請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28096完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李君浩(Jiun-Haw Lee) | |
| dc.contributor.author | Chin-An Tseng | en |
| dc.contributor.author | 曾慶安 | zh_TW |
| dc.date.accessioned | 2021-06-13T00:01:00Z | - |
| dc.date.available | 2012-08-01 | |
| dc.date.copyright | 2007-08-01 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-31 | |
| dc.identifier.citation | [1] A. Bernanose, M. Comte and P. Vouaux, “Sur um nouveau mode demission lumineuse chez certains composes organiques”, J. Chim. Phys., 50, 261 (1953)
[2] C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes”, Appl. Phys. Lett., 51, 913 (1987) [3] L. S. Hung and C. H. Chen, “Recent progress of molecular organic electroluminescent materials and devices”, Mater. Sci. Eng. R, 39, 143 (2002) [4] J. Blochwitz, T. Fritz, M. Pfeiffer, K. Leo, D. M. Alloway, P. A. Lee, and N. R. Armstrong, “Interface electronic structure of organic semiconductors with controlled doping levels”, Org. Electronics, 2, 97 (2001) [5] D. Heithecker, A. Kammoun, T. Dobbertin, T. Riedl, E. Becker, D. Metzdorf, D. Schneider, H. H. Johannes, and W. Kowalsky, “Low-voltage organic electroluminescence device with an ultrathin, hybrid structure”, Appl. Phys. Lett., 82, 4178 (2003) [6] H. Heil, J. Steiger, S. Karg, M. Gastel, H. Ortner, H. V. Seggern, and M. Stobel, 'Mechanisms of injection enhancement in organic light-emitting diodes through an Al/LiF electrode”, J. Appl. Phys., 89, 420 (2001) [7] T. M. Brown and R. H. Friend, I. S. Millard, D. J. Lacey, T. Butler, J. H. Burroughes, and F. Cacialli, “Electronic line-up in light-emitting diodes with alkali-halide/metal cathodes”, J. Appl. Phys., 93, 6159 (2003) [8] C. C. Wu, C. I. Wu, J. C. Sturm, and A. Kahn, “Surface modification of indium tin oxide by plasma treatment: An effective method to improve the efficiency, brightness, and reliability of organic light emitting devices”, Appl. Phys. Lett., 70, 1348 (1997) [9] M. G. Mason, L. S. Hung, C. W. Tang, S. T. Lee, K. W. Wong, and M. Wang, “Characterization of treated indium–tin–oxide surfaces used in electroluminescent devices”, J. Appl. Phys., 86, 1688 (1999) [10] J. S. Kim, M. Granstroぴm, and R. H. Friend, N. Johansson and W. R. Salaneck, R. Daik and W. J. Feast, and F. Cacialli, “Indium–tin oxide treatments for single- and double-layer polymeric light-emitting diodes: The relation between the anode physical, chemical, and morphological properties and the device performance”, J. Appl. Phys., 84, 6859 (1998) [11] D. J. Milliron, I. G. Hill, C. Shen, A. Kahn, and J. Schwartz, “Surface oxidation activates indium tin oxide for hole injection”, J. Appl. Phys., 87, 572 (2000) [12] P. E. Burrows, V. Bulovic, S. R. Forrest, L. S. Sapochak, D. M. McCarty, and M. E. Thompson, “Reliability and degradation of organic light emitting devices”, Appl. Phys. Lett., 65, 2922 (1994) [13] Y. Hamada, C. Adachi, T. Tsutsui, and S. Saito, “Blue-Light-Emitting Organic Electroluminescent Devices with Oxadiazole Dimer Dyes as an Emitter”, Jpn. J. Appl. Phys., 31, 1812 (1992) [14] V. E. Choong, S. Shi, J. Curless, C. L. Shieh, H. C. Lee, J. Shen and J. Yang, “Organic light-emitting diodes with a bipolar transport layer”, Appl. Phys. Lett., 75, 172 (1999) [15] D. Ma, C. S. Lee, S. T. Lee, and L. S. Hung,“ Improved efficiency by a graded emissive region in organic light-emitting diodes“, Appl. Phys. Lett., 80, 3641 (2002) [16] J. H. Lee, C. I Wu, S. W. Liu, C. A. Huang, and Y. Chang, “Mixed host organic light-emitting devices with low driving voltage and long lifetime”, Appl. Phys. Lett., 86, 103506 (2005) [17] C. H. Hsiao, J. H. LEE, and C. A. Tseng, “Probing recombination-rate distribution in organic light-emitting devices with mixed-emitter structure”, Chem. Phys. Lett., 427 305 (2006) [18] L. B. Lin, S. A. Jenekhe, and P. M. Borsenberger, “High electron mobility in bipolar composites of organic molecules“, Appl. Phys. Lett., 69, 3495 (1996) [19] C. Qiu, H. Chen, M. Wong, and H. S. Kwok, “Dependence of the Current and Power Efficiencies of Organic Light-Emitting Diode on the Thickness of the Constituent Organic Layers”, IEEE Trans. Electron Devices, 48, 2131 (2001) [20] T. H. Liu, C. Y. Iou, S. W. Wen, and C. H.Chen, “4- (Dicyanomethylene)-2-t-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H- pyran doped red emitters in organic light-emitting devices”, Thin Solid Films, 441, 223 (2003) [21] M. K. Fung, Z. Q. Gao, C. S. Lee and S. T. Lee,” Inhibition of dark spots growth in organic electroluminescent devices”, Chem. Phys. Lett., 333, 432 (2001) [22] H. Aziz, Z. Popovic, C. Tripp, N. X. Hu, and A. M. Hor and G. Xu,” Degradation processes at the cathode/organic interface in organic light emitting devices with Mg:Ag cathodes”, Appl. Phys. Lett., 72, 2642 (1998) [23] S. F. Lim, L. Ke, W. Wang, and S. J. Chua, “Correlation between dark spot growth and pinhole size in organic light-emitting diodes”, Appl. Phys. Lett., 78, 2116 (2001) [24] S. Gardonio, L. Gregoratti, P. Melpignano, L. Aballe, V. Biondo, R. Zamboni, M. Murgia, S. Caria, and M. Kiskinova, “Degradation of organic light-emitting diodes under different environment at high drive conditions”, Org. Electronics, 8, 37 (2007) [25] M. Y. Chan, S. L. Lai, F. L. Wong, O. Lengyel, C. S. Lee , S. T. Lee “Efficiency enhancement and retarded dark-spots growth of organic light-emitting devices by high-temperature processing” Chem. Phys. Lett., 371, 700 (2003) [26] Y. Kim, D. Choi, H. Lim, and C. S. Ha, “Accelerated pre-oxidation method for healing progressive electrical short in organic light-emitting devices”, Appl. Phys. Lett., 82, 2200 (2003) [27] S. A. Van Slyke, C. H. Chen, and C. W. Tang, “Organic electroluminescent devices with improved stability”, Appl. Phys. Lett., 69, 2160 (1996) [28] Y. Luo, H. Aziz, Z. D. Popovic, and G. Xu, “Correlation between electroluminescence efficiency and stability in organic light-emitting devices under pulsed driving conditions”, J. Appl, Phys., 99, 054508 (2006) [29] E. M. Han, L. M. Do, N. Yamamoto, and M. Fujihira, “Crystallization of organic thin films for electroluminescent devices”, Thin Solid Films, 273, 202 (1996) [30] Y. Hamada, T. Sano, K. Shibata, and K. Kuroki, “Influence of the Emission Site on the Running Durability of Organic Electroluminescent Devices”, Jpn. J. Appl. Phys., 34, 824 (1995) [31] C. Adachi, K. Nagai, and N. Tamoto, “Molecular design of hole transport materials for obtaining high durability in organic electroluminescent diodes”, Appl. Phys. Lett., 66, 2679 (1995) [32] Y. Shirot, K. Okumoto, and H. Inada, “Thermally stable organic light-emitting diodes using new families of hole-transporting amorphous molecular materials”, Synth. Met., 111, 387 (2000) [33] S. T. Lee and Z. Q. Gao, and L. S. Hung, “Metal diffusion from electrodes in organic light-emitting diodes“, Appl. Phys. Lett., 75, 1404 (1999) [34] H. Vestweber, W. Riess, “Highly efficient and stable organic light-emitting diodes”, Synth. Met., 91, 181 (1997) [35] S. A. Carter, M. Angelopoulos, S. Karg, P. J. Brock, J. C. Scott, “Polymeric anodes for improved polymer light-emitting diode performance”, Appl. Phys. Lett., 70, 2067 (1997) [36] J. R. Sheats, D. B. Roitman, “Failure modes in polymer-based light-emitting diodes”, Synth. Met., 95, 79 (1998) [37] J. Shen, D. Wang, E. Langlois, W. A. Barrow, P. J. Green, C. W. Tang, J. Shi, “Degradation mechanisms in organic light emitting diodes”, Synth. Met., 111, 233 (2000) [38] M. Yahiro, D. Zou, and T. Tsutsui, “Recoverable degradation phenomena of quantum efficiency in organic EL devices”, Synth. Met., 111, 245 (2000) [39] F. Li, J. Feng, and S. Liu, “Degradation of organic light-emitting devices under different driving model”, Synth. Met., 137, 1103 (2003) [40] D. Zou, M. Yahiro, and T. Tsutsui, “Study on the degradation mechanism of organic light-emitting diodes (OLEDs)”, Synth. Met., 91, 191 (1997) [41] H. Aziz, Z. D. Popovic, N. X. Hu, A. M. Hor, G. Xu, “Degradation Mechanism of Small Molecule-Based Organic Light-Emitting Devices”, Science, 283, 1900 (1999) [42] Z. D. Popovic, H. Aziz, N. X. Hu, A. Ioannidis, and P. N. M. dos Anjos, ”Simultaneous electroluminescence and photoluminescence aging studies of tris.8-hydroxyquinoline. aluminum-based organic light-emitting devices”, J. Appl. Phys., 89, 4673 (2001) [43] H. Aziz and Z. D. Popovic, “Degradation Phenomena in Small -Molecule Organic Light-Emitting Devices”, Chem. Mater., 16, 4522 (2004) [44] D. Y. Kondakov, J. R. Sandifer, C. W. Tang, and R. H. Young, “Nonradiative recombination centers and electrical aging of organic light-emitting diodes: Direct connection between accumulation of trapped charge and luminance loss”, J. Appl. Phys., 93, 1008 (2003) [45] D. Y. Kondakov, “Direct observation of deep electron traps in aged organic light emitting diodes”, J. Appl, Phys., 97, 024503 (2005) [46] M. Matsumura, and Y. Jinde, “Change of the depth profile of a light-emitting zone in organic EL devices with their degradation”, Synth. Met., 91, 197 (1997) [47] M. Matsumura, A. Ito, and Y. Miyamae, “Accumulation of positive charges in organic light-emitting diodes with a double-layer structure”, Appl. Phys. Lett., 75, 1042 (1999) [48] J. Shen, and J. Yang, “Carrier transport in organic alloy light emitting diodes”, J. Appl. Phys., 87, 3891 (2000) [49] S. Naka, K. Shinno, H. Okada, H. Onnagawa, and K. Miyashita, “Organic Electroluminescent Devices Using a Mixed Single Layer”, Jpn. J. Appl. Phys., 33, 1772 (1994) [50] A. B. Chwang, R. C. Kwong, and J. J. Brown, “Graded mixed-layer organic light-emitting devices”, Appl. Phys. Lett., 80, 725 (2002) [51] G. Horowitz, “Organic Field-Effect Transistors”, Adv. Mater., 10, 365 (1998) [52] M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov,S. Sibley, M. E. Thompson ,and S. R. Forrest, “Highly efficient phosphorescent emission from organic electroluminescent devices” Nature, 395, 151 (1998) [53] J. Frenkel, “On pre-Breakdown Phenomena in Insulators and Electronic Semi-Conductors”, Phys. Rev., 54, 647 (1938) [54] P. G. L. Comber, and W. E. Spear, “Electronic Transport in Amorphous Silicon Films”, Phys. Rev. Lett., 25, 509 (1970) [55] J. Kido, K. Hongawa, K. Okuyama, and K. Nagai, “Bright blue electroluminescence from poly(N-vinylcarbazole)”, Appl. Phys. Lett., 63, 2627 (1993) [56] S. E. Shaheen, G. E. Jabbour, B. Kippelen, N. Peyghambarian, J. D. Anderson, S. R. Marder, N. R. Armstrong, E. Bellmann and R. H. Grubbs, “Organic light-emitting diode with 20 lm/W efficiency using a triphenyldiamine side-group polymer as the hole transport layer”, Appl. Phys. Lett., 74, 3212 (1999) [57] N. Tamoto, C. Adachi, and K. Nagai, “Electroluminescence of 1,3,4-Oxadiazole and Triphenylamine-Containing Molecules as an Emitter in Organic Multilayer Light Emitting Diodes”, Chem. Mater., 9, 1077 (1997) [58] B. Chen, C. S. Lee, S. T. Lee, P. Webb, Y. C. Chen, W. Gambling, H. Tian, and W. Zhu, ” Improved Time-of-Flight Technique for Measuring Carrier Mobility in Thin Films of Organic Electroluminescent Materials”, Jpn. J. Appl. Phys., 39, 1190 (2000) [59] C. Adachi, T. Tsutsui, and S. Saito, “Organic electroluminescent device having a hole conductor as an emitting layer”, Appl. Phys. Lett., 55, 1489 (1989) [60] J. Kido, C. Ohtaki, K. Hongawa, K. Okuyama, and K. Nagai, “1,2,3- Triazole Derivative as an Electron Transport Layer in Organic Electroluminescent Device”, Jpn. J. Appl. Phys., 32, L917 (1993) [61] 蔡信宏, Study of Host Materials for Phosphorescent Organic Light-emitting Devices, 台大光電所碩士論文 (2006) [62] 林典群, High-Efficiency Blue Organic Light-Emitting Device and the Study of the Mixed-Layer Emitting Layer, 台大光電所碩士論文 (2005) [63] 吳佳芳, Electrical and Optical Measurements of Blue Organic Light-Emitting Devices, 台大光電所碩士論文 (2005) [64] 蕭智鴻, Study on carrier distribution and measurement of water vapor permeation rate in organic light-emitting devices , 台大光電所碩士論文 (2006) [65] H. Tokuhisa, M. Era, T. Tsutsui, and S. Saito, “Electron drift mobility of oxadiazole derivatives doped in polycarbonate”, Appl. Phys. Lett., 66, 3433 (1995) [66] L. S. Hung, R. Q. Zhang, P. He and G. Mason, “Contact formation of LiF/Al cathodes in Alq-based organic light-emitting diodes”, J. Phys. D: Appl. Phys., 35, 103 (2002) [67] D. Yoshimura, T. Yokoyama, E. Ito, H. Ishii, Y. Ouchi, S. Hasegawa, and K. Seki, “Electronic Structure of Alq3/LiF/Al Interfaces Studied by UV Photoemission”, Synth. Met., 102, 1145 (1999) [68] S. E. Shaheen, G. E. Jabbour, M. M. Morrell, Y. Kawabe, B. Kippelen, N. Peyghambarian, M. F. Nabor, R. Schlaf, E. A. Mash, and N. R. Armstrong, “Bright blue organic light-emitting diode with improved color purity using a LiF/Al cathode”, J. Appl. Phys., 84, 2324 (1998) [69] M. Matsumura and Y. Jinde, “Analysis of current–voltage characteristics of organic light emitting diodes having a LiF/Al cathode and an Al–hydroxyquinoline/diamine junction”, Appl. Phys. Lett., 73, 2872 (1998) [70] G. E. Jabbour, J. F. Wang, and N. Peyghambarian, “High-efficiency organic electrophophorescent devices through balance of charge injection”, Appl. Phys. Lett., 80, 2026 (2002) [71] G. Parthasarathy, C. Shen, A. Kahn, and S. R. Forrest, “Lithium doping of semiconducting organic charge transport materials”, J. Appl. Phys., 89, 4986 (2001) [72] Y. H. Song, S. J. Yeh, C. T. Chen, Y. Chi, C. S. Liu, J. K. Yu, Y. H. Hu, P. T. Chou, S. M. Peng, and G. H. Lee, “Bright and Efficient, Non-Doped, Phosphorescent Organic Red-Light-Emitting Diodes” Adv. Funct. Mater., 14, 1221 (2004) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28096 | - |
| dc.description.abstract | 在本篇論文中,我們研究了混合層結構發光二極體對操作時間的影響,我們利用插入一層紅色薄膜染料去觀察元件頻譜的變化,發現混合層元件衰減的程度,跟載子複合多寡的位置是有很大的相關性的。經由光激發光來探討元件材料的衰減,發現載子複合最多的區域,材料也被破壞的最多。我們認為,焦耳熱影響混合層結構元件非均勻的衰減相關。
此外,我們使用一個新合成材料來當作電子傳輸層,並將元件跟一般傳統元件比較,驅動電壓在25mA/cm2時有著2.2伏特的降低。我們也使用電洞傳輸層及電子傳輸層作為紅色磷光發光層之主體材料,並達到 14.3cd/A 之電流效率及 2.5V 驅動電壓之降低。 | zh_TW |
| dc.description.abstract | In this thesis, we study the degradation phenomena in a mixed-host (MH) organic light-emitting device (OLED) by using ultra-thin probe method. We observed spectral shift and then stable during the aging process, which results from materials decay. Non-uniform materials degradation with time at different positions of the MH emitting layer (EML) is observed by using photoluminescence measurement to define the intrinsic decay of materials. The decay rate exhibits similar trends to the recombination distribution in the MH-EML, which means degradation is a heat-assisted process.
Besides, we used a novel material, 1,1'-bis(2-phenyl-1,3,4-oxadiazol-5-yl) ferrocene (Fe-OXD), as electron transport layer (ETL) material which reduces the turn-on voltage by 2.2V at the current density 25mA/cm2 as compared to the conventional OLED. ETL and hole-transport layer materials are used as the host of the EML in a red phosphorescent, which shows a high efficiency of 14.3cd/A and a 2.5V lower driving voltage at 14mA/cm2. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T00:01:00Z (GMT). No. of bitstreams: 1 ntu-96-J94941016-1.pdf: 2169663 bytes, checksum: dbdfbb2c4cd7d8ca370d402752ccf501 (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | Contents
Chapter 1 Introduction 1 1.1 Degradation of OLED 3 1.1.1 Extrinsic Degradation 4 1.1.2 Intrinsic Degradation 7 1.2 Mixing Layer Technology 11 1.3 HTL and ETL Materials 13 1.3.1 Hole-transporting materials 14 1.3.2 Electron-transporting materials 16 1.4 Motivation 18 1.5 Thesis Organization 19 Chapter 2 Exprimental setup 20 2.1 Fabrication of OLED 21 2.2 Vacuum change shadow mask system design 24 2.3 Measurement systems 28 2.3.1 B-J-V & lifetime measurement 28 2.3.2 Devices PL measurement 31 Chapter 3 Mixed Host OLED Degradation 33 3.1 EL spectra evolution with different aging time 34 3.2 PL measurement for possible degradation mechanisms 49 3.3 Possible degradation mechanisms 56 Chapter 4 Study of Transporting Materials 58 4.1 Study of Fe-OXD 59 4.1.1 Optical characteristics 60 4.1.2 Injection and transport characteristics 61 4.1.3 Device optimization 64 4.2 Study of EML in red phosphorescent OLED 66 4.2.1 Characteristics and devices structure 68 4.2.2 Experimental results and discussions 70 Chapter 5 Conclusions 75 References 77 | |
| dc.language.iso | en | |
| dc.subject | 磷光 | zh_TW |
| dc.subject | 有機發光元件 | zh_TW |
| dc.subject | 有機發光二極體 | zh_TW |
| dc.subject | 混合層結構 | zh_TW |
| dc.subject | 劣化 | zh_TW |
| dc.subject | OLED | en |
| dc.subject | organic light-emitting device | en |
| dc.subject | phosphorescent | en |
| dc.subject | degradation | en |
| dc.subject | mixed host | en |
| dc.title | 尖端有機發光元件結構之研究 | zh_TW |
| dc.title | Research on Advanced Organic Light-Emitting Devices Structure | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 梁文傑(Man-Kit Leung),陳錦地(Chin-Ti Chen),王俊凱(Juen-Kai Wang) | |
| dc.subject.keyword | 有機發光元件,有機發光二極體,混合層結構,劣化,磷光, | zh_TW |
| dc.subject.keyword | organic light-emitting device,OLED,mixed host,degradation,phosphorescent, | en |
| dc.relation.page | 87 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-07-31 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 2.12 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
