請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28104
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 劉佩玲 | |
dc.contributor.author | Chia-Ching Lin | en |
dc.contributor.author | 林佳慶 | zh_TW |
dc.date.accessioned | 2021-06-13T00:01:06Z | - |
dc.date.available | 2009-08-01 | |
dc.date.copyright | 2007-08-01 | |
dc.date.issued | 2007 | |
dc.date.submitted | 2007-07-31 | |
dc.identifier.citation | 1. Sansalone, M and Carino, N. J., “Impact-Echo: A Method for Flaw Detection in Concrete Using Transient Stress Waves”, NBSIr 86-34 52, National Bureau of Standard, Gaithersburg, Maryland, 1986.
2. Carino, N. J., Sansalone, M., and Hsu, N. N., “Flaw Detection in Concrete by Frequency Spectrum Analysis of Impact-Echo Wave- forms”, International Advances in Nondestructive Testing, 12th Edition, Gordon & Breach Science Publishers, New York, Pages 117-146, 1986. 3. Lin, Y., and Sansalone, M., “Detecting Flaws in Concrete Beams and Columns Using the Impact-Echo Method”, ACI Materials Journal, Volume 89, Issue 4, Pages 394-405, 1992. 4. Cheng, C. C., and Sansalone, M., “The Impact-Echo Response of Concrete Plates Containing Delaminations: Numerical, Experimental, and Field Studies”, Materials and Structures, Volume 26, Issue 159, Pages 274-285, 1993. 5. Cheng, C. C., and Sansalone, M., “Effect on Impact-Echo Signals Caused by Steel Reinforcing Bars and Voids around Bars”, ACI Materials Journal, Volume 90, Issue 5, Pages 421-434, 1993. 6. Lin, Y., and Su, W. C., “Use of Stress Waves for Determining the Depth of Surface-Opening Crack in Concrete Structure”, ACI Ma- terials Journal, Volume 93, Issue 5, Pages 494-505, 1996. 7. Liang, M. T., and Su, P. J., “Detection of the Corrosion Damage of Rebar in Concrete Using Impact-Echo Method”, Cement and Con- crete Research, Volume 31, Issue 10, Pages 1427-1436, 2001. 8. Loh, C. H., Wu, T. C., and Huang, N. E., “Application of the Em- pirical Mode Decomposition-Hilbert Spectrum Method to Identify Near-Fault Ground-Motion Characteristics and Structural Responses”, Bulletin of the Seismological Society of America, Volume 91, Issue 5, Pages 1339-1357, 2001. 9. Colla, C., and Lausch, R., “Influence of Source Frequency on Impact Echo Data Quality for Testing Concrete Structures”, NDT & E Inter- national, Volume 36, Issue 4, Pages 203-213, 2003. 10. Melhem, H., and Kim H., “Damage Detection in Concrete by Fourier and Wavelet Analyses”, Journal of Engineering Mechanics, Volume 129, Issue 5, Pages 517-577, 2003. 11. Li, Y. F., Chang, S. Y., Tzeng, W. C., and Huang, K., “The Pseudo Dynamic Test of RC Bridge Columns Analyzed Through The Hilbert- Huang Transform”, Journal of Mechanics, Volume 19, Issue 3, Pages 373-387, 2003. 12. Ovanesova, A. V., and Suárez, L. E., “Application of Wavelet Trans- forms to Damage Detection in Frame Structures”, Engineering Struc- tures, Volume 26, Issue 1, Pages 39-49, 2004. 13. Lin, Y., Chang, C., Kuo, S. F., Liou, H. C., “A simple Device for De- tecting Impact Time in Impact-Echo Testing of Concrete”, NDT & E International, Volume 37, Issue 1, Pages 1-8, 2004. 14. Chiang, C. H., and Cheng, C. C., “Detecting Rebars and Tubes inside Concrete Slabs Using Continuous Wavelet Transform of Elastic Waves”, Journal of Mechanics, Volume 20, Issue 4, Pages 297-302, 2004. 15. Douka, E., and Hadjileontiadis, L. J., “Time-Frequency Analysis of the Free Vibration Response of a Beam with a Breathing Crack”, NDT & E International, Volume 38, Issue 1, Pages 3-10, 2005. 16. Shokouhi, P., Gucunski, N., and Maher, A., “Time-Frequency Tech- niques for the Impact-Echo Data Analysis and Interpretations”, Pro- ceedings of the 9th European Conference on Non-Destructive Testing, Pages 1-10, Berlin. 17. Yeh, P. L., “The Time-Frequency Domain Analysis and Image Method of the Impact-Echo Method”, Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan, 2006. 18. Cheng, C. C., Lin, Y., Hsiao, C. M., and Chang, H. C., “Evaluation of Simulated Transfer Functions of Concrete Plate Derived by Impact- Echo Method”, NDT & E International, Volume 40, Issue 3, Pages 239-249, 2007. 19. Achenbach, J. D., Wave Propagation in Elastic Solids, New York, North-Holland Publishing Company, 1973. 20. Goldsmith, W., Impact: The Theory and Physical Behavior of Colliding Solids, London, Edward Arnold, 1960. 21. Cooley, J. W., and Turkey, J. W., “An Algorithm for the Machine Calculation of Complex Fourier Series”, Mathematics of Com- putation, Volume 19, Issue 90, Pages 297-201, 1965. 22. Simpson, W. A., “Time-Frequency-Domain Formulation of Ultra- sonic Frequency Analysis”, Journal of the Acoustical Society of America, Volume 56, Issue 6, Pages 1776-1781, 1974. 23. Daubechies, I., “Ten Lectures on Wavelets”, CBMS-NSF Regional Conference Series in Applied Mathematics, Volume 61, the Society for Industrial Applied Mechanics, Pages 357, 1992. 24. Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, S. H., Zheng, Q., Tung, C. C., and Liu, H. H., “The Empirical Mode Decomposi- tion and the Hilbert Spectrum for Nonlinear and Non-stationary Time Series Analysis”, Proceedings of the Royal Society A, Volume 454, Issue 1971/March 08, Pages 903-995, 1998. 25. Cohen, L., Time-Frequency Analysis, New Jersey, Prentice Hall, 1995. 26. Oppenheim, A. V., Schafer, R. W., and Buck, J. R., Discrete-Time Signal Processing, 2nd edition, New Jersey, Prentice Hall, 1999. 27. Bendat, J. S., and Piersol, A. G., Random data: Analysis and Mea- surement Procedures, 3rd edition, New York, Wiley, 1986. 28. Oliveira, P. M., and Barroso, V., “Definitions of Instantaneous Fre- quency under Physical Constrains”, Journal of the Franklin Institute, Volume 337, Issue 4, Pages 303-316, 2000. 29. Gabor, D., “Theory of Communication”, Proc. IEE, Volume 93, Pages 429-457, 1946. 30. Ville, J., “Théorie et Applications de la Notion de Signal Analytique”, Câbles et Transm., Volume 2éme. A., Issue 1, Pages 61-74, 1948. 31. Schwartz, M., Bennett, W. R., and Stein, S., Communications Systems and Techniques, New York, McGraw-Hill, 1966. 32. Rice, S. O., “Mathematical Analysis of Random Noise”, Bell System Technical Journal, Volume 23, Pages 282-310, 1944a. 33. Melville, W. K., “Wave Modulation and Breakdown”, Journal of Fluid Mechanics, Volume 128, Pages 489-506, 1983. 34. Boashash, B., “Estimating and Interpreting the Instantaneous Fre- quency of a Signal-Part 1: Fundamentals”, Proceedings of the IEEE, Volume 80, Issue 4, Pages 520-538, 1992. 35. Titchmarsh, E. C., Introduction to the Theory of Fourier Integrals, Oxford, Oxford University Press, 1948. 36. Qin, S. R., and Zhong, Y. M., “A New Envelope Algorithm of Hilbert-Huang Transform”, Mechanical System and Signal Pro- cessing, Volume 20, Issue 8, Pages 1941-1952, 2006. 37. Huang, N. E., The Hilbert-Huang Transform in Engineering, New York, Taylor & Francis, 2005. 38. Huang, N. E., Hilbert-Huang Transform and Its Applications, Sin- gapore, World Scientific Publishing Co. Pte. Ltd, 2005. 39. Huang, N. E., Shen, Z., and Long, S. R., “A New View of Nonlinear Water Waves: The Hilbert Spectrum”, Annual Review of Fluid Mechanics, Volume 31, Pages 417-457, 1999. 40. Huang, N. E., Wu, M. C., Long, S. R., Shen, S. S. P., Qu, W., Gloersen, P., and Fan, K. L., “A Confidence Limit for the Empirical Mode Decomposition and Hilbert Spectrum Analysis”, Proceedings of the Royal Society A, Volume 459, Issue 2037/ September 08, Pages 2317-2345, 2003. 41. Rilling, G., Flandrin, P., and Goncalves, P., “On Empirical Mode Decomposition and Its Algorithms”, IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing NSIP-03, Grado (I), 2003. 42. Peng, Z. K., Tse, P. W., and Chu, F. L., “An Improved Hilbert-Huang Transform and Its Application in Vibration Signal Analysis”, Journal of Sound and Vibration, Volume 286, Pages 187-205, 2005. 43. Wu, Z., and Huang, N. E., “A Study of the Characteristics of White Noise Using the Empirical Mode Decomposition Method”, Pro- ceedings of the Royal Society A, Volume 460, Issue 2046/June 08, Pages 1597-1611, 2004. 44. Flandrin, P., Rilling, G., and Goncalves, P., “Empirical Mode De- composition as a Filter Bank”, IEEE Signal Processing Letters, Volume 11, Issue 2, Pages 112-114, 2004. 45. Adam, O., “The Use of the Hilbert-Huang Transform to Analyze Transient Signals Emitted by Sperm Whales”, Applied Acoustics, Volume 67, Issues 11-12, Pages 1134-1143, 2006. 46. Yang, Z., Qi, D., and Yang, L., “Signal Period Analysis Based on Hilbert-Huang Transform and Its Application to Texture Analysis”, Proceedings of the Third International Conference on Image and Graphics, Hong Kong, China, Pages 430-433, 2004. 47. LSTC, LS-DYNA Theoretical Manual, California, Livermore Soft- ware Technology Corporation, 1998. 48. LSTC, LS-DYNA Keyword User’s Manual, California, Livermore Software Technology Corporation, 2003. 49. ETA, eta/FEMB-PC User’s Manual, Troy, Engineering Technology Associates, INC, 2003. 50. Bedrosian, E., “A Product Theorem for Hilbert Transforms”, Pro- ceedings of the IEEE, Volume 51, Issue 5, Pages 868-869, 1963. 51. Bedrosian, E., and Stark, H., “Comments on 'An Extension of the Hilbert Transform Product Theorem' ”, Proceedings of the IEEE, Volume 60, Issue 2, Pages 228-229, 1972. 52. Gabor, D., “Communication Theory, Past, Present and Prospective”, IEEE Transactions on Information Theory, Volume 1, Issue 1, Pages 2-4, 1953. 53. Gabor, D., “Communication Theory and Physics”, IEEE Transactions on Information Theory, Volume 1, Issue 1, Pages 48-59, 1953. 54. Nuttall, A. H., “On the Quadrature Approximation to the Hilbert Transform of Modulated Signals”, Proceedings of the IEEE, Volume 54, Issue 10, Pages 1458-1459, 1966. 55. Rihaczek, A. W., and Bedrosian, E., “Hilbert Transforms and the Complex Representation of Real Signals”, Proceedings of the IEEE, Volume 54, Issue 3, Pages 434-435, 1966. 56. http://perso.ens-lyon.fr/patrick.flandrin 57. 杜平安, 有限元原理、建模及應用, 北京,國防工業出版社, 2004. 58. 黃自然, “佈置多層鋼筋網之厚混凝土版之缺陷偵測”, 碩士論文, 國立台灣大學應用力學研究所, 2003. 59. 蔡承霖, “應力波法在挫曲束制消能支撐非破壞檢測之應用”, 碩士論文, 國立台灣大學應用力學研究所, 2006. 60. 趙海鷗, LS-DYNA動力分析指南, 北京, 兵器工業出版社, 2003. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28104 | - |
dc.description.abstract | 本研究之主旨為探討希爾伯–黃轉換(Hilbert–Huang Transform) 與其它訊號處理方法之差異,並將之應用於敲擊回音試驗,評估其可行性,最後提出定位裂縫的新訊號處理程序,使頻譜更清晰、峰值更明顯,且裂縫尖峰易判讀。
希爾伯–黃轉換為一非線性且非穩態之時間–頻率域訊號處理方法。在此轉換中,訊號首先以經驗模態分解法做自適性的分解,自動地產生構成此訊號的分量,稱為本質模態函數(Intrinsic Mode Function),再利用希爾伯轉換求得每個本質模態函數的即時頻率與即時振幅,最後在時間–頻率軸所構成之二維圖譜上繪製即時振幅之等高線圖,即為希爾伯頻譜。透過希爾伯頻譜,便可更進一步解析隱含於訊號中的物理意義。 本研究嘗試以希爾伯–黃轉換分析敲擊回音訊號,發現其希爾伯頻譜上為一條上下振盪的明亮軌跡,難以辨識主頻,也無法據以偵測混凝土試體內部缺陷位置。然而配合短時傅利葉轉換或小波轉換,可觀察到各本質模態函數的時間–頻率分布特徵,即可判斷出各本質模態函數所對應之物理意義。其中雜訊能量最小,其時頻圖沿時間軸或頻率軸都無明顯變化;表面波能量消散最快;內部缺陷回音訊號能量消散次之,在缺陷深度所對應之頻率會出現明顯的峰值;模態振動能量最大,但消散最慢,在對應之自然頻率也會出現峰值。一旦定出代表內部缺陷回音訊號之本質模態函數,便可對此函數進行傅利葉轉換,並找出內部缺陷之頻率尖峰。經過數值模擬與模型試驗,可發現本文所提出之訊號處理程序所得到之頻譜與原始訊號相比,干擾更少、峰值更明顯,且不受模態振動之影響。 | zh_TW |
dc.description.provenance | Made available in DSpace on 2021-06-13T00:01:06Z (GMT). No. of bitstreams: 1 ntu-96-R94543059-1.pdf: 3453866 bytes, checksum: cec963675c1a294382d54bffc17461fe (MD5) Previous issue date: 2007 | en |
dc.description.tableofcontents | 第一章 前言 1
1-1 研究動機 1 1-2文獻回顧 2 1-3 研究內容 3 第二章 敲擊回音法 6 2-1 應力波傳行為 6 2-2 敲擊回音法 8 2-3 敲擊回音試驗參數 11 2-3-1 敲擊源 11 2-3-2 總取樣時間 14 2-3-3 取樣時距 15 2-4 敲擊回音法算例 16 第三章 訊號處理方法 23 3-1 傅利葉轉換 23 3-2 短時傅利葉轉換 25 3-3 小波轉換 26 3-4 希爾伯–黃轉換 30 3-4-1 希爾伯轉換 30 3-4-1.1 基本定義 31 3-4-1.2 相位平移系統 32 3-4-1.3 希爾伯轉換的性質 34 3-4-1.4 解析訊號 37 3-4-1.5 即時頻率 42 3-4-2 經驗模態分解法 49 3-4-2.1 本質模態函數 49 3-4-2.2 經驗模態分解法 51 3-4-2.3 相關性檢測與跨零點檢測 58 3-4-3 希爾伯頻譜與邊際頻譜 61 3-5 數值算例 64 3-5-1 諧波訊號 64 3-5-2 暫態訊號與內在調頻訊號 67 3-5-3 高斯雜訊 74 3-6 敲擊回音訊號分析方法 76 第四章 數值模型 105 4-1 有限元素分析軟體簡介 106 4-2 有限元素分析步驟 107 4-2-1 幾何模型建立 107 4-2-2 網格劃分 108 4-2-3 元素定義 109 4-2-4 負載與束制 111 4-2-5 求解 112 4-2-6結果分析 113 4-3 數值模型訊號分析 113 4-3-1 數值模型一 113 4-3-2 數值模型二 120 4-4 小結 123 第五章 模型試驗 141 5-1 模型試體 141 5-2 實驗設備 142 5-3 測點佈置 143 5-4 實驗參數 144 5-5 模型試驗訊號分析 145 5-5-1 模型試驗一 146 5-5-2 模型試驗二 156 5-6 小結 160 第六章 結論與展望 187 參考文獻 190 | |
dc.language.iso | zh-TW | |
dc.title | 經驗模態分解法於敲擊回音法之應用 | zh_TW |
dc.title | Application of the Empirical Mode Decomposition in the Impact-Echo Method | en |
dc.type | Thesis | |
dc.date.schoolyear | 95-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 郭茂坤,李有豐 | |
dc.subject.keyword | 敲擊回音,經驗模態分解法,本質模態函數,希爾伯轉換,非破壞檢測, | zh_TW |
dc.subject.keyword | Impact-Echo,Empirical Mode Decomposition,Intrinsic Mode Function,Hilbert Transform,Non-destructive Test, | en |
dc.relation.page | 194 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2007-07-31 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 應用力學研究所 | zh_TW |
顯示於系所單位: | 應用力學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-96-1.pdf 目前未授權公開取用 | 3.37 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。