Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28068
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許大山(Da-Shan Shiu)
dc.contributor.authorTsun-Chih Hsuehen
dc.contributor.author薛存志zh_TW
dc.date.accessioned2021-06-12T18:36:52Z-
dc.date.available2007-08-02
dc.date.copyright2007-08-02
dc.date.issued2007
dc.date.submitted2007-07-31
dc.identifier.citation[1] C. Berrou, A. Glavieux, and P. Thitimajshima, Near Shannon limit error-correcting coding and decoding: turbo-codes,' Proc. IEEE Int. Conf. Commun.'93,, pp. 1064-1070, May 1993.
[2] Shu Lin and Daniel J. Costello, Jr., Error Control Coding: Fundamentals and applications, Second Edition, Prentice Hall, Inc., Upper Saddle River, NJ, 2004.
[3] K. Shih and D. Shiu, Perturbed Decoding Algorithm for Concatenated Error Correcting and Detecting Codes System,' 17th IEEE Intl. Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC'06), Sept. 2006.
[4] H. Holland, Adaptation in Natural and Artificial Systems, Ann Arbor, The University of Michigan Press, 1975.
[5] D.E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Addision Wesley Publishing Company, 1989.
[6] Krishna R. Narayanan, Gordon L. Stuber, List Decoding of Turbo Codes ,'IEEE Transactions on Comunications. vol. 56, no.6, June 1998.
[7] Carl Fredrik Leanderson and Carl-Erik W. Sundberg, The Max-Log List Algorithm (MLLA)XA List-Sequence Decoding Algorithm That Provides Soft-Symbol Output,' IEEE Transactions on Comunications. vol. 53, no.3, March
2005.
[8] Carl Fredrik Leanderson and Carl-Erik W. Sundberg, On List Sequence Turbo Decoding,' IEEE Transactions on Comunications. vol. 53, no.5, May 2005.
[9] J. S. Sadowsky, A Maximum Likelihood Decoding Algorithm for Turbo Codes,'in Proc. IEEE Global Telecommun. Conf., vol. 2, Dallas, TX, Nov 1997.
[10] S. Benedetto and G. Montorsi, Unveiling Turbo-Codes: Some Results on Parallel Concatenated Coding Schemes,' IEEE Transactions on Information Theory. vol. 43, no.2, pp. 409-428, March 1996.
[11] D. Divsalar, S. Dolinar, R. J. McEliece, and F. Pollara, Transfer Function Bounds on the Performance of Turbo Codes,' TDA Progress Report 42-122, April-June 1995, Jet Propulsion Laboratory, Pasadena, California, pp. 44-45. Auguest 15, 1995.
[12] T. M. Duman and M. Salehi, New performance bounds for turbo codes,' IEEE Trans. Commun. vol. 46, pp. 717-723, June 1998.
[13] I. Sason and S. Shamai, Improved Upper Bounds on the ML Decoding Error Probability of Parallel and Serial Concatenated Turbo Codes Via Their Ensemble
Distance Spectrum,' IEEE Transactions on Information Theory. vol. 46, no.1, pp. 24-47, January 2000.
[14] Third Generation Partnership Project (3GPP), Technical Speci‾cation 25.212:Multiplexing and Channel Coding (Frequency Division Duplex Mode), ver. 6.8.0,
June, 2006.
[15] M. Eroz and A. R. Hammons Jr, On the design of prunable interleavers for turbo codes,' Proc. IEEE 49th VTC, vol. 2, pp. 1669V1673, July 1999.
[16] R. Shao, S. Lin, and M. Fossorier, Two simple stopping criteria for turbo decoding,' IEEE Trans. Commun. vol. 47, no. , pp. 1117-1120, Aug. 1999.
[17] J. Hagenauer, E. O®er, and L. Papke Iterative Decoding of Binary Block and Convolutional Codes,' IEEE Transactions on Information Theory. vol. 42, no.
2, pp. 429-445, March 1996.
[18] F. HERRERA, M. LOZANO, and J.L. VERDEGAY Tackling Real-Coded Genetic Algorithms: Operators and Tools for Behavioural Analysis,' Artificial Intelligence Review. vol. 12, no. 4, pp. 265-319, Aug. 1998.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28068-
dc.description.abstract雖然渦輪碼使用最大概度解碼可以產生最低的錯誤率,但因為有效率的渦輪碼最大概度解碼器仍未被發明,所以渦輪碼使用最大概度解碼至今仍是件不可能的事情,在這篇論文中,我們提出了一個新的實驗模擬技術去尋找渦輪碼最大概度解碼器的效能極限,也針對渦輪碼提出了一個新的基因解碼演算法。
本文提出的效能極限實驗模擬技術可以針對最大概度解碼器的最佳與最差錯誤率效能做一評估。基因解碼演算法的理論則結合了干擾解碼與基因演算法。在基因解碼演算法中,染色體是隨機可加性的干擾雜訊,而傳統的渦輪解碼器被用來為每個染色體評定個別的適應環境分數,經過許多世代的演化後,非常好的染色體就會出現,而這些好的染色體相對應到的是被解碼後的碼字,而這些碼字是非常好的且有可能是對的。
基因解碼演算法在某些狀況下可以是一個實際可行的解碼演算法,基因解碼演算法同時也是一個多重輸出的解碼器。在我們的認知下,基因解碼演算法最重要的貢獻是可以利用它和我們所提出的最大概度解碼效能極限實驗技術來得到一個最大概度解碼的錯誤率最佳效能極限,而且是透過實驗模擬的方式得到。從我們的實驗結果中可以知道在錯誤率等於10-4附近,我們提出的基因解碼演算法已經可以達到最大概度解碼的效能,也可以確定在這個錯誤率區間,針對WCDMA規範的渦輪碼最大概度解碼器的效能僅比傳統遞回式解碼器來得好一些。
zh_TW
dc.description.abstractAlthough yielding the lowest error probability, ML decoding of turbo codes has been considered unrealistic so far because efficient ML decoders have not been discovered.
In this thesis, we propose an experimental bounding technique for ML decoding and the Genetic Decoding Algorithm (GDA) for turbo codes. The ML bounding technique
establishes both lower and upper bounds for ML decoding. GDA combines the principles of perturbed decoding and genetic algorithm. In GDA, chromosomes are random
additive perturbation noises. A conventional turbo decoder is used to assign fitness values to the chromosomes in the population. After generations of evolution, good
chromosomes that correspond to decoded codewords of very good likelihood emerge. GDA can be used as a practical decoder for turbo codes in certain contexts. It is
also a natural multiple-output decoder. The most important aspect of GDA, in our opinion, is that one can utilize the ML bounding technique and GDA to empirically
determine a effective lower bound on the error probability with ML decoding. Our results show that, at a word error probability of 10^{-4}, GDA achieves the performance
of ML decoding. Using the ML bounding technique and GDA, we establish that an ML decoder only slightly outperforms a MAP-based iterative decoder at this word error probability for the block size we used and the turbo code defined for WCDMA.
en
dc.description.provenanceMade available in DSpace on 2021-06-12T18:36:52Z (GMT). No. of bitstreams: 1
ntu-96-R94942036-1.pdf: 1424833 bytes, checksum: 00ac651a82393c6eb3a37bd26562a93d (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . 2
1.2 History . . . . . . . . . . . . . . . . . . . . 3
1.3 Related works . . . . . . . . . . . . . . . . . 6
1.4 Contribution and Organization . . . . . . . . . 7
2 Background 9
2.1 Parallel Concatenated Convolutional Codes . . . 9
2.2 Maximal-a priori (MAP) Iterative Decoding Algorithm .10
2.3 Perturbed Decoding Algorithm . . . . . . . . . 11
2.4 Genetic Algorithm . . . . . . . . . . . . . . . 13
3 ML bounding technique 17
4 Perturbed Decoding for Turbo Codes 22
5 Genetic Decoding Algorithm 25
5.1 Genetic Decoding for Turbo Codes . . . . . . . 25
5.2 ML bound using GDA . . . . . . . . . .. . . . . 26
5.3 Complexity Aspects for GDA . . . . . . . . . . 30
3
4 CONTENTS
6 Simulation Results 31
6.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . 31
6.2 Parameters and Procedures for GDA . . . . . . . 31
6.3 Performance of GDA . . . . . . . . . . . . . . 34
7 Conclusions 38
7.1 Conclusions . . . . . . . . . . . . . . . . . . 38
7.2 Future works . . . . .. . . . . . . . . . . . . 40
Bibliography 42
dc.language.isoen
dc.subject基因演算法zh_TW
dc.subject渦輪碼zh_TW
dc.subject遞回式解碼zh_TW
dc.subject最大概度解碼zh_TW
dc.subject干擾式解碼zh_TW
dc.subjectTubo codesen
dc.subjectPerturbed decodingen
dc.subjectMaximum likelihood decodingen
dc.subjectIterative decodingen
dc.subjectGenetic algorithmen
dc.title使用基因演算法之渦輪碼最大概度解碼的理論與效能分析zh_TW
dc.titleTheory and Performance of ML Decoding for Turbo Codes using Genetic Algorithmen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林茂昭(Mao-Chao Lin),葉丙成(Ping-Cheng Yeh),王忠炫(Chung-Hsuan Wang),張錫嘉(Hsie-Chia Chang)
dc.subject.keyword渦輪碼,遞回式解碼,最大概度解碼,干擾式解碼,基因演算法,zh_TW
dc.subject.keywordTubo codes,Iterative decoding,Maximum likelihood decoding,Perturbed decoding,Genetic algorithm,en
dc.relation.page44
dc.rights.note有償授權
dc.date.accepted2007-07-31
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
1.39 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved