Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28069
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊燿州(Yao-Joe Yang)
dc.contributor.authorChi-Wei Kuoen
dc.contributor.author郭崎煒zh_TW
dc.date.accessioned2021-06-12T18:36:55Z-
dc.date.available2007-08-02
dc.date.copyright2007-08-02
dc.date.issued2007
dc.date.submitted2007-07-31
dc.identifier.citation1. T. H. Ng and W. H. Liao, 'Sensitivity analysis and energy harvesting for a self-powered piezoelectric sensor,' Journal of Intelligent Material Systems and Structures, vol. 16, pp. 785-797, Oct 2005.
2. S. Tombelli, M. Mascini, C. Sacco, and A. P. F. Turner, 'A DNA piezoelectric biosensor assay coupled with a polymerase chain reaction for bacterial toxicity determination in environmental samples,' Analytica Chimica Acta, vol. 418, pp. 1-9, Aug 2000.
3. E. L. May, 'Application of a piezoelectric sensor for measuring shivering in a small marsupial,' Journal of Thermal Biology, vol. 28, pp. 469-475, Aug-Oct 2003.
4. D. L. DeVoe and A. P. Pisano, 'Surface micromachined piezoelectric accelerometers (PiXLs),' Journal of Microelectromechanical Systems, vol. 10, pp. 180-186, Jun 2001.
5. Y. Nemirovsky, A. Nemirovsky, P. Muralt, and N. Setter, 'Design of a novel thin-film piezoelectric accelerometer,' Sensors and Actuators a-Physical, vol. 56, pp. 239-249, Sep 1996.
6. N. R. Harris, M. Hill, R. Torah, R. Townsend, S. Beeby, N. M. White, and J. Ding, 'A multilayer thick-film PZT actuator for MEMs applications,' Sensors and Actuators a-Physical, vol. 132, pp. 311-316, Nov 2006.
7. A. Kawamura and N. Takeda, 'Linear Ultrasonic Piezoelectric Actuator,' IEEE Transactions on Industry Applications, vol. 27, pp. 23-26, Jan-Feb 1991.
8. K. J. Lee, H. P. Ko, C. Y. Kang, H. J. Kim, S. J. Yoon, and S. Nahm, 'A study on the friction and thrust force of the shaft and mobile element in the impact typed piezoelectric ultrasonic linear motor,' Journal of Electroceramics, vol. 17, pp. 499-503, Dec 2006.
9. I. Izzo, D. Accoto, A. Menciassi, L. Schmitt, and P. Dario, 'Modeling and experimental validation of a piezoelectric micropump with novel no-moving-part valves,' Sensors and Actuators a-Physical, vol. 133, pp. 128-140, Jan 2007.
10. T. Ueno, C. S. Keat, and T. Higuchi, 'Linear step motor based on magnetic force control using composite of magnetostrictive and piezoelectric materials,' IEEE Transactions on Magnetics, vol. 43, pp. 11-14, Jan 2007.
11. P. Laoratanakul, A. V. Carazo, P. Bouchilloux, and K. Uchino, 'Unipoled disk-type piezoelectric transformers,' Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 41, pp. 1446-1450, Mar 2002.
12. N. Y. Wong, Y. Zhang, H. L. W. Chan, and C. L. Choy, 'A bilayer piezoelectric transformer operating in a bending vibration mode,' Materials Science and Engineering B-Solid State Materials for Advanced Technology, vol. 99, pp. 164-167, May 2003.
13. J. Yoo, K. Yoon, S. M. Hwang, S. Suh, J. Kim, and C. Yoo, 'Electrical characteristics of high power piezoelectric transformer for 28 W fluorescent lamp,' Sensors and Actuators a-Physical, vol. 90, pp. 132-137, May 2001.
14. Y. Sasaki, M. Yamamoto, A. Ochi, T. Inoue, and S. Takahashi, 'Small multilayer piezoelectric transformers with high power density - Characteristics of second and third-mode Rosen-type transformers,' Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 38, pp. 5598-5602, Sep 1999.
15. J. H. Hu, Y. Fuda, M. Katsuno, and T. Yoshida, 'A study on the rectangular-bar-shaped multilayer piezoelectric transformer using length extensional vibration mode,' Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 38, pp. 3208-3212, May 1999.
16. H. Shin, H. Ahn, and D. Y. Han, 'Modeling and analysis of multilayer piezoelectric transformer,' Materials Chemistry and Physics, vol. 92, pp. 616-620, Aug 2005.
17. J. H. Kim, D. Y. Han, M. H. Nam, and S. M. Kang, 'Analysis of a 3-Layered Piezoelectric Ceramic Transformer Filter,' IEEE Transactions on Circuits and Systems I-Fundamental Theory and Applications, vol. 42, pp. 307-313, Jun 1995.
18. H. Shin, V. Kasemsuwan, H. Ahn, M. El Nokali, and D. Y. Han, 'Electrical analysis of step-up multi-layered piezoelectric transformer,' Journal of Electroceramics, vol. 17, pp. 585-590, Dec 2006.
19. K. T. Chang, 'Effects of a parallel resistor on electrical characteristics of a piezoelectric transformer in open-circuit transient state,' IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, vol. 54, pp. 107-117, Jan 2007.
20. M. Yamamoto, Y. Sasaki, A. Ochi, T. Inoue, and S. Hamamura, 'Step-down piezoelectric transformer for AC-DC converters,' Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 40, pp. 3637-3642, May 2001.
21. A. F. Vaz, 'Composite modeling of flexible structures with bonded piezoelectric film actuators and sensors,' IEEE Transactions on Instrumentation and Measurement, vol. 47, pp. 513-520, Apr 1998.
22. S. Leleu, H. Abou-Kandil, and Y. Bonnassieux, 'Piezoelectric actuators and sensors location for active control of flexible structures,' IEEE Transactions on Instrumentation and Measurement, vol. 50, pp. 1577-1582, Dec 2001.
23. H. Allik and T. J. R. Hughes, “Finite Element Method for Piezoelectric Vibration”, International Journal for Numerical Methods in Engineering, vol. 2, pp.151-157, 1970.
24. S. D. Gupta, “On Bending of Piezoelectric Muiltilayer Plates”, IEEE Transactions on Components, Hybrids and Manufacturing Technology, Vol. CHMT-2, No. 4, pp.537-540, December 1979.
25. R. Lerch, “simulation of Piezoelectric Devices by Two- and Three-Dimension Finite elements”, IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control, Vol.37, NO.2, pp. 233-247, May 1990.
26. J. Kim, B. Ko, J. K. Lee, and C. C. Cheong, 'Finite element modeling of a piezoelectric smart structure for the cabin noise problem,' Smart Materials & Structures, vol. 8, pp. 380-389, Jun 1999.
27. C. M. Landis, 'A new finite-element formulation for electromechanical boundary value problems,' International Journal for Numerical Methods in Engineering, vol. 55, pp. 613-628, Oct 2002.
28. C. G. Xu, T. S. Fiez, and K. Mayaram, 'Nonlinear finite element analysis of a thin piezoelectric laminate for micro power generation,' Journal of Microelectromechanical Systems, vol. 12, pp. 649-655, Oct 2003.
29. W. S. Hwang and H. C. Park, 'Finite-Element Modeling of Piezoelectric Sensors and Actuators,' AIAA Journal, vol. 31, pp. 930-937, May 1993.
30. H. S. Tzou and C. I. Tseng, 'Distributed Piezoelectric Sensor Actuator Design for Dynamic Measurement Control of Distributed Parameter-Systems - a Piezoelectric Finite-Element Approach,' Journal of Sound and Vibration, vol. 138, pp. 17-34, Apr 1990.
31. J. C. Lin and M. H. Nien, 'Adaptive modeling and shape control of laminated plates using piezoelectric actuators,' Journal of Materials Processing Technology, vol. 189, pp. 231-236, Jul 2007.
32. V. Balamurugan and S. Narayanan, 'Shell finite element for smart piezoelectric composite plate/shell structures and ills application to the study of active vibration control,' Finite Elements in Analysis and Design, vol. 37, pp. 713-738, Sep 2001.
33. D. Marinkovic, H. Koppe, and U. Gabbert, 'Accurate modeling of the electric field within piezoelectric layers for active composite structures,' Journal of Intelligent Material Systems and Structures, vol. 18, pp. 503-513, May 2007.
34. S. Narayanan and V. Balamurugan, 'Finite element modelling of piezolaminated smart structures for active vibration control with distributed sensors and actuators,' Journal of Sound and Vibration, vol. 262, pp. 529-562, May 2003.
35. C. M. A. Vasques and J. D. Rodrigues, 'Active vibration control of a smart beam through piezoelectric actuation and laser vibrometer sensing: simulation, design and experimental implementation,' Smart Materials & Structures, vol. 16, pp. 305-316, Apr 2007.
36. S. Y. Wang, 'A finite element model for the static and dynamic analysis of a piezoelectric bimorph,' International Journal of Solids and Structures, vol. 41, pp. 4075-4096, Jul 2004.
37. C. A. Rosen, Solid State Magnetic and Dielectric Devices, John Wilay & Sons, New York , 1959 1st ed.
38. Y. Jin, C. F. Foo, and W. G. Zhu, “Three-Dimensional Simulation of Piezoelectric Transformer for the Switching Power Supply,” Industrial Electronics Society, 1999. IECON '99 Proceedings. The 25th Annual Conference of the IEEE, Vol. 1, pp. 295-299, 29 Nov.-3 Dec. 1999.
39. J. H. Hu, H. L. Li, H. L. W. Chan, and C. L. Choy, 'A ring-shaped piezoelectric transformer operating in the third symmetric extensional vibration mode,' Sensors and Actuators a-Physical, vol. 88, pp. 79-86, Jan 2001.
40. H. L. Li, J. H. Hu, and H. L. W. Chan, “Finite Element Analysis on Piezoelectric Transformer,” 2002 IEEE Ultrasonics Symposium, pp. 1177-1180.
41. M. Yamamoto, Y. Sasaki, A. Ochi, T. Inoue, and S. Hamamura, “Step-Down Piezoelectric Transformer for AC-DC Converters,” Jpn. J. Appl. Phys., Vol. 40, pp. 3637-3642, Part 1, No. 5B, May 2001.
42. B. Koc, Y. K. Gao, and K. Uchino, 'Design of a circular piezoelectric transformer with crescent-shaped input electrodes,' Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 42, pp. 509-514, Feb 2003.
43. T. Tsuchiya, Y. Kagawa, N. Wakatsuki, and H. Okamura, “Finite Element Simulation of Piezoelectric Transformers,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 48, no. 4, July 2001.
44. Z. J. Bai and Y. F. Su, 'Dimension reduction of large-scale second-order dynamical systems via a second-order Arnoldi method,' Siam Journal on Scientific Computing, vol. 26, pp. 1692-1709, 2005.
45. Z. J. Bai, 'Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems,' Applied Numerical Mathematics, vol. 43, pp. 9-44, Oct 2002.
46. F. Wang and J. White, “Automatic model order reduction of a microdevice using the Arnoldi approach,” ASME, pp. 527-530, 1998.
47. M. Rewienski and J. White, 'A trajectory piecewise-linear approach to model order reduction and fast simulation of nonlinear circuits and micromachined devices,' IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 22, pp. 155-170, Feb 2003.
48. Z. J. Bai and D. Skoogh, 'A projection method for model reduction of bilinear dynamical systems,' Linear Algebra and Its Applications, vol. 415, pp. 406-425, Jun 2006.
49. H. M. Park and M. W. Lee, 'An efficient method of solving the Navier-Stokes equations for flow control,' International Journal for Numerical Methods in Engineering, vol. 41, pp. 1133-1151, Mar 1998.
50. J. Burkardt, M. Gunzburger, and H. C. Lee, 'POD and CVT-based reduced-order modeling of Navier-Stokes flows,' Computer Methods in Applied Mechanics and Engineering, vol. 196, pp. 337-355, 2006.
51. Y. J. Yang, S. Y. Cheng, and K. Y. Shen, 'Macromodeling of coupled-domain MEMS devices with electrostatic and electrothermal effects,' Journal of Micromechanics and Microengineering, vol. 14, pp. 1190-1196, Aug 2004.
52. Y. J. Yang and K. Y. Shen, 'Nonlinear heat-transfer macromodeling for MEMS thermal devices,' Journal of Micromechanics and Microengineering, vol. 15, pp. 408-418, Feb 2005.
53. L. Codecasa, D. D'Amore, and P. Maffezzoni, 'An Arnoldi based thermal network reduction method for electro-thermal analysis,' IEEE Transactions on Components and Packaging Technologies, vol. 26, pp. 186-192, Mar 2003.
54. T. Bechtold, E. B. Rudnyi, J. G. Korvink, M. Graf, and A. Hierlemarm, 'Connecting heat transfer macromodels for array MEMS structures,' Journal of Micromechanics and Microengineering, vol. 15, pp. 1205-1214, Jun 2005.
55. Y. Zhu and A. C. Cangellaris, 'A new finite element model for reduced order electromagnetic modeling,' IEEE Microwave and Wireless Components Letters, vol. 11, pp. 211-213, May 2001.
56. Y. J. J. Yang and P. C. Yen, 'An efficient macromodeling methodology for lateral air damping effects,' Journal of Microelectromechanical Systems, vol. 14, pp. 812-828, Aug 2005.
57. D. Royer and E. Dieulesaint, Elastic Waves in Solid I –Free and Guided Propagation, Springer, 2000.
58. A. Odabasioglu, M. Celik, and L. T. Pileggi, 'PRIMA: Passive reduced-order interconnect macromodeling algorithm,' IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 17, pp. 645-654, Aug 1998.
59. R. Zhang, G.. A. Jullien, Wei Wang, A. Dounavis, “Passive reduced-order macromodeling algorithm for structure dynamics in MEMS systems,” Circuits and Systems, 2006. ISCAS 2006. Proceedings. 2006 IEEE International Symposium, 21-24 May 2006.
60. Y. H. Lim, 'Finite-element simulation of closed loop vibration control of a smart plate under transient loading,' Smart Materials & Structures, vol. 12, pp. 272-286, Apr 2003.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28069-
dc.description.abstract在研究工作中,我們採用Arnoldi精簡模型演算法應用於有限元素之壓電元件的分析。經由有限元素法的推導,得到了壓電元件的二階常微分方程式系統。利用適當的降階方法,將此二階常微分方程式系統降為一階常微分方程式系統以求得其暫態行為。而此一階常微分方程式系統可以配合Arnoldi方法得到精簡模型。此精簡模型經過證實為被動性(passive)系統。在這精簡模型流程中,我們採用了20個節點的三次元有限元素(20-node brick element)來建立模型。經過精簡流程的模型計算後可得元件上位移以及電壓的分佈。本文中所模擬的壓電元件為圓盤結構的壓電片以及Rosen-type 壓電變壓器。針對此兩種元件我們利用Arnoldi方法將之有限元素模型做降階。在不同的輸入電壓下,經過精簡的模型在位移分佈與電壓分佈依然與原有限元素模型的暫態行為表現相符,卻較有限元素法節省大量計算時間與資源,效率提升至少一千倍以上。zh_TW
dc.description.abstractIn this work, we present a methodology of efficient piezoelectric analysis using the Arnoldi-based model-order reduction technique. The piezoelectric numerical models, which are actually systems of ordinary differential equations (ODEs), are formulated by the finite element method. The ODEs systems can be reduced into low-order ODE systems using the Arnoldi-based model-order reduction technique. Also, it is shown that the reduced system to be passive. The finite-element formulation of 20-node Brick elements is used to create the full-meshed ODE models. Disk-type piezoelectric actuators and Rosen-type piezoelectric transformers are modeled and measured in this work. The results of displacement and voltage distributions by using the reduced models match very well with the results by the full-meshed models for different applied input voltage. The computational efficiency of the reduced models is at least 1,000 times higher than the full-meshed finite-element models.en
dc.description.provenanceMade available in DSpace on 2021-06-12T18:36:55Z (GMT). No. of bitstreams: 1
ntu-96-R94522711-1.pdf: 929166 bytes, checksum: c0dbb74bd463e920d25878193c4f1a83 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontentsTable of Content
ACKNOWLEDGEMENT...........................................................................................i
摘要........................................................................................................................ii
ABSTRACT.................................................................................................................iii
CHAPTER 1 INTRODUCTION................................................................................1
CHAPTER 2 FEM FORMULATION FOR PIEZOELECTRIC DEVICE............3
SECTION 2.1 FEM FORMULATION FOR PIEZOELECTRIC DEVICE..........3
SECTION 2.2 SECOND-ORDER ODEs CONVERT INTO FIRST-ORDER
ODEs....................................................................................................................4
CHAPTER 3 MODEL ORDER REDUCTION.........................................................6
SECTION 3.1 THE INTRODUCTION OF ARNOLDI TECHNIQUE.................6
SECTION 3.2 PASSIVITY OF ARNOLDI-BASED REDUCED-ORDER
MODEL..................................................................................................................9
CHAPTER 4 CASE STUDIES..................................................................................13
SECTION 4.1 DISK-TYPE PIEZOELECTRIC DEVICE..................................13
SECTION 4.2 ROSEN-TYPE PIEZOELECTRIC TRANSFORMER................20
SECTION 4.3 EXPERIMENT AND SIMULATION RESULTS………………26
CHAPTER 5 CONCLUSIONS.................................................................................29
REFERENCES...........................................................................................................30
APPENDIX A FEM FORMULATION FOR PIEZOELECTRIC
MATERIALS..............................................................................................................35
APPENDIX B NATURAL COORDINATE AND INTERPOLATION
FUNCTION OF FINITE ELEMENT FORMULATION.......................................51
SECTION B.1 LINEAR HEXAHEDRAL ELEMENT....................................51
SECTION B.2 QUADRATIC HEXAHEDRAL ELEMENT............................53
dc.language.isoen
dc.subject被動性zh_TW
dc.subject有限元素法zh_TW
dc.subject壓電元件zh_TW
dc.subjectArnoldi理論zh_TW
dc.subject精簡模型zh_TW
dc.subjectfinite element methoden
dc.subjectpassivityen
dc.subjectmodel order reductionen
dc.subjectArnoldi algorithmen
dc.subjectpiezoelectric deviceen
dc.titleArnoldi精簡模型於壓電元件之應用zh_TW
dc.titleArnoldi-based Model Order Reduction For Piezoelectric Deviceen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳國聲,林致廷
dc.subject.keyword有限元素法,壓電元件,Arnoldi理論,精簡模型,被動性,zh_TW
dc.subject.keywordfinite element method,piezoelectric device,Arnoldi algorithm,model order reduction,passivity,en
dc.relation.page54
dc.rights.note有償授權
dc.date.accepted2007-07-31
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
907.39 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved