請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28127完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王自存(Tsu-Tsuen Wang) | |
| dc.contributor.author | You-Ting Ke | en |
| dc.contributor.author | 柯侑婷 | zh_TW |
| dc.date.accessioned | 2021-06-13T00:01:24Z | - |
| dc.date.available | 2007-08-28 | |
| dc.date.copyright | 2007-08-28 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-30 | |
| dc.identifier.citation | 參考文獻
王自存. 2004. 第7章基質濃度對酵素催化反應速率之影響.園產品酵素學講義. 台北. pp. 1-18. 洪立、黃涵、嚴新富. 1992. 蔬菜名彙集. 國立台灣大學編印.台北. pp. 76-93. 顏國卿、危貴金. 1992. 十字花科蔬菜中硫醣苷含量之測定. 中農化誌 30(1): 129-137. 蕭吉雄、王三太. 1998. 十字花科蔬菜抗病育種. 台灣省桃園區農業改良場特刊第9號 : 55-74. 蕭裕生、張喜寧. 2001. 誘導植物防疫功能的生化調控. 科學農業 49(3,4):64-69. Bjorkman, R. 1973. Interaction between proteins and glucosinolate isothiocyanates and oxazolidinethiones from Brassica napus seed. Phytochemistry 12:1585-1590. Bones, A., and G. Slupphaug. 1989. Pueification, characterization and partial amino acid sequencing of β-thioglucosidase from Brassica napus L.. J. Plant physiol. 134:722-729. Bones, A. M., and J. Rossiter. 1996. The myrosinase-glucosinolate system its organization and biochemistry. Physiol. Plant. 97: 194-208. Brown, P. D., J. G.. Tokuhisa, M. Reichelt, and J. Gershenzon. 2003. Variation of glucosinolate accumulation among different organs and development stages of Arabidopsis thaliana. Phytochemistry 62: 471-181. Ciska, E., B. Martyniak-Przybyszewska, and H. Kozlowska. 2000. Content of glucosinolates in cruciferous vegetables grown at the same site for two year under different climatic conditions. J. Agric. Food Chem. 48: 2862-2867. Cohen, J., R. Kristal, and J. Stanford. 2000. Fruit and vegetable intakes and pastate cancer. J. Natl. Cancer Inst. 9: 61-68. Dam, N. M., L. Witjes, and A. Svatos. 2003. Interactions between aboveground and belowground induction of glucosinolates in two wild Brassica species. New phytologist 161: 801-810. Dekker, M., R. Verkerk, and W. M. F. Jongen. 2000. Predictive modeling of health aspects in the food production chain: a case study on glucosinolates in cabbage. Trends Food Sci. Techno. l1: 174-181. Doughty, K. J., G. A. Kiddle, B. J. Pye, R. M. Wallsgrove, and J. A. Pickett. 1994. Selective of glucosinolates in oilseed rape leaves by methyl jasmonate. Phytochemistry 38(2): 347-350. Dowson, R. M. C., D. C. Elliott, W. H. Elliott, and K. M. Jones. 1986. PH, buffers, and physiological media. Data for Biochemical Research. (3rd edn). Clarendon Press,Oxford. Doxenbichler, M. E., C. H. Van Etten, and G. F. Spencer. 1977. Glucosinolates and derived products in cruciferous vegetables. Identification of organic nitriles from cabbage. J. Agric. Food Chem. 25: 121-124. Eylen, D. V., I. Oey, M. Hendrickx, and A. V. Loey. 2006. Temperature and pressure stabikity of mustard seed(Sinapis alba L.)myrosinase. Food chemistry 97:263-271. Eylen, D. V., I. Oey, M. Hendrickx, and A. V. Loey. 2007. Kinetics of stability of broccoli(Brassics oleraceae Cv. Italica)myrosinase and isothiocyanates in broccoli juice during pressure/temperature treatments. J. Agric. Food Chem. 55:2163-2170. Fahey, J. W., Y. Zhang, and P. Talaley. 1997. Broccoli sprouts:an exceptionally rich source of inducers of enzymes that protect against chemical carcinogens. Proc. Natl. Acad. Sci. U.S.A. 94: 10367-10372. Fahey, J. W. 2005. Proposed criteria for assessing the efficacy of cancer reduction by plant foods enriched in carotenoids﹐glucosinolates﹐polyphenols and selenocompounds. Ann. Bot. 95: 1075-1096. Font, R., M.R. Rio-Celestino, E. Cartea, and A. Haro-Bailon. 2005. Quantification of glucosinolates in leaves of leaf rape(Brassica napus ssp. pabularia) by near-infrared spectroscopy. Phytochemistry 66: 175-185. Hansen, M., P. Moller, and H. Sorensen. 1995. Glucosinolates in broccoli stored under controlled atmosphere. J. Amer. Soc. Hort. Sci. 120(6): 1069-1074. Hecht, S. S., F. L. Chung, J. P. Richie, Jr., S. A. Akerkar, A. Borukhova, L. Skowronski, and S. G.. Carmella. 1995. Effects of watercress consumption on metabolism of a tobacco-specific lung carcinogen in smokers. Cancer Epidemiol. Biomark. Prev. 4:877-884. Jeffery, E. H., A. F. Brown, A. C. Kurilich, A. S. Keck, N. Matusheski, B. P. Klein, and J. A. Juvik. 2003. Variation in content of bioactive components in broccoli. J. Food Compos. Anal. 16: 323-330. Jiao, D., M. C. Yu, J. H. Hankin, Siew-Hong Low, and Fung-Lung Chung. 1998. Total isothiocyanate contents in cooked vegetables frequently consumed Singapore. J. Agric. Food Chem. 46: 1055-1058. Jin, Y., M. Wang, R. T. Rosen, and Chi-tang Ho. 1999. Thermal degradation of sulforaphane in aqueous solution. J. Agric. Food Chem. 47: 3121-3123. Jones, R. B., J. D. Faragher, and S. Winkler. 2006. A review of influence of postharvest treatments on quality and glucosinolates content in broccoli (brassica oleracea var. italica) heads. Postharvest biology and technology 41: 1-8. Kozlowska, H. J., H. Nowak, and J. Nowak. 1983. Characterisation of myrosinase in polish varieties of rapeseeds. J. Sci. Food Agric. 34:1171-1178. Kushad, M. M., A. F. Brown, A. C. Kurilich, J. A. Juvik, B. P. Klein, M. A. Wallig, and E. H. Jeffery. 1999. Variation of glucosinolates in vegetable crops of Brassica oleracea. J. Agric. Food Chem. 47: 1541-1548. Kushad, M. M., R. Cloyd, and M. Babadoost. 2004. Distribution of glucosinolates in ornamental cabbage and kale cultivars. Sci. Hort. 101: 215-221. Lambrix, V., M. Reichelt, T. Mitchell-Olds, D. J. Kliebenstein, and J. Gershenson. 2001. The Arabidopsis epithiospecifier protein promotes the hydrolysis of glucosinolates to nitrile and influences Trichiplusia ni herbivory. Plant cell 13: 2793-2807. Ling, H., Q. P. Yuan, H. R. Dong, and Y. M. Liu. 2006. Determination of sulformance in broccoli and cabbage by high-performance liquid chromatography. J. Food Compos. Anal. 19: 473-476. Link, L. B., and J. D. Potter. 2004. Raw versus cooked vegetables and cancer risk. Cancer Epidemiol. Biomark. Prev. 13(9):1422-1435. Matusheski, N. V., J. A. Juvik, and E. H. Jeffery. 2004. Heating decrease epithiospecifer protein activity and increases sulforaphane formation in broccoli. Phytochemmistry 65: 1273-1281. Mithen, R. F., M. Dekker, R. Verkerk, and S. Rabot. 2000. The nutritional significance, biosynthesisand bioavaility of glucosinolates in human foods. J. sci. food agric.80:967-984. Mithen, R. 2001. Glucosinolates-biochemistry, genetics and biological activity. Plant Growth Regul. 34: 91-103. Mithen, R., K. Faulkner, R. Magrath, P. Rose, G. Williamson, and J. Marquez. 2003. Development of isothiocyanate enriched broccoli and its enriched ability to induce phase 2 detoxification enzymes in mammalian cells. Theor. Appl. Genet. 106:727-734. Oleremans, K., D. M. Suades, B. S. Suades, R. Verkerk, and M. Dekker. 2005. Thermal degradation of glucosinolates in red cabbage. Food Chem. 95:19-29. Padilla, G., M. E. Cartea, P. Velasco, A. de Haro, and A. Ordas. 2007. Variation of glucosinolates in vegetable ceops of brassica rapa. Phytochemistry 68:536-545. Palaniswamy, U. R., R. J. Mcavoy, B. Bible, S. Singha, and D. W. Hill. 1995. Effect of different nitrogen-sulfur rations on phenylethyl isothiocyanate concentration in watercress (PEITC) levels in watercress. HortScience 30:789. Palaniswamy, U. R., R. J. Mcavoy, and B. Bible. 1996. The effect of light intensity prior to harvest,on phenylethyl isothiocyanate(PEITC) levels in watercress (Nasturtium officinale R. BR.) ,depends on photoperiod. HortScience 31:578. Palaniswamy, U. R., R. J. Mcavoy, B. Bible, and J. D. Stuart. 2003. Ontogenic variations of ascorbic acid and phenethyl isothiocyanate concentrations in watercress (Nasturtium officinale R. BR.)leaves. J. Agric. Food Chem. 51: 5504-5509. Pereira, F. M. V. , E. Rosa, J. W. Fahey, K. K. Sterphenson, R. Carvalho, and A. Aires. 2002. Influence of temperature and ontogeny on the levels of glucosinolates in broccoli (brassica oleracea var. italica) sprouts and their effect on the induction of mammalian phase 2 enzymes. J. Agric. Food Chem. 50: 6239-6244. Petroski, R. J., and H. L. Tookey. 1982. Interactions of thioglucoside glucohydrolase and epithiospecifier protein of cruciferous plants to form 1-cyanoepithioalknes. Phytochemistry 21: 1903-1905. Petroski, R. J., and W. F. Kwolek. 1985. Interactions of a fungal thioglucoside glucohydrolase and cruciferous plant epithiospeccifier protein to form 1-Cyanoepithioalkanes-implications of an allosteric mechanism. Phytochemistry 24(2): 213-216. Rangkadilok, N., B. Tomkins, M. E. Nicolas, R. R. Permier, R. N. Bennett, D. R. Eagling, and P. W. J. Taylor. 2002. The effect of post-harvest and packaging treatments on glucoraphanin concentration in broccoli (Brassica oleracea var. itlica). J. Agric. Food Chem. 50: 7386-7391. Rodman, J. E. 1991. A taxonomic analysis of glucosinolate-producing plants,Ⅰ:phenetics. Systematic Bontany16:598-618. Rodrigues, A. S., and E. S. Rosa. 1999. Effect of post-harvest treatments on the level of glucosinolaes in broccoli. J. Sci. Food Agric. 79: 1028-1032. Rosa, E. A. S. 1997. Daily variation in glucosinolate concentrations in the leaves and roots of cabbage seedlings in two constant temperature regimes. J. Sci. Food Agric. 73: 364-368. Rosa, E. A. S. 1997. Glucosinolates from flower buds of Portuguese Brassica crops. Phytochemistry 44: 1415-1419. Rosa, E. A. S., and A. S. Rodrigues. 2001. Total and individual glucosinolates content in 11 broccoli cultivars grown in early and late seasons. HortScience 36(1): 56-59. Rungapamestry, V., A. J. Duncan, Z. Fuller, and B. Ratcliffe. 2006. Changes in glucosinolate concentrations, myrosinase activity, and production of metabolites of glucosinolates in cabbage (Brassics oleracea var. capitata) cooked for different durations. J. Agric. Food Chem. 54: 7628-7634. Shapiro, T. A., J. W. Fahey, K. L. Wade, K. K. Stephenson, and P. Talaley. 2001. Chemoprevventive glucosinolates and isothiocyanates of broccoli sprouts : metabolism and extretion in humans. Cancer Epidemiol. Biomark. Prevent. 10: 501-108. Shikita, M., J. W. Fahey, T. R. Golden, W. D. Hotzclaw, and P. Talalay. 1999. An unusal case of ‘uncompetitive activation’ by ascorbic acid : purification and kinetic properties of a myrosinase from Raphanus sativus seedlings. Biochem. J. 341: 725-732. Song, L., and P. J. Thornalley. 2007. Effect of storage, processing and cooking on glucosinolate content of Brassica vegetables. Food chem. toxicol. 45: 216-224. Springett, M. B., and J. B. Adams. 1989. Properties of Brussels sprouts thioglucosidase. Food chem. 33: 173-186. Talaley, P., J. W. Fahey, W. D. Holtzclaw, T. Prestera, and Y. Zhang. 1995. Chemoprotection against cancer by phase 2 enzyme induction . Toxicol. Lett. 82-83: 173-179. Talaley, P., and J. W. Fahey. 2001. Phytochemicals from crucifrous plants protect against cancer by modulating carcinogen metabolism. J. nutr. 131: 3027-3033. Tripathi, M. K., A. S. Mishra. 2007. Glucosinolates in animal nurtrition: A review. Anim. Feed Sci. Technol 132:1-27. Troyer, J. K., K. K. Stephenson, and J. W. Fahey. 2001. Analysis of glucosinolates from broccoli and other cruciferous vegetables by hydrophilic interaction liquid chromatography. J. Chromatogr. A. 919: 299-304. Toler, H. D., C. S. Charron, and C. E. Sams. 2007. Selenium increases sulfur uptake and regulates glucosinolate metabolism in rapid-cycling brassica oleracea. J. Amer. Soc. Hort. Sci. 132(1):14-19. U. S. Department of Agriculture. 2003. Dietary rference intakes: elements. 5 Mar. 2006. <http://warp.nal.usda.gov/fnic/etext/000105.html>. Vallego, F., F. A. Tomas-Barberan, and C. Garcia-Viguera. 2002. Glucosinolates and vitamin C content in edible parts of broccoli florets after domestic cooking. Eur. Food Res. Technol. 215: 310-316. Velasco, P. M. E. Cartea, C. G. M. Vilar, and A. Ordas. 2007. Factors affecting the glucosinolate content of kale(Brassics oleracea acephala group). J. Agric. Food Chem. 55: 955-962. Verhoeven, D. T. H., H. Verhagen, R. A. Goldbohm, P. Brand, and G. Poppel. 1997. A review of mechanisms underlying anticarcinogenicity by brassica vegetables. Chem.-Biol. Interact. 103: 79-129. Verkerk, R., M. S. Gaag, M. Dekker, and W. M. F. Jongen. 1997. Effects of processing conditions on glucosinolates in cruciferous vegetables. Cancer Letters 114: 193-194. Verkerk, R., M. Dekker, and W. M. Jongen. 2001. Post-harvest increase of indolyl glucosinolates in response to chopping and storage of Brassica vegetables. J. Sci. Food Agric. 81: 953-958. Verkerk, R., and M. Dekker. 2004. Glucosinolates and myrosinase activity in red cabbage (Brassica oleracea L. var. capitata f. rubra DC.) after various microwave treatments. J. Agric. Food Chem. 52: 7318-7323. Verhoeven, D. T. H., H. Verhagen, R. A. Goldbohm, P. Brand, and G. Poppel. 1997. A review of mechanisms underlying anticarcinogenicity by brassica vegetables. Chem.-Biol. Interact. 103: 79-129. Vierheilig, H., R. Bennett, G.. Kiddle, M. Kaldorf, and J. Ludwig-Muller. 2000. Differences in glucosinolate patterns and arbuscular mycorrhizal status of glucosinolate-containing plant species. New phytol. 146: 343-352. Wattenberg, L. W. 1993. Inhibition of carcinogenesis by nonnutrient constituents of the diet. Food and cancer prevention: chemical and biological aspects. London England. pp12-24. Wilkinson, A. P., and M. J. C. Rhodes, and R. G. Fenwick. 1984. Myrosinase activity of cruciferous vegetables. J. Sci. Food Agric. 35: 543-552. Yen, G. C. and Q. K. Wei. 1993. Myrosinase activity and total glucosinolate content of cruciferous vegetables, and some properties of cabbage myrosinase in Taiwan. J. Sci. Food Agr. 61: 471-475. Zhang, Y., K. L. Wade, T. Prestera, and P. Talalay. 1996. Quantitative determination of isothiocyanates, dithiocarbamates, carbon disulfide, and related thiocarbonyl compounds by cyclocondensation with 1,2-benzenedithiol. Anal. biochem. 239: 160-167. Zhao, F. J., E. j. Evans, P. E. Bilisborrow, J. K. Syers.1994. Influence of nitrogen and sulphur on the glucosinolate profile of rapeseed(Brassica napus L.).J. Sci. Food Agric. 64:295-304. Zhu, C. Y., and S. Loft. 2002. Effect of chemopreventive compounds from brassica vegetables on NAD(P)H:quinine reductase and induction op DNA strand breaks in murine heap lclc cells. Food Chem. Toxicol. 41: 455-462. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28127 | - |
| dc.description.abstract | 十字花科蔬菜中普遍具有硫醣苷類(glucosinolates)之植物化合物,硫醣苷在經芥子酶(myrosinase, thioglucoside glucohydrolase;EC 3.2.3.1)水解後會生成包括異硫氰酸酯在內之多種化合物,而異硫氰酸酯是少數目前已被研究證明具有預防癌症發生之生物活性物質。
本試驗之目的為:1. 分析國人日常食用之數種十字花科蔬菜中之硫醣苷含量以及該硫醣苷經添加芥子酶水解後之異硫氰酸酯生成量。2. 探討採後貯藏環境對花椰菜中硫醣苷含量及異硫氰酸酯生成量之影響。3. 瞭解芥子酶之萃取條件及其酵素基本特性。 在從市場購得之蘿蔔、花椰菜、芥菜、青花菜、甘藍、白菜、結球白菜、芥藍、豆瓣菜等九種蔬菜中,硫醣苷含量以豆瓣菜的567.40 μmole / 100g-FW最高,青花菜的188.02 μmole / 100g-FW最低。各蔬菜中之硫醣苷經芥子酶水解後之異硫氰酸酯生成量則以甘藍的96.89 μmole / 100g-FW最高,芥菜的21.57 μmole/100g-FW最低;硫醣苷水解後生成異硫氰酸酯的比例約在5 %-28 %不等。不同品種甘藍間之硫醣苷含量無明顯差異;但‘永明’甘藍之異硫氰酸酯生成量明顯高於‘夏峰一號’,而‘夏山’與‘初秋’之異硫氰酸酯生成量相似,介於前兩者中間。花椰菜不同部位之硫醣苷含量無顯著差異;但花蕾部位異硫氰酸酯生成量明顯大於花梗及莖部之異硫氰酸酯生成量。 花椰菜於0 ℃、5 ℃、10 ℃、15 ℃等不同溫度下貯藏7天過程中,貯藏之前3天硫醣苷含量會上升,之後又減少。貯藏於不同溫度下之花椰菜,其硫醣苷含量無顯著差異。整體而言,硫醣苷水解後之異硫氰酸酯生成量,以貯藏前最高,貯藏前3天含量緩慢下降,第3天後又緩慢上升;但此貯藏期間之異硫氰酸酯生成量之變化在統計上無顯著差異。貯藏於高相對濕度能維持較高的硫醣苷含量;相對濕度高低對貯藏前3天之異硫氰酸酯生成量無顯著影響,但至第5天及第7天時,低相對溼度組之異硫氰酸酯生成量,約為高相對溼度組的2倍。 蘿蔔種子之芥子酶粗萃取液,以飽和硫酸銨劃分法進行部份純化,結果以60-90 %具有最高的比活性(681.11 U g-1)。利用60-90 %飽和硫酸銨劃分之蘿蔔芥子酶Km值為0.1 mM,而芥菜芥子酶Km值為0.22 mM,蘿蔔種子每克總活性高於芥菜種子;蘿蔔種子及芥菜種子以去離子水24小時浸潤處理後,浸潤後種子之總活性低於乾燥種子。比較蘿蔔及芥菜之芥子酶在不同溫度中反應1小時之活性,以50 ℃中具有最高之芥子酶活性,在60 ℃時活性降為83 %,70 ℃下之活性為零。蘿蔔及芥菜之芥子酶其最適反應酸鹼值(pH)皆為5.0。 於芥子酶之酵素特性反應液中添加不同濃度的抗壞血酸(0.1、0.5、1.0 mM)可以增加芥子酶之Vmax及Km值;利用基質濃度倒數(1/A0)及反應速度倒數(1/V0)作圖,會得到一系列平行的直線,此結果顯示抗壞血酸活化芥子酶模式屬於一種很特別的無競爭型活化類型(uncompetitive activation),與Shikita等人(Biochem. J. (1999)341: 725-732)之觀察結果相同。 | zh_TW |
| dc.description.abstract | Glucosinolates(GS) are a group of phytochemicals that present widely in cruciferous vegetables. The hydrolysis of glucosinolates by myrosinase (thioglucoside glucohydrolase, EC 3.2.3.1) results in a number of compounds, including isothiocyanates. Isothiocyanates(ITC) have been recognized in many studies as one of the few bioactive compounds that are associated with a reduced incidence of cancer.
The objects of this study include: 1. To determine the total GS contents in crucifer vegetables that are commonly consumed by our people, and the amount of ITC formed after these GS were treated with an exogenous myrosinase. 2. To study the effect of storage environments on total GS contents and ITC formation in cauliflower. 3. To study extraction methods of myrosinase and some characteristics of this enzyme. Nine vegetables, including Chinese radish, cauliflower, Chinese mustard, broccoli, cabbage, Pai-tsai, Chinese cabbage, Chinese kale and water cress, were obtained from local market for analysis. Among them, water cress had the highest GS content of 567.40 μmole/100g-FW, and broccoli had the lowest of 188.02 μmole/100g-FW. With regard to the ITC formed after its GS was hydrolyzed with myrosinase, Cabbage had the highest yield of 96.89 μmole/100g-FW and Chinese mustard had the lowest yield of 21.57 μmole/100g-FW. The conversion ratio of ITC from GS was between 5 – 28%. There were no differences in GS contents among four cultivars of cabbage. However, there were differences among the ITC yields; ‘Yungming’ cabbage was the highest and ‘Siafong No. 1’ was the lowest, ‘Chuchiou’ and ‘Siashan’ cabbages were in the middle with similar values. There were no significant differences among the various parts of cauliflower heads, but the florets had higher ITC yields than that of the pedicels and the stem. Cauliflower heads were stored at 0, 5, 10 and 10℃ for 7 days and their GS contents and ITC yields were determined. The GS contents increase during the first 3 days of storage then declined and there were no differences among temperature treatments. The ITC yields were highest at the beginning, declined for 3 days then went up slightly; statistically, there were no differences among these values. Storage in high RH maintains higher GS contents, relative humidity had no effect on the ITC yield during the first 3 days of storage, but on the 5th and 7th day the ITC yield of low RH treatment was twice of the high RH treatment. Crude extracts of myrosinase from Chinese radish seeds were partial purified with ammonium sulfate precipitation. The highest enzyme activity was found in the 60 – 90% cut with 681.11U g-1 . The Km values of myrosinase from seeds of Chinese radish and Chinese kale was 0.1 mM and 0.22 mM respectively. The total myrosinase activity extracted from the seeds of Chinese radish was higher than that from the seed of Chinese kale. Imbibition of the seeds of both Chinese radish and Chinese kale for 24 hours before extraction resulted in lower extractable myrosinase activity. The optimum temperature for myrosinase activity was determined after incubation of reaction mixture at various temperature for 1 hour. Myrosinases from seeds of both Chinese radish and Chinese kale displayed highest activity at 50℃; the activity declined to 83% at 60℃ and had zero activity at 70℃. The optimum pH for myrosinase from both seeds of Chinese radish and Chinese kale were 5.0. Addition of 0.1, 0.5, 1.0 mM ascorbic acid to myrosinase reaction mixture resulted an increase in both the Vmax and the Km values. A series of parallel lines were obtained when the reciprocal of substrate (sinigrin) concentrations were plotted against the reciprocal of reaction rates at various ascorbic acid concentration. This result indicated that the activation of myrosinase by ascorbic acid follows an unusual model of “uncompetitive activation”, which is the same as reported by Shikita et al. (Biochem. J. 1999. 341:725-732). | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T00:01:24Z (GMT). No. of bitstreams: 1 ntu-96-R93628206-1.pdf: 620758 bytes, checksum: 70bb6b10a423ed01106f154c44197753 (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 口試委員會審定書……………………………………………………….. i
誌謝………………………………………………………………………. ii 中文摘要………………………………………………………………… iii 英文摘要…………………………………………………………………. v 第一章 前言…………………………………………………………....... 1 第二章 前人研究 一、 硫醣苷之化學結構及分布代謝………………………………... 3 二、 影響十字花科蔬菜硫醣苷含量之因子………………………... 6 三、 異硫氰酸酯預防癌症發生之功能……………………………. 10 四、 芥子酶特性之研究……………………………………………. 15 第三章 十字花科蔬菜中硫醣苷含量及水解後異硫氰酸酯生成量之測定 摘要………………………………………………………………............. 18 前言………………………………………………………………………. 18 材料與方法………………………………………………………………. 20 結果與討論………………………………………………………………. 26 第四章 貯藏環境對花椰菜中硫醣苷含量及其水解後異硫氰酸酯生成量之影響 摘要……………………………………………………………………….. 34 前言……………………………………………………………………… 34 材料與方法……………………………………………………………….. 34 結果與討論……………………………………………………………….. 38 第五章 芥子酶特性之研究 摘要………………………………………………………………………. 46 前言………………………………………………………………………. 46 材料與方法………………………………………………………… …….. 47 結果與討論………………………………………………………………. 53 第六章 全文結論………………………………………………………. 67 參考文獻…………………………………………………………………. 70 附錄………………………………………………………………………... 82 | |
| dc.language.iso | zh-TW | |
| dc.subject | 預防癌症 | zh_TW |
| dc.subject | 十字花科 | zh_TW |
| dc.subject | 硫醣苷 | zh_TW |
| dc.subject | 異硫氰酸酯 | zh_TW |
| dc.subject | 芥子酶 | zh_TW |
| dc.title | 十字花科蔬菜中硫醣苷含量與芥子酶特性之研究 | zh_TW |
| dc.title | Glucosinolate Contents and Some Characteristics of Myrosinase of Cruciferous Vegetables | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 曹幸之(Shing-Jy Tsao),楊雯如(Wen-Ju Yang) | |
| dc.subject.keyword | 十字花科,硫醣苷,異硫氰酸酯,芥子酶,預防癌症, | zh_TW |
| dc.subject.keyword | Cruciferous,glucosinolate,isothiocyanate,myrosinase,reduced incidence of cancer, | en |
| dc.relation.page | 81 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-07-31 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 園藝學研究所 | zh_TW |
| 顯示於系所單位: | 園藝暨景觀學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 606.21 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
