Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 環境衛生研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28090
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林宜長
dc.contributor.authorYow-Jer Juangen
dc.contributor.author莊侑哲zh_TW
dc.date.accessioned2021-06-13T00:00:56Z-
dc.date.available2009-08-08
dc.date.copyright2007-08-08
dc.date.issued2007
dc.date.submitted2007-07-31
dc.identifier.citation1. Alessio HM, Hutchinson KM (1992) Cardiovascular adjustments to high- and low-intensity exercise do not regulate temporary threshold shifts. Scand Audiol 21, 163-72.
2. Allan JR. Thermal stresses in occupations. In: Waldron HA, editor. Occupational Health Practice. 3rd ed. Pp:175-202 London: Butterworth-Heinemann Ltd;1989.
3. American Academy of Pediatrics, Committee on Sports Medicine and Fitness (2000) Climatic heat stress and the exercising child and adolescent. Pediatrics 106(1):158-9.
4. American Conference of Governmental Industrial Hygienists (ACGIH). Threshold Limit Values for Chemical Substances and Physical Agents. Cincinnati: ACGIH; 1996.
5. American Conference of Governmental Industrial Hygienists (ACGIH). Threshold Limit Values for Chemical Substances and Physical Agents. Cincinnati: ACGIH; 2000.
6. American Industrial Hygiene Association (AIHA). Heating and Cooling for Man in Industry. 2nd ed. AIHA; 1975.
7. Armstrong LE, Epstein Y, Greenleaf JE, Haymes EM, Hubbard RW, Roberts WO, Thompson PD (1996) ACSM Position stand: heat and cold illnesses during distance running. Med Sci Sports Exerc 28,i-x.
8. ANSI S3.1-1999 (R2003) Maximum Permissible Ambient Noise Levels for Audiometric Test Rooms. American National Standards Institute, New York.
9. Axelsson A, Vertes D, Miller J (1980) Immediate noise effects on cochlear vasculature in the guinea pig. Acta Otolaryngol (Stockh) 91,237-46.
10. Babaian MA, Denisov EI (1991) Combined effects of noise and heat and the evaluation of their biological equivalency. Gig Tr Prof Zabol 9, 24-7.
11. Bedford T, Warner B (1934) The globe thermometer in studies of heating and ventilation. J Hyg 34,458-73.
12. Bendell A, Disney J, Pridmore WA (1989) Taguchi Methods: Applications in World Industry. Pp:38-89. Kempston, Bedford, IFS Publications.
13. Bernard TE, Ashley CD, Schwartz SW, Caravello V. Making heat stress assessment relevant again. NIOSH Research Reports (1R01 OH03983), 2004.
14. Botsford JH. (1967) Simple method for identifying acceptable noise exposure. J Acoust Soc Am 42, 810-19.
15. Brotherhood JR (1987) The practical assessment of heat stress. In: Heat Stress: Physical Exertion and Environment. Edited by Hales, J.R.S., Richards, D.A.B., Elsevier Science Publishers.
16. BS 7963 (2000) Ergonomics of the thermal environment- guide to the assessment of heat strain in workers wearing personal protective equipment. BSI, London.
17. Buonanno G, Frattolillo A, Vanoli L (2001) Direct and indirect measurement of WBGT index in transversal flow. Measurement, 29:127–35.
18. Cai XP, Wang JP, Zhang TY (2000) Combined effects of high temperature and noise on human hearing. Chin Occup Med 27, 32-4 (in Chinese).
19. Candas V, Hoeft A (1995) Clothing, assessment and effects on thermophysiological response of man working in humid heat. Ergonomics 38:115-27.
20. CHABA (1988) Committee on Hearing, Bioacoustics and Biomechanics. Working group on speech understanding. Speech understanding and aging. J Acoust Soc Am 83, 859-95.
21. Chaturvedi RC, Rai RM, Sharma RK (1991) Influence of noise spectra on auditory frequencies & degree of temporary threshold shift. Indian J Med Res (B) 94, 107-14.
22. Chen ML, Chen CJ, Yeh WY, Huang JW, Mao IF (2003) Heat stress evaluation and worker fatigue in a steel plant. Am Ind Hyg Assoc J 64:352-9.
23. de Dear RJ, Leow KG., and Ameen A (1991) Thermal comfort in the humid tropics-part I: climate chamber experiments on temperature preferences in Singapore. ASHRAE Transactions, 97(part 1):874-79
24. Dohi M, Maruyama Y (1990) Ride comfort optimization for commercial trucks. Society of Automotive Engineer 42, 890-902.
25. Dukes-Dobos F, Henschel A.(1973) Development of permissible heat exposure limits for occupational work. ASHRAE Journal 57-62.
26. Epstein Y, Moran D. Thermal comfort and the heat stress indices. Ind Health 2006; 44: 388-98.
27. Fang L, Clausen G., and Fanger PO (1998). Impact of temperature and humidity on perception of indoor air quality during immediate and longer whole-body exposures. Indoor Air 8, 276-284.
28. Figa-Talamanca I, Dell’Orco V, Pupi A, Dondero F, Gandini L, Lenzi A, Lombardo F, Scavalli P, Mancini G (1992) Fertility and semen quality of workers exposed to high temperatures in the ceramics industry. Reprod Toxicol 6:517-523.
29. Franks JR, Morata TC (1996) Ototoxic effects of chemicals alone or in concert with noise: a review of human studies. pp437-46. In: Scientific Basis of Noise-Induced Hearing Loss. Edited by Axelsson A, Hellstrom PA, Borchgrevink H, Henderson D, Hamernik RP, Salvi RJ, Thieme Medical Publishers, Inc. New York.
30. Gagge AP, Nishi Y (1977) Heat exchange between the human skin surface and thermal environment. In: Handbook of Physiology: Reactions to Environmental Agents, edited by DHK Lee, HL Falk, and SD Murphy. Bethesda, MD: Am. Physiol. Soc., p69-92.
31. Givoni B. Man, climate and architecture. 2nd ed. New York: Van Nostrand Reinhold Company Ltd; 1976.
32. Goldman RF (1988) Standards for human exposure to heat. Pp99-136. In: Environmental ergonomics: sustaining human performance in harsh environment. Edited by Mekjavic IB, Banister EW, Morrison JB. Tailor & Francis Ltd, London.
33. Grether WF, Harris CS, Mohr G.C, Nixon CW, Ohlbaum M, Sommer HC, Thaler VH, Veghte JH (1971) Effects of combined heat, noise and vibration stress on human performance and physiological functions. Aerospace Med 42, 1092-7.
34. Grether WF, Harris CS, Ohlbaum M, Sampson PA, Guignard JC (1972) Further study of combined heat, noise and vibration stress. Aerospace Med 43, 641-5.
35. Griefahn B, Künemund C, Neffgen H, Sommer S (1996) Human adaption to work in two different climates. Int J Occup Safety Ergonomics 2(1):60-73.
36. Grimmer K, King E, Larsen T, Farquharson T, Potter A, Sharpe P, de Wit H (2006) Prevalence of hot weather conditions related to sports participation guidelines: a south Australian investigation. J Sci Med Sports 9:72-80.
37. Hamernik RP, Ahroon WA, Davis RI, Axelsson A (1989) Noise and vibration interactions: effects on hearing. J Acoust Soc Am 86, 2129-37.
38. Hancock PA, Pierce JO (1985) Combined effects of heat and noise on human performance: a review. Am Ind Hyg Assoc J 46, 555-66.
39. Hoshi A, Inaba Y, Murayama K (2007) Characteristics of incidence of heat disorders in Tokyo and Chiba-shi. Jpn J Biometeor 44(1):3-11. (in Japanese)
40. Houghton FC, Yaglou CP (1923) Determining equal comfort lines. J Am Soc Heat Vent Engrs 29:165-76.
41. Hsiang S, Mcgorry R, Beznerkhny I (1997) The use of Taguchi’s method for the evaluation of industrial knife design. Ergonomics, 4, 476-90.
42. Hubbard RW, Bowers WD, Matthew WT, Curtis FC, Criss REL, Sheldon GM, Ratteree JW (1977) Rat model of acute heat-stroke mortality. J Applied Physiol 42, 809-16.
43. Huphreys MA (1978) Outdoor temperatures and comfort indoors. Building Research and Practice 6:92-105.
44. Hutchinson KM, Alessio HM, Spadafore M, Adair RC (1991) Effects of low-intensity exercise and noise exposure on temporary threshold shift. Scand Audiol 20, 121-7.
45. International Organization for Standard (ISO) 1985, ISO 4677/1. Atmospheres for conditioning and testing- Determination of relative humidity- Part 1: Aspirated psychrometer method. Geneva: ISO.
46. International Organization for Standard (ISO). 1989, ISO 7243, Hot Environments- Estimation of the Heat Stress on Working Man, Based on the WBGT- Index (Wet Bulb Globe Temperature). Geneva: ISO.
47. ISO 7726: Ergonomics of the thermal environment- instruments for measuring physical quantities. Geneva: ISO, 1998.
48. Japan Society for Occupational Health (JSOH). Recommendation of ocupational eposure lmits 2001–2002). J Occup Health, 2001; 43: 208–23.
49. Japanese Industrial Standard, JIS Z 8806: Humidity- Measurement methods. Tokyo, JIS, 1995.
50. Katz J (1994) Handbook of Clinical Audiology. 4th ed Baltimore, ML: Williams & Wilkins.
51. Keatisuwan W, Ohnaka T, Tochihara Y (1996) Physiological responses of men and women during exercise in hot environments with equivalent WBGT. Appl Human Sci 15, 249-58.
52. Keim SM, Guisto JA, Sullivan JB (2002) Environmental thermal stress. Ann Agric Environ Med 9:1-15.
53. Kerslake D (1972) The Stress of Hot Environments. Cambridge University Press, Cambridge, UK.
54. Kielblock AJ. A critical review of parameters of heat tolerance with specific reference to indices of heat stress. In: Hales JRS, Richards DAB, editors. Heat stress: physical exertion and environment. Elsevier Science Publishers; 1987. p.469-78.
55. Kjerulf-Jensen P, Nishi Y, Fanger PO, and Gagge AP (1975) Investigations of man’s thermal comfort and physiological responses. American Society of Heating, Refrigerating and Air Conditioning Engineers Journal, 17, 65-8.
56. Kryter KD, Ward WD (1965) Hazardous exposure to intermittent and steady-state noise. J Acoust Soc Am 39, 451-64.
57. Lataye R, Campo P .(1997). Combined effects of a simultaneous exposure to noise and toluene on hearing function. Neurotoxicol and Teratol 19, 373-82.
58. Lee DHK (1980) Seventy-five years of searching for a heat index. Environmental Research 22:331-56.
59. Lee Y, Dzuiuban YC, Lum MW (1996) Vehicle handling design process using DOE. International Journal of Vehicle Design, 17(2):40-54.
60. Lee, CH (1986) Effects of wick contamination and thermal component variation on thermal indices. Dissertation, Texas Tech University. Texas, USA.
61. Lindgren F, Axelsson A (1988) The influence of physical exercise on susceptibility to noise-induced temporary threshold shift. Scand Audiol 17, 11-7.
62. Liu TS, Hsiao IH (1991) The Taguchi method applied to motorcycle handling. International Journal of Vehicle Design, 12(10):345-56.
63. Liu YJ, Qin J (2006) Study on hypertention influencing factors of worker exposed to heat stress and noise in a glass factory. Occup Health & Emerg Rescue 24(1):28-9. (in Chinese)
64. Lotens WA. (1988). Comparisons of thermal predictive models for clothed humans. ASHRAE Transactions 94:1321-1340.
65. Mäkitie AA, Pirvola U, Pyykkö I, Sakakibara H, Riihimäki V, Ylikoski J (2003) The ototoxic interaction of styrene and noise. Hear Res 179, 9-20.
66. Malchaire J (1995) Methodology of investigation of hot working conditions in the field. Ergonomics 38(1):73-85.
67. McCann DJ, Adams WC (1997) Wet bulb globe temperature index and performance in competitive distance runners. Med Sci Sports Exerc 29, 955-61.
68. McIntyre DA. Indoor climate. London: Applied Science Publishers Ltd;1980.
69. Meese GB, Kok R, Lewis M I, and Wyon D P (1984) A laboratory study of the performance of factory workers. Ergonomics, 27, 19-43.
70. Melnick W (1991) Human temporary threshold shift (TTS) and damage risk. J Acoust Soc Am 90, 147-54.
71. Miani C, Bertino G, Francescato MP, di Prampero PE, Staffieri A (1996) Temporary threshold shift induced by physical exercise. Scand Audiol 25, 179-86.
72. Miller JD (1974) Effects of noise on people. J Acoust Soc Am 56, 729-64.
73. Miller JM, Ren TY,Dengerink HA, Nuttall AL (1996) Cochlear blood flow changes with short sound stimulation. pp95-109. In: Scientific Basis of Noise-Induced Hearing Loss. Edited by Axelsson A, Hellstrom PA, Borchgrevink H, Henderson D, Hamernik RP, Salvi RJ, Thieme Medical Publishers, Inc. New York.
74. Mills JH, Adkins WY, Gilbert RM (1981) Temporary threshold shifts produced by wideband noise. J Acoust Soc Am 70, 390-6.
75. Mizoue T, Miyamoto T, Shimizu T (2003) Combined effect of smoking and occupational exposure to noise on hearing loss in steel factory workers. Occup Environ Med 60, 56-9.
76. Morata TC, Dunn DE, Kretschmer LK, Lemasters GL, Keith RW (1993) Occupational exposure to organic solvents and noise: effects on hearing. Scand J Work Environ Health 19, 245-54.
77. Morata TC (1989) Study of the effects of simultaneous exposure to noise and carbon disulfide on workers’ hearing. Scand Audiol 18, 53-8.
78. Morioka I, Miyai N, Yamamoto H, Miyashika K (2000) Evaluation of combined effect of organic solvents and noise by the upper limit of hearing. Industrial Health 38, 252–7.
79. Morris LA (1995) Practical issues in the assessment of heat stress. Ergonomics 38(1):183-92.
80. Nag PK, Nag A, Ashtekar SP. Thermal limits of man in moderate to heavy work in tropical farming. Industrial Health 2007, 45: 107-17.
81. National Institute for Occupational Safety and Health (NIOSH), 1986. Criteria for a recommended standard… Occupational exposure to hot environments. Revised criteria 1986. USDHHS (NIOSH) 86-113, Washington, DC.
82. Occupational Safety and Health Administration (OSHA) Heat stress. In: OSHA Technical Manual, 4th ed. Government Institutes Inc; 1996.
83. Olesen BW (1995) International standards and the ergonomics of the thermal environment. Applied Ergonomics 26(4):293-302.
84. Pan WH, Li LA, Tsai MJ (1995) Temperature extremes and mortality from coronary heart disease and cerebral infraction in elderly Chinese. Lancet 345(8946):353-5.
85. Parsons KC ( 2003) Human thermal environments: the effects of hot, moderate and cold environments on human health, comfort and performance. Taylor & Francis, London, UK.
86. Parsons KC (1993) Human Thermal Environments, Taylor & Francis, London, UK.
87. Prasher D, Morata T, Campo P, Fechter L, Johnson A, Lund SP, Pawlas K, Starck J, Sulkowski W, Sinczuk-Walczak H (2002) NoiseChem: an European Commission research project on the effects of exposure to noise and industrial chemicals on hearing and balance. IJOMEH 15, 5-11.
88. Pulket C, Henschel A, Burg WR, Saltzman BE (1980) A comparison of heat stress indices in a hot-humid environment. Am Ind Hyg Assoc J 41, 442-9.
89. Ramsey J D (1987) Practical evaluation of hot working areas. Professional Safety; 32: 42-8.
90. Ramsey JD, Burford CL, Beshir MY, Jensen RC (1983) Effects of workplace thermal conditions on safe work behavior. J safety Research 14,105-14.
91. Ramsey JD (1994) Heat and clothing effects on stay times. Int. J. Ind. Ergonomics 13:157-68.
92. Rentzsch M, Minks B (1989) Combined effects of sound, climate and air pollutants on noise-induced hearing loss. Arch Complex Environ Studies 1, 41-4.
93. Rybak LP (1992) Hearing: the effects of chemicals. Otolaryngol Head Neck Surg 106, 677-86.
94. Sawka MN, Pandolf KB (2002) Physical exercise in hot climates: physiology, performance, and biomedical issues. pp87-133. In: Medical aspects of harsh environments. Edited by Pandolf KB and Burr RE. the Office of The Surgeon General at TMM Publications, Borden Institute, Washington.
95. Shibolet S, Lancaster MC, Danon Y (1976) Heat stroke: a review. Aviation Space and Environmetal Medicine 47, 280-301.
96. Spioch FM, Debowski MT (1991) Effect of noise, exertion and thermal load on temporary auditory threshold shift (TTS) and on fatigue. Med Pr 42, 321-6.
97. Sullivan, C.D., Gorton, R.L., 1976. A method of calculation of WBGT from environmental factors. ASHRAE (2): 279-91
98. Suvorov GA, Babaian MA, Khvastunov RM (1991) Analysis of combined effects of noise and heating microclimate on various indicators of the status of the human body. Gig Tr Prof Zabol 10, 8-12.
99. Taguchi G, Konishi S, Wu Y (1992) Taguchi methods, research and development. Dearborn, Mich., American Supplier Institute 1-73.
100. Tanabe S, Arens EA, Bauman FS, Zhang H, Madsen TL (1994) Evaluating thermal environments by using a thermal manikin with controlled skin surface temperature. ASHRAE Transactions, 100: 564-77.
101. Thonneau P, Ducot B, Bugan L, Mieusset R, Spira A (1996) Heat exposure as a hazard to male fertility- letter. Lancet 347:204-5.
102. Toftum J, Langkilde G, Fanger PO (2004) New indoor environment chambers and field experiment offices for research on human comfort, health and productivity at moderate energy expenditure. Energy and Buildings 36:899-903.
103. Tsai PJ, Lo CL, Sun YM, Juang YJ, Liu HH, Chen WY, Yeh WY (2003) Evaluating the efficacy of a thermal exposure chamber designed for assessing worker’s thermal hazard. J Occup Health 45, 153-9.
104. Velez de la Calle JF, Rachou E, le Martelot MT, Ducot B, Multigner L, Thonneau PF (2001) Male infertility risk factors in a French military population. Hum Reprod 16:481-6.
105. Wang C, Wang RQ, Zhao S et al. (2003) Combined effects of heat and noise on blood pressure and ECG changes of occupational population. Ind Hlth & Occup Dis 29(5):275-7. (in Chinese)
106. Ward WD (1960) Recovery from high values of temporary threshold shift. J Acoust Soc Am 32, 497-500.
107. Ward WD (1970) Temporary threshold shift and damage-risk criteria for intermittent noise exposures. J Acoust Soc Am 48, 561-74.
108. Wenzel HG (1978) Heat stress upon undressed man due to different conbinations of elevated environmental temperature, air humidity, and metabolic heat production: a critical comparison of heat stress indices. J Human Ergol 7, 185-206.
109. WHO (1980) Environmental Health Criteria 12: Noise. Geneva, Switzerland: World Health Organization.
110. World Health Organization (WHO). Health factors involved in working under conditions of heat stress. Technical Report Series No. 412, Geneva;1969.
111. Wu YJ, Zhang JJ, Liu WW, Su SQ (2001) Study of the joint effect of hyperthermia and noise on hearing damage. Chinese J Ind Med 14(3): 158-9 (in Chinese).
112. Wyon DP, Sandberg M (1996). Discomfort due to vertical thermal gradients. Indoor Air, 6:48-54.
113. Yaglou C P, Minard CD (1957) Control of heat casualties at military training centers. A. M.A. Archives of Industrial Health 16: 302-16.
114. Yang CC, Tao HF, Wang DY (2000) Impact of combined effect of heat and noise on cardiovascular system. Ind Hlth & Occup Dis 26(6):343-5. (in Chinese)
115. Yang ZH, Wu MQ, Yin JC et al. (1996) Combined effects of exposure to heat and low frequency noise on hearing loss. Chin J Ind Hyg Occup Dis 14(4):207-9 (in Chinese).
116. Zhao J, Qiao HB, Zhang ZM, Zhang YS (2002) Study on combined effect of noise and heat exposure on hearing loss of tunnellers. Ind Health Occup Dis 28, 67-9 (in Chinese).
117. Zhao N, Tang XD, Zhong MY (2005) Combined effects of heat and noise exposure on hearing of workers making glass bottles. Chinese J Ind Med 18(3): 167-9 (in Chinese).
118. 行政院勞工委員會, (1998)。高溫作業勞工作息時間標準,行政院勞工委員會,台北。
119. 呂永達、霍仲厚(2002),特殊環境生理學。軍事醫學科學出版社,北京。
120. 邱仞之(2000),環境高溫與熱損傷。軍事醫學科學出版社,北京。
121. 劉文魁、蔡榮泰(1995)物理因素職業衛生。科學出版社,北京。
122. 劉加平、楊柳(2005),室內熱環境設計,機械工業出版社,北京。
123. 魏潤柏、徐文華(1994),熱環境。同濟大學出版社,上海。
124. 羅錦興(1999)田口品質工程指引。中國生產力中心,台北。
125. 蘇高玄、張簡玉楹、李怡慧、李采玲(2006)異常高溫時期之台灣氣候分布狀況。氣象學報第46卷第三期頁19-31。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28090-
dc.description.abstract熱壓力在大多數位於熱帶及亞熱帶地區的國家及其工作環境已是一個普遍存在具有季節性的職業與環境衛生問題,尤其是像台灣這種既熱且濕的地理環境,要如何避免因熱壓力引起的相關疾病,一直是環境衛生實務工作者必須面對的問題。本論文的研究目的主要是利用自行設計以冷凍庫板所建造之熱暴露艙,在進行穩定性與均勻性評估後,探討高溫暴露評估技術,並配合搭設放音系統進行高溫與噪音共同暴露之健康效應之研究。
高溫暴露評估技術的研究部分,首先在不同環境參數組合的81種實驗條件下,評估其對自然濕球溫度及標準黑球溫度測值的影響,其次則是同時測定131組實驗條件之氣溫、相對濕度、黑球溫度、風速與自然濕球溫度,利用Statistica 6.0統計軟體進行複回歸分析,建立自然濕球溫度之預測模式,並配合利用既有的氣象因素加上黑球溫度測值求得綜合溫度熱指數之預測值供民眾參考以預防熱危害之可行性。
高溫與噪音共同暴露之健康效應之研究部分,則利用熱暴露艙架設放音系統模擬高溫與噪音同時暴露之環境,徵求志願受測者至公立醫院實施健康檢查後進行本實驗,本研究係採用田口實驗設計法將綜合溫度熱指數、噪音音壓級、暴露時間與工作負荷量四項變數利用L9 的直交表進行高溫與噪音共同暴露的暫時性聽力損失之探討。
高溫暴露評估技術的研究結果發現,當有輻射熱源存在時,黑球的尺寸與輻射溫度愈大其黑球溫度測值也愈大,並且隨著黑球尺寸的加大,其回應時間也愈長;而風速愈大則將使其測值變小,如僅有相對濕度改變時則對黑球溫度測值無影響。在風速小於2.60 m/s之所有測試條件下,自然濕球溫度均較通風濕球溫度測值大;而且自然濕球溫度測值隨氣溫、相對濕度與輻射溫度增加而增加,但隨風速增加而降低。當熱環境的氣溫大於皮膚溫度並伴隨有明顯的輻射熱源存在時,則風速愈大會造成自然濕球溫度、黑球溫度測值與綜合溫度熱指數愈低而導致熱壓力評估的判斷錯誤。同時針對開發自然濕球溫度預測模式部份,經複迴歸分析後,發現自然濕球溫度與環境參數具有高度之相關性,其複迴歸方程式為Tnwb = 0.81×Ta + 0.05×Tg + 0.15×RH - 0.35×Va - 9.98 (R=0.996)。經初步驗證,本研究所開發之自然濕球溫度預測模式其預測值與實測值的誤差均小於1 ℃。又利用熱暴露艙探討高溫與噪音共同暴露效應的研究發現,暫時性聽力損失程度主要是取決於噪音暴露劑量並會受到工作負荷與高溫同時暴露而導致聽力損失的增加,並且暫時性聽力損失的恢復時間則由噪音暴露後的損失程度所決定。
綜合上述,利用本研究所開發之綜合溫度熱指數之預測模式,提出以綜合溫度熱指數當作高溫氣象預報指標供大眾媒體預防熱相關疾病之參考,並建議國內因應全球氣候暖化的問題,應積極進行高溫與其他環境的化學因素或是物理因素共同暴露效應的相關研究。
zh_TW
dc.description.abstractThe heat stress is one of major occupational and environmental health issues for workers and residents in the tropical and subtropical areas. The prevention of heat-related illness caused by heat stress is always the important topic for occupational hygiene practitioners, especially in Taiwan with hot and humid climate. The aims of this study are to develop the assessment techniques for thermal exposure of and health effects with simultaneous exposure to heat and noise. A climate chamber made of steel plate packed with polyurethane foam was optimized and used for the experiment.
For the thermal exposure assessment technique, we first developed 81 experimental conditions of different environmental parameters to evaluate effects of natural wet bulb temperature and globe temperature. Second, 131 sets of experimental data including air temperatures, relative humidities, globe temperatures, air velocities and natural wet bulb temperatures were generated with the prediction model of natural wet bulb temperature and analyzed using multiple regression analysis. Designed thermal and noise exposure conditions were simulated in the chamber to study the combined effects among volunteers who had received medical examination before the experiment. The L9 orthogonal array of different levels of wet bulb globe temperature, noise intensity, exposure duration and workload was determined by adopting Taguchi’s method.
It was found that globe temperature increases with the size of globe and radiant temperature when radiant heat appears, but decreases with the increasing air velocity. However, the change of relative humidity has no effect on the measurement of globe temperature. In addition, the increasing response time of globe temperature is observed for greater globe size. For air velocity smaller than 2.60 m/s, natural wet bulb temperature was found to be greater than psychrometric temperature. And measurement of natural wet bulb temperature will increase with air temperature, relative humidity and radiant temperature, but the trend is reversed when air velocity increases. Therefore, greater air velocity will result in smaller natural wet bulb temperature, globe temperature and wet bulb globe temperature, which leads to the misjudgment on heat stress. According to multiple regression analysis, it was found that natural wet bulb temperature is highly correlated with the environmental parameters. The prediction model is expressed as Tnwb = 0.81×Ta + 0.05×Tg + 0.15×RH - 0.35×Va - 9.98 (R=0.996), and the error is within 1 ℃. From the investigation of combined effects of heat and noise and workload exposure, it was observed that the temporary threshold shift driven by noise exposure is enhanced by heat and workload. The recovery time of temporary threshold shift is determined by the degree of hearing loss after noise exposure.
In conclusion, this study proposed wet bulb globe temperature obtained by prediction model as a heat stress index for the prevention of heat-related illness. Further research on health effect induced by combined exposure of chemical and physical agents are suggested to meet the problem of global warming.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T00:00:56Z (GMT). No. of bitstreams: 1
ntu-96-D87844001-1.pdf: 1771184 bytes, checksum: b6b5a33986aca812f892628d8c4b8058 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents口試委員會審定書 I
誌謝 II
中文摘要 III
英文摘要 VI
第一章 前言 1
第一節 研究背景 1
第二節 研究目的 2
第二章 文獻探討 3
第一節 何謂熱環境? 3
第二節 人體冷熱感覺的影響因素 3
第三節 氣候室之比較 9
第四節 高溫環境評估指標 10
第五節 綜合溫度熱指數之應用 19
第六節 高溫與噪音共同暴露之研究 24
第七節 田口式實驗設計法 27
第三章 材料與方法 29
第一節 熱暴露艙之設計準則 29
第二節 熱暴露艙軟硬體結構 31
第三節 綜合溫度熱指數測定評估 39
第四節 自然濕球溫度預測模式建構 45
第五節 高溫、噪音與工作負荷之複合效應 46
第四章 結果 50
第一節 自然濕球溫度測定的變異因素 50
第二節 黑球溫度測定之影響因素 59
第三節 綜合溫度熱指數計算結果 62
第四節 自然濕球溫度預測模式之建立 62
第五節 高溫與噪音共同暴露之暫時性聽力損失 65
第五章 討論 68
第一節 綜合溫度熱指數測定應注意事項 68
第二節 高溫共同暴露健康效應 75
第六章 結論與建議 77
第一節 利用綜合溫度熱指數作為熱危害預防指標 77
第二節 共同暴露效應研究的未來發展 80
參考文獻 81
附錄 87
附錄一 自然濕球溫度預測模式原始數據 87
附錄二 本論文的期刊雜誌發表情形 91
dc.language.isozh-TW
dc.subject自然濕球溫度zh_TW
dc.subject複合效應zh_TW
dc.subject熱暴露艙zh_TW
dc.subject噪音zh_TW
dc.subject綜合溫度熱指數zh_TW
dc.subject黑球溫度zh_TW
dc.subjectThermal exposure chamberen
dc.subjectcombined effectsen
dc.subjectnoiseen
dc.subjectglobe temperatureen
dc.subjectnatural wet bulb temperatureen
dc.subjectwet bulb globe temperatureen
dc.title高溫暴露評估技術及高溫與噪音共同暴露健康效應研究zh_TW
dc.titleStudy on exposure assessment of heat stress and the combined effects of heat stress and noise exposureen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree博士
dc.contributor.oralexamcommittee宋鴻樟,陳秋蓉,毛義方,劉紹興,戴政
dc.subject.keyword熱暴露艙,綜合溫度熱指數,自然濕球溫度,黑球溫度,噪音,複合效應,zh_TW
dc.subject.keywordThermal exposure chamber,wet bulb globe temperature,natural wet bulb temperature,globe temperature,noise,combined effects,en
dc.relation.page91
dc.rights.note有償授權
dc.date.accepted2007-07-31
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept環境衛生研究所zh_TW
顯示於系所單位:環境衛生研究所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
1.73 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved