carcinoma: methodological considerations and clinical significance. J Oral Pathol Med, 2003. 32(3): p. 125-38.
38. Sun, S.Y., N. Hail, Jr., and R. Lotan, Apoptosis as a novel target for cancer chemoprevention. J Natl Cancer Inst, 2004. 96(9): p. 662-72.
39. Henderson, P.J., H.A. Lardy, and E. Dorschner, Factors affecting the inhibition of adenine nucleotide translocase by bongkrekic acid. Biochemistry, 1970. 9(17): p. 3453-7.
40. Thornberry, N.A. and Y. Lazebnik, Caspases: enemies within. Science, 1998. 281(5381): p. 1312-6.
41. Liu, X., et al., Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell, 1996. 86(1): p. 147-57.
42. Li, L.Y., X. Luo, and X. Wang, Endonuclease G is an apoptotic DNase when released from mitochondria. Nature, 2001. 412(6842): p. 95-9.
43. Chai, J., et al., Structural and biochemical basis of apoptotic activation by Smac/DIABLO. Nature, 2000. 406(6798): p. 855-62.
44. van Loo, G., et al., The serine protease Omi/HtrA2 is released from mitochondria during apoptosis. Omi interacts with caspase-inhibitor XIAP and induces enhanced caspase activity. Cell Death Differ, 2002. 9(1): p. 20-6.
45. Susin, S.A., et al., Molecular characterization of mitochondrial apoptosis-inducing factor. Nature, 1999. 397(6718): p. 441-6.
46. Wu, X., et al., Chromosome instability in lymphocytes: a potential indicator of predisposition to oral premalignant lesions. Cancer Res, 2002. 62(10): p. 2813-8.
47. Adams, J.M. and S. Cory, The Bcl-2 protein family: arbiters of cell survival. Science, 1998. 281(5381): p. 1322-6.
48. Reed, J.C., J.M. Jurgensmeier, and S. Matsuyama, Bcl-2 family proteins and mitochondria. Biochim Biophys Acta, 1998. 1366(1-2): p. 127-37.
49. Li, J., A.N. Meyer, and D.J. Donoghue, Nuclear localization of cyclin B1 mediates its biological activity and is regulated by phosphorylation. Proc Natl Acad Sci U S A, 1997. 94(2): p. 502-7.
50. Zou, H., et al., An APAF-1.cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J Biol Chem, 1999. 274(17): p. 11549-56.
51. Ashkenazi, A. and V.M. Dixit, Death receptors: signaling and modulation. Science, 1998. 281(5381): p. 1305-8.
52. Rossi, D. and G. Gaidano, Messengers of cell death: apoptotic signaling in health and disease. Haematologica, 2003. 88(2): p. 212-8.
53. Chinnaiyan, A.M., et al., FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell, 1995. 81(4): p. 505-12.
54. Li, H., et al., Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell, 1998. 94(4): p. 491-501.
55. Luo, X., et al., Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell, 1998. 94(4): p. 481-90.
56. van Loo, G., et al., Endonuclease G: a mitochondrial protein released in apoptosis and involved in caspase-independent DNA degradation. Cell Death Differ, 2001. 8(12): p. 1136-42.
57. Shimizu, S., M. Narita, and Y. Tsujimoto, Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature, 1999. 399(6735): p. 483-7.
58. Green, D.R. and G. Kroemer, The pathophysiology of mitochondrial cell death. Science, 2004. 305(5684): p. 626-9.
59. Cory, S., D.C. Huang, and J.M. Adams, The Bcl-2 family: roles in cell survival and oncogenesis. Oncogene, 2003. 22(53): p. 8590-607.
60. Kirkin, V., S. Joos, and M. Zornig, The role of Bcl-2 family members in tumorigenesis. Biochim Biophys Acta, 2004. 1644(2-3): p. 229-49.
61. Packham, G. and F.K. Stevenson, Bodyguards and assassins: Bcl-2 family proteins and apoptosis control in chronic lymphocytic leukaemia. Immunology, 2005. 114(4): p. 441-9.
62. Puthalakath, H., et al., Bmf: a proapoptotic BH3-only protein regulated by interaction with the myosin V actin motor complex, activated by anoikis. Science, 2001. 293(5536): p. 1829-32.
63. Gross, A., J.M. McDonnell, and S.J. Korsmeyer, BCL-2 family members and the mitochondria in apoptosis. Genes Dev, 1999. 13(15): p. 1899-911.
64. Cheng, E.H., et al., Bax-independent inhibition of apoptosis by Bcl-XL. Nature, 1996. 379(6565): p. 554-6.
65. Schmitz, I., et al., Differences between CD95 type I and II cells detected with the CD95 ligand. Cell Death Differ, 1999. 6(9): p. 821-2.
66. Guo, M. and B.A. Hay, Cell proliferation and apoptosis. Curr Opin Cell Biol, 1999. 11(6): p. 745-52.
67. Miyashita, T., et al., Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene, 1994. 9(6): p. 1799-805.
68. Miyashita, T. and J.C. Reed, Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell, 1995. 80(2): p. 293-9.
69. Oda, E., et al., Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science, 2000. 288(5468): p. 1053-8.
70. Nakano, K. and K.H. Vousden, PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell, 2001. 7(3): p. 683-94.
71. Beutler, B. and C. van Huffel, Unraveling function in the TNF ligand and receptor families. Science, 1994. 264(5159): p. 667-8.
72. Schneider, P. and J. Tschopp, Apoptosis induced by death receptors. Pharm Acta Helv, 2000. 74(2-3): p. 281-6.
73. Kwon, B., B.S. Youn, and B.S. Kwon, Functions of newly identified members of the tumor necrosis factor receptor/ligand superfamilies in lymphocytes. Curr Opin Immunol, 1999. 11(3): p. 340-5.
74. Gruss, H.J. and S.K. Dower, Tumor necrosis factor ligand superfamily: involvement in the pathology of malignant lymphomas. Blood, 1995. 85(12): p. 3378-404.
75. Wallach, D., et al., Tumor necrosis factor receptor and Fas signaling mechanisms. Annu Rev Immunol, 1999. 17: p. 331-67.
76. Itoh, N., et al., The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell, 1991. 66(2): p. 233-43.
77. Speiser, D.E., et al., Tumor necrosis factor receptor p55 mediates deletion of peripheral cytotoxic T lymphocytes in vivo. Eur J Immunol, 1996. 26(12): p. 3055-60.
78. Briskin, K.B., et al., Apoptotic inhibition of head and neck squamous cell carcinoma cells by tumor necrosis factor alpha. Arch Otolaryngol Head Neck Surg, 1996. 122(5): p. 559-63.
79. Seta, C., et al., Fas expression and Fas monoclonal antibody-induced apoptosis in a human squamous cell carcinoma cell line, SCC-25. J Oral Pathol Med, 2000. 29(6): p. 271-8.
80. Baker, S.J. and E.P. Reddy, Modulation of life and death by the TNF receptor superfamily. Oncogene, 1998. 17(25): p. 3261-70.
81. Ashkenazi, A. and V.M. Dixit, Apoptosis control by death and decoy receptors. Curr Opin Cell Biol, 1999. 11(2): p. 255-60.
82. Walczak, H. and P.H. Krammer, The CD95 (APO-1/Fas) and the TRAIL (APO-2L) apoptosis systems. Exp Cell Res, 2000. 256(1): p. 58-66.
83. Fulda, S. and K.M. Debatin, Exploiting death receptor signaling pathways for tumor therapy. Biochim Biophys Acta, 2004. 1705(1): p. 27-41.
84. Liu, X., et al., Death receptor regulation and celecoxib-induced apoptosis in human lung cancer cells. J Natl Cancer Inst, 2004. 96(23): p. 1769-80.
85. Bodmer, J.L., et al., TRAIL receptor-2 signals apoptosis through FADD and caspase-8. Nat Cell Biol, 2000. 2(4): p. 241-3.
86. Sprick, M.R., et al., Caspase-10 is recruited to and activated at the native TRAIL and CD95 death-inducing signalling complexes in a FADD-dependent manner but can not functionally substitute caspase-8. Embo J, 2002. 21(17): p. 4520-30.
87. Kischkel, F.C., et al., Death receptor recruitment of endogenous caspase-10 and apoptosis initiation in the absence of caspase-8. J Biol Chem, 2001. 276(49): p. 46639-46.
88. Kayagaki, N., et al., Involvement of TNF-related apoptosis-inducing ligand in human CD4+ T cell-mediated cytotoxicity. J Immunol, 1999. 162(5): p. 2639-47.
89. Griffith, T.S., et al., Monocyte-mediated tumoricidal activity via the tumor necrosis factor-related cytokine, TRAIL. J Exp Med, 1999. 189(8): p. 1343-54.
90. Nakayama, M., et al., Involvement of TWEAK in interferon gamma-stimulated monocyte cytotoxicity. J Exp Med, 2000. 192(9): p. 1373-80.
91. Fanger, N.A., et al., Human dendritic cells mediate cellular apoptosis via tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). J Exp Med, 1999. 190(8): p. 1155-64.
92. Koga, Y., et al., Neutrophil-derived TNF-related apoptosis-inducing ligand (TRAIL): a novel mechanism of antitumor effect by neutrophils. Cancer Res, 2004. 64(3): p. 1037-43.
93. Wang, S. and W.S. El-Deiry, TRAIL and apoptosis induction by TNF-family death receptors. Oncogene, 2003. 22(53): p. 8628-33.
94. Ashkenazi, A., Targeting death and decoy receptors of the tumour-necrosis factor superfamily. Nat Rev Cancer, 2002. 2(6): p. 420-30.
95. Yagita, H., et al., TRAIL and its receptors as targets for cancer therapy. Cancer Sci, 2004. 95(10): p. 777-83.
96. Jia, L.Q., et al., Screening the p53 status of human cell lines using a yeast functional assay. Mol Carcinog, 1997. 19(4): p. 243-53.
97. Ota, I., et al., Transfection with mutant p53 gene inhibits heat-induced apoptosis in a head and neck cell line of human squamous cell carcinoma. Int J Radiat Oncol Biol Phys, 2000. 47(2): p. 495-501.
98. Ohnishi, K., et al., Transfection of mutant p53 gene depresses X-ray- or CDDP-induced apoptosis in a human squamous cell carcinoma of the head and neck. Apoptosis, 2002. 7(4): p. 367-72.
99. Filomeni, G., et al., Reactive oxygen species-dependent c-Jun NH2-terminal kinase/c-Jun signaling cascade mediates neuroblastoma cell death induced by diallyl disulfide. Cancer Res, 2003. 63(18): p. 5940-9.
100. Rosato, R.R. and S. Grant, Histone deacetylase inhibitors: insights into mechanisms of lethality. Expert Opin Ther Targets, 2005. 9(4): p. 809-24.
101. Rahmani, M., et al., Coadministration of histone deacetylase inhibitors and perifosine synergistically induces apoptosis in human leukemia cells through Akt and ERK1/2 inactivation and the generation of ceramide and reactive oxygen species. Cancer Res, 2005. 65(6): p. 2422-32.
102. Zhu, W.G., et al., DNA methyltransferase inhibition enhances apoptosis induced by histone deacetylase inhibitors. Cancer Res, 2001. 61(4): p. 1327-33.
103. Bali, P., et al., Activity of suberoylanilide hydroxamic Acid against human breast cancer cells with amplification of her-2. Clin Cancer Res, 2005. 11(17): p. 6382-9.
104. Li, M., et al., Antitumor activity of Z-ajoene, a natural compound purified from garlic: antimitotic and microtubule-interaction properties. Carcinogenesis, 2002. 23(4): p. 573-9.
105. Xiao, D., et al., Diallyl trisulfide-induced apoptosis in human prostate cancer cells involves c-Jun N-terminal kinase and extracellular-signal regulated kinase-mediated phosphorylation of Bcl-2. Oncogene, 2004. 23(33): p. 5594-606.
106. Chen, C.-C., Cytotoxicity of TNFa is regulated by integrinmediated
matrix signaling. Embo J, 2007. 26.
107. Nakata, S., et al., NF-kappaB family proteins participate in multiple steps of hematopoiesis through elimination of reactive oxygen species. J Biol Chem, 2004. 279(53): p. 55578-86.
108. Insinga, A., et al., Inhibitors of histone deacetylases induce tumor-selective apoptosis through activation of the death receptor pathway. Nat Med, 2005. 11(1): p. 71-6.
109. Singh, S.V., et al., Sulforaphane-induced cell death in human prostate cancer cells is initiated by reactive oxygen species. J Biol Chem, 2005. 280(20): p. 19911-24.
110. Simon, H.U., A. Haj-Yehia, and F. Levi-Schaffer, Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis, 2000. 5(5): p. 415-8.
111. Yu, C., et al., Abrogation of MAPK and Akt signaling by AEE788 synergistically potentiates histone deacetylase inhibitor-induced apoptosis through reactive oxygen species generation. Clin Cancer Res, 2007. 13(4): p. 1140-8.
112. Bauer, M.K., et al., Role of reactive oxygen intermediates in activation-induced CD95 (APO-1/Fas) ligand expression. J Biol Chem, 1998. 273(14): p. 8048-55.
113. Faris, M., et al., Stress-induced Fas ligand expression in T cells is mediated through a MEK kinase 1-regulated response element in the Fas ligand promoter. Mol Cell Biol, 1998. 18(9): p. 5414-24.
114. Emanuele, S., et al., SAHA induces apoptosis in hepatoma cells and synergistically interacts with the proteasome inhibitor Bortezomib. Apoptosis, 2007. 12(7): p. 1327-38.
115. Ichikawa, K., et al., Tumoricidal activity of a novel anti-human DR5 monoclonal antibody without hepatocyte cytotoxicity. Nat Med, 2001. 7(8): p. 954-60.
116. Koornstra, J.J., et al., Expression of TRAIL (TNF-related apoptosis-inducing ligand) and its receptors in normal colonic mucosa, adenomas, and carcinomas. J Pathol, 2003. 200(3): p. 327-35.
117. Singh, T.R., S. Shankar, and R.K. Srivastava, HDAC inhibitors enhance the apoptosis-inducing potential of TRAIL in breast carcinoma. Oncogene, 2005. 24(29): p. 4609-23.
118. Nakata, S., et al., Histone deacetylase inhibitors upregulate death receptor 5/TRAIL-R2 and sensitize apoptosis induced by TRAIL/APO2-L in human malignant tumor cells. Oncogene, 2004. 23(37): p. 6261-71.
119. Kelly, W.K., et al., Phase I study of an oral histone deacetylase inhibitor, suberoylanilide hydroxamic acid, in patients with advanced cancer. J Clin Oncol, 2005. 23(17): p. 3923-31.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28128-
dc.description.abstract口腔癌在台灣死亡率和發生率急劇攀升,是台灣地區死亡年增率最高的癌症。儘管近年在診斷及治療技術上已長足進步,但口腔癌病人之五年存活率並未有顯著改變。因此,迫切需要尋求新的的治療與預防方法來改善整體存活率及生活品質。目前已發現在多種癌症中均可發現組蛋白去乙醯化酶(HDACs)有異常上升表現。最近研究發現,多種HDAC抑制劑能選擇性抑制腫瘤細胞生長、促進細胞分化或凋亡。有效地抑制和殺傷負荷腫瘤動物的腫瘤細胞,並且不伴有明顯的毒性副作用。HDAC抑制劑成為抗癌藥物研發的新潮流之ㄧ。不過,有關HDAC 抑制劑抗腫瘤作用的理論基礎至今仍不甚明白。相同的HDACI對不同種類的腫瘤細胞的作用機轉也不相同。本實驗室前導研究發現在70% 口腔癌病人的組織中有HDAC2過度表現,正常口腔組織則無表現。 因此HDACI可做為未來治療口腔癌的潛力新藥物。本研究以人類口腔癌細胞株SAS及Ca9-22來探討已被證實有很好的口服耐受性的HDACI,SAHA (suberoyl anilide bishydroxamine )對口腔癌細胞的影響,並進一步了解其可能的機制。結果顯示,以0.5-5 μM SAHA處理SAS及Ca9-22 細胞,可以明顯抑制其細胞生長,且濃度愈高或作用時間愈長,抑制效應就愈明顯 (IC50分別為1.5μM&3μM)。藉由流式細胞儀分析細胞之細胞週期結果顯示,以3 μM SAHA處理細胞株12小時後,會明顯增加sub G0/G1細胞數目百分比。而在西方墨點法分析中,SAHA會增加SAS及Ca9-22細胞 PARP cleavage的情形,亦證實SAHA可引起人類口腔癌細胞的細胞凋亡。我們在Ca9-22和SAS細胞中加入Caspase-8和-9的抑制劑(Z-LEHD-FMK, Z-IETD-FMK),發現皆可降低SAHA誘導的細胞凋亡現象發生。顯示SAHA在口腔癌細胞中可以活化內在和外在兩條不同的細胞死亡路徑。西方墨點法實驗中,SAHA會增加SAS中DR5, FADD等蛋白量的表現,活化caspase-8後使得t-BID及細胞質的Cytochrome c表現量上升進而活化caspase-9。而在Ca9-22中Bcl-2的下降及Bax的上升共同作用使得細胞質的Cytochrome c表現量上升,進而活化caspase-9。 我們進一步利用各種抑制劑來探討SAHA誘導SAS及Ca9-22細胞凋亡的機轉。 發現在SAS細胞中加入自由基(ROS)的抑制劑,N-acetylcysteine(NAC)後可降低SAHA所誘發的細胞凋亡反應,顯示自由基(ROS)在SAHA引起的人類口腔癌細胞細胞凋亡中扮演了重要的角色。西方墨點法分析發現NAC可降低SAS中DR5, p-FADD等蛋白量的表現,可能因此降低SAHA所誘發的細胞凋亡。另外,利用20ng的TRAIL與1zh_TW
dc.description.abstractOral cancer is the fourth leading cause of cancer-related deaths in male population in Taiwan. Despite recent advances in radiotherapy and chemotherapy, the survival of patients with oral cancer has not improved significantly. Continued investigation of new chemotherapeutic agents is thus needed. Our recent studies have shown that histone deacetylase 2 (HDAC2) is overexpressed in 70% of oral cancer specimens. Furthermore, recent studies have shown that inhibitors of HDACs (HDACIs) possess antitumor activity and are well tolerated, supporting the idea that their use might develop as a specific strategy for cancer treatment. In this study, we investigated the effects and mechanisms of suberoylanilide hydroxamic acid (SAHA, one of the most potent HDAC inhibitors) on OSCC cell lines SAS and Ca9-22.
Here, we demonstrated that SAHA induces apoptosis in human oral cancer cell lines SAS and Ca9-22 as evidenced by nuclear condensation, TUNEL labeling and cleavage of PARP. Apoptosis induced by SAHA was both time- and dose-dependent; however, the mechanisms are different in these two cells. In SAS cells, SAHA treatment induced DR5, FAS/FASL, FADD, caspase-8, -9 activation and Bid cleavage. In addition, SAHA treatment induced reactive oxygen species (ROS) production as detected by H2DCFDA fluorescence. Pretreatment of cells with N-acetyl cysteine (NAC) reduced the up-regulation of DR5, FAS, FADD and completely inhibited SAHA-induced apoptosis. These results indicated that ROS was an important mechanism for SAHA-induced apoptosis in SAS cells. SAHA-induced apoptosis was also completely inhibited in the presence of caspase 8 or caspase 9 inhibitors (Z-LEHD-FMK, Z-IETD-FMK). Taking together, SAHA induced apoptosis via subsequent induction of ROS, DR5, FADD, FAS/FASL, caspase-8 activation, Bid cleavage and then activation of mitochondrial pathway. In Ca9-22 cells, SAHA induced Bax protein expression, caspase 9 activation. In addition, we found SAHA down-regulated the expression of Bcl-2. Treatment caspase 9 inhibitor (Z-IETD-FMK) decreased SAHA induced apoptosis and the result was not more effective when both of caspase 8 and capase 9 inhibitors were treated. These data showed that SAHA-induced apoptosis by activating intrinsic- apoptosis pathway.
We further evaluated the potential combinative effect of TRAIL and SAHA in OSCC cell lines. Compared with either TRAIL (20ng/ml) or SAHA (1
en
dc.description.provenanceMade available in DSpace on 2021-06-13T00:01:25Z (GMT). No. of bitstreams: 1
ntu-96-R94450014-1.pdf: 2239007 bytes, checksum: d638a759ee5f4b4dd58229a8e6992514 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents口試委員會審定書…………………………………………………………………. I
誌謝…………………………………………………………………………………..II
中文摘要……………………………………………………………………………..IV
Abstract………………………………………………………………………………VI
第一章 緒論…………………………………………………………………………..1
1-1、口腔癌
1-2、口腔癌之發生與腫瘤的發展過程
1-3、組蛋白與組蛋白乙醯基轉移酶與組蛋白去乙醯化酶
1-4、Histone deacetylase inhibitors 組蛋白去乙醯化酶抑制劑
1-5、細胞凋亡 Apoptosis
1-6、細胞凋亡之分子機制Molecular mechanisms of apoptosis
1-7、Bcl-2基因家族
1-8、TNF receptors和death receptors
第二章 實驗材料與方法............................................................................................27
2-1、細胞株培養
2-2、細胞存活率試驗 (MTT) assay
2-3、西方墨點法-細胞蛋白質的測定
2-4、Caspase抑制作用
2-5、分析細胞質內的cytochrome c
2-6、Cell death detection ELISA
2-7、其他抑制劑之抑制作用
2-8、利用Flow cytometry 偵測細胞週期變化
2-9、利用Flow cytometry偵測超氧化物的產生
2-10、統計分析
第三章 實驗結果……………………………………………………………………36
3-1、SAHA抑制SAS和Ca9-22細胞生長
3-2、SAHA誘導細胞凋亡反應
3-3、SAHA誘導外生性細胞凋亡途徑的機制
3-4、SAHA誘導內生性細胞凋亡途徑的機制
3-5、SAHA對ROS之影響
3-6、SAHA與其他藥物加乘作用的探討
第四章 討論................................................................................................................64
第五章 參考文獻........................................................................................................72
dc.language.isozh-TW
dc.subject細胞凋亡zh_TW
dc.subject組蛋白去乙醯化抑制劑zh_TW
dc.subjectapoptosisen
dc.subjectSuberoylanilide Hydroxamic Acid (SAHA)en
dc.title組蛋白去乙醯化抑制劑Suberoylanilide Hydroxamic Acid (SAHA)誘導人類口腔癌細胞凋亡機轉之研究zh_TW
dc.titleSuberoylanilide Hydroxamic Acid (SAHA) induced growth arrest and apoptosis in oral cancer cellsen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳信銘,郭生興
dc.subject.keyword組蛋白去乙醯化抑制劑,細胞凋亡,zh_TW
dc.subject.keywordSuberoylanilide Hydroxamic Acid (SAHA),apoptosis,en
dc.relation.page79
dc.rights.note有償授權
dc.date.accepted2007-07-31
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept口腔生物科學研究所zh_TW
顯示於系所單位:口腔生物科學研究所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
2.19 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved