Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 植物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28061
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor靳宗洛
dc.contributor.authorShin-Huei Shiueen
dc.contributor.author薛欣慧zh_TW
dc.date.accessioned2021-06-12T18:36:24Z-
dc.date.available2012-08-02
dc.date.copyright2007-08-02
dc.date.issued2007
dc.date.submitted2007-07-31
dc.identifier.citationAbe, M., Katsumata, H., Komeda, Y., and Takahashi, T. (2003). Regulation of shoot epidermal cell differentiation by a pair of homeodomain proteins in Arabidopsis. Development 130: 635-643.
Alabadí, D., Oyama, T., Yanovsky, M.J., Harmon, F.G., Más, P., and Kay, S.A. (2001). Reciprocal Regulation Between TOC1 and LHY/CCA1 Within the Arabidopsis Circadian Clock. Science 293: 880-883.
Alabadi, D., Yanovsky, M.J., Mas, P., Harmer, S.L., and Kay, S.A. (2002). Critical role for CCA1 and LHY in maintaining circadian rhythmicity in Arabidopsis. Curr. Biol. 12: 757–761.
Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J. (1997). Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25: 3389–3402.
Allen, J.F., and Nilsson, A. (1997). Redox signalling and the structural basis of regulation of photosynthesis by protein phosphorylation. Physiologia Plantarum 100: 863–868.
Alonso, J.M., Stepanova, A.N., Leisse, T.J., Kim, C.J., Chen, H., Shinn, P., Stevenson, D.K., Zimmerman, J., Barajas, P., Cheuk, R., Gadrinab, C., Heller, C., Jeske, A., Koesema, E., Meyers, C.C., Parker, H., Prednis, L., Ansari, Y., Choy, N., Deen, H., Geralt, M., Hazari, N, Hom, E., Karnes, M., Mulholland, C., Ndubaku, R., Schmidt, I., Guzman, P., Henonin, L.A., Schmid, M., Weigel, D., Carter, D.E., Marchand, T., Risseeuw, E., Brogden, D., Zeko, A., Crosby, W.L., Berry, C.C., and Ecker, J.R. (2003). Genome-Wide Insertional Mutagenesis of Arabidopsis thaliana. Science. 301: 653-657.
Azpiroz, R., Wu, Y., LoCascio, J.C., and Feldmann, K.A. (1998). An Arabidopsis brassinosteroid-dependent mutant is blocked in cell elongation. Plant Cell 10: 219-230.
Bao, N., Lye, K.W., and Barton, M.K. (2004). MicroRNA binding sites in Arabidopsis Class III HD-ZIP mRNAs are required for methylation of the template chromosome. Dev. Cell 7: 653-662.
Balasubramanian, S., and Schneitz, K. (2002). NOZZLE links proximal-distal and adaxial-abaxial pattern formation during ovule development in Arabidopsis thaliana. Development 129: 4291–4300.
Barber, C., Rösti, J., Rawat, A., Findlay, K., Roberts, K., and Seifert, G.J. (2006). Distinct Properties of the Five UDP-D-glucose/UDP-D-galactose 4-Epimerase Isoforms of Arabidopsis thaliana. J. Biol. Chem. 281: 17276-17285.
Bartel, D.P. (2004). MicroRNAs: Genomic, biogenesis, mechanism, and function. Cell 116: 281-297.
Bharathan, G., Goliber, T. E., Moore, C., Kessler, S., Pham, T., and Sinha, N. R. (2002). Homologies in leaf form inferred from KNOXI gene expression during development. Science 296: 1858-1860.
Brand, U., Grünewald, M., Hobe, M., and Simon, R. (2002). Regulation of CLV3 Expression by Two Homeobox Genes in Arabidopsis. Plant Physiol. 129: 565-575.
Bowman, J.L. (2000). The YABBY gene family and abaxial cell fate. Curr. Opin. Plant Biol. 3: 17-22.
Burks, E.A., Bezerra, P.P., Le, H., Gallie, D.R., and Browning, K.S. (2001). Plant initiation factor 3 subunit composition resembles mammalian initiation factor 3 and has a novel subunit. J. Biol. Chem. 276: 2122–2131.
Chen, J.-J., Janssen, B.-J., Williams, A., and Sinha, N. (1997). A gene fusion at a homeobox locus: alternations in leaf shape and implications for morphological evolution. Plant Cell 9: 1289-1304.
Chuck, G., Lincoln, C., and Hake, S. (1996). KNAT1 induces lobed leaves with ectopic meristems when overexpressed in Arabidopsis. Plant Cell 8: 1277-1289.
Coates, J.C., Laplaze, L., and Haseloff, J. (2006). Armadillo-related proteins promote lateral root development in Arabidopsis. Proc. Natl. Acad. Sci. USA 103: 1621-1626.
Choe, S., Dilkes, B.P., Fujioka, S., Takatsuto, S., Sakurai, A., and Feldmann, K.A. (1998). The DWF4 gene of Arabidopsis encodes a cytochrome P450 that mediates multiple 22α-hydroxylation steps in brassinosteroid biosynthesis. Plant Cell 10: 231-243.
Choe, S., Dilkes, B.P., Gregory, B.D. et al. (1999a). The Arabidopsis dwarf1 mutant is defective in the conversion of 24-methylenecholesterol to campesterol in brassinosteroid biosynthesis. Plant Physiol. 119: 897-907.
Choe, S., Fujioka, S., Noguchi, T., Takatsuto, S., Yoshida, S., and Feldmann, K.A. (2001). Overexpression of DWARF4 in the brassinosteroid biosynthetic pathway results in increased vegetative growth and seed yield in Arabidopsis. Plant J. 26: 573-582.
Clough, S.J., and Bent, A.F. (1998). Floral dip; a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16: 735-743.
Clouse, S.D., and Sasse, J.M. (1998). Brassinosteroids: essential regulators of plant growth and development. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49: 427-451.
Clouse, S.D., Langford, M., and McMorris, T.C. (1996). A brassinosteroid-insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development. Plant Physiol. 111: 671-678.
Cubas, P., Lauter, N., Doebley, J., and Coen, E. (1999). The TCP domain: a motif found in proteins regulating plant growth and development. Plant J. 18: 215-222.
Dodd, A.N., Salathia, N., Hall, A., Kevei, E., Toth, R., Nagy, F., Hibberd, J.M., Millar, A.J., and Webb, A.A. (2005). Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science 309: 630–633.
Domingues, L., Teixeira, J.A., and Lima, N. (1997). Rapid and sensitive detection of b-galactosidase-producing yeasts by using microtiter plate assay. Biotechnology Techniques 11: 399-402.
Donnelly, P.M., Bonetta, D., Tsukaya, H., Dengler, R.E., and Dengler, N.G.. (1999). Cell cycling and cell enlargement in developing leaves of Arabidopsis. Dev Biol 215: 407–419.
Ehsan, H., Ray, W.K., Phinney, B., Wang, X., Huber, S.C., and Clouse, S D. (2005). Interaction of Arabidopsis BRASSINOSTEROID-INSENSITIVE 1 receptor kinase with a homolog of mammalian TGF-β receptor interacting protein. Plant J. 43: 251–261.
Eshed, Y., Baum, S.F., Perea, J.V., and Bowman, J.L. (2001). Establishment of polarity in lateral organs of plants. Curr Biol 11: 1251–1260.
Eshed, Y., Izhaki, A., Baum, S.F., Floyd, and S.K., Bowman, J.L. (2004). Asymmetric leaf development and blade expansion in Arabidopsis are mediated by KANADI and YABBY activities. Development 131: 2997-3006.
Emery, J. F., Floyd, S. K., Alvarez, J., Eshed, Y., Hawker, N. P., Izhaki, A., Baum, S. F., and Bowman, J. L. (2003). Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Curr. Biol. 13: 1768-1774.
Finn, R.D., Mistry, J., Böckler, B.S., Jones, S.G., Hollich, V., Lassmann, T., Moxon, S., Marshall, M., Khanna, A., Durbin, R., Eddy, S.R., Erik, L. L., Sonnhammer, and Bateman, A. (2006). Pfam: clans, web tools and services. Nucleic Acids Research Database Issue 34: 247-251.
Fujioka, S., Li, J., Choi, Y.H. et al. (1997). The Arabidopsis deetiolated2 mutant is blocked early in brassinosteroid biosynthesis. Plant Cell 9: 1951-1962.
Gallois, J. L., Woodward, C., Reddy, G. V., and Sablowski, R. (2002). Combined SHOOT MERISTEMLESS and WUSCHEL trigger ectopic organogenesis in Arabidopsis. Development 129: 3207-3217.
Green, R.M., and Tobin, E.M. (1999). Loss of the circadian clock-associated protein 1 in Arabidopsis results in altered clock-regulated gene expression. Proc. Natl. Acad. Sci. USA 96: 4176–4179.
Gross, J., Cho, W.K., Lezhneva, L., Falk, J., Krupinska, K., Shinozaki, K., Seki, M., Herrmann, R.G., and Meurer, J. (2006). A Plant Locus Essential for Phylloquinone (Vitamin K1) Biosynthesis Originated from a Fusion of Four Eubacterial Genes. J. Biol. Chem. 281: 17189-17196.
Harmer, S.L., Hogenesch, J.B., Straume, M., Chang, H.S., Han, B., Zhu, T., Wang, X., Kreps, J.A., and Kay, S.A. (2000). Orchestrated Transcription of Key Pathways in Arabidopsis by the Circadian Clock. Science 290: 2111-2113.
Harmer, S.L., and Kay, S.A. (2005). Positive and Negative Factors Confer Phase-Specific Circadian Regulation of Transcription in Arabidopsis. Plant Cell 17:1926-1940.
Hay, A., Barkoulas, M., and Tsiantis, M. (2004). Pinning down the connections: Transcription factors and hormones in leaf morphogenesis. Curr. Opin. Plant Biol. 7: 575-581.
Hay, A., Kaur, H., Phillips, A., Hedden, P., Hake, S., and Tsiantis, M. (2002). The gibberellin pathway mediates KNOTTED1-type homeobox function in plants with different body plans. Curr. Biol. 12: 1557-1565.
Jiank, J., and Clouse, S.D. (2001). Expression of a plant gene with sequence similarity to animal TGF-β receptor interacting protein is regulated by brassinosteroids and required for normal plant development. Plant J. 26: 35-45.
Jackson, D., Veit, B., and Hake, S. (1994). Expression of maize KNOTTED 1 related homeobox genes in the shoot apical meristem predicts patterns of morphogenesis in the vegetative shoot. Development 120: 405-413.
Kerstetter, R.A., Bollman, K., Taylor, R.A., Bomblies, K., and Poethig, R.S. (2001). KANADI regulates organ polarity in Arabidopsis. Nature 411: 706-709.
Krizek, B.A. (1999). Ectopic expression of AINTEGUMENTA gene results in increased growth of floral organs. Dev. Genet. 25: 224–236.
Kumaran, M.K., Bowman, J.L., and Sundaresan, V. (2002). YABBY polarity genes mediate the repression of KNOX homeobox genes in Arabidopsis. Plant Cell 14: 2761–2770.
Lenhard, M., Jurgens, G., and Laux, T. (2002). The WUSCHEL and SHOOT MERISTEMLESS genes fulfil complementary roles in Arabidopsis shoot meristem regulation. Development 129: 3195-3206.
Lincoln, C., Long, J., Yamaguchi, J., Serikawa, K., and Hake, S. (1994). A Knotted1-like homeobox gene in Arabidopsis is expressed in the vegetative meristem and dramatically alters leaf morphology when overexpressed in transgenic plants. Plant Cell 6: 1859-1876.
Long, J. A., Moan, E. I., Medford, J. I., and Barton, M. K. (1996). A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature 379: 66-69.
McConnell, J. R. and Barton, M. K. (1998). Leaf polarity and meristem formation in Arabidopsis. Development 125: 2953-2942.
McConnell, J. R., Emery, J., Eshed, Y., Bao, N., Bowman, J., and Barton, M. K. (2001). Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature 411: 709-713.
Mizukami, Y., and Fischer, RL. (2000). Plant organ size control: AINTEGUMENTA regulates growth and cell numbers during organogenesis. Proc. Natl. Acad. Sci. USA 97: 942-947.
Nath, U., Crawford, B.C., Carpenter, R., and Coen, E. (2003). Genetic control of surface curvature. Science 299: 1404-1407.
Nishimura, A., Tamaoki, M., Sato, Y., and Matsuoka, M. (1999). The expression of tobacco knotted1-type class 1 homeobox genes correspond to regions predicted by the cytohistological zonation model. Plant J. 18: 337-347.
Noguchi, T., Fujioka, S., Choe, S., Takatsuto, S., Yoshida, S., Yuan, H., Feldmann, K.A., Tax, F.E. (1999b). Brassinosteroid-insensitive dwarf mutants of Arabidopsis accumulate brassinosteroids. Plant Physiol. 121: 743-752.
Nomura, T., and Bishop, G.J. (2006). Cytochrome P450s in plant steroid hormone synthesis and metabolism. Phytochemistry Reviews 5: 421.
Parnis, A., Cohen, O., Gutfinger, T., Hareven, D., Zamir, D., and Lifschitz, E. (1997). The dominant developmental mutants of tomato, Mouse-ear and Curl, are associated with distinct modes of abnormal transcriptional regulation of a Knotted gene. Plant Cell 9: 2143-2158.
Pekker, I., Alvarez, J.P., and Eshed, Y. (2005). Auxin response factors mediate Arabidopsis organ asymmetry via modulation of KANADI activity. Plant Cell 17: 2899-2910.
Reinhart, B.J., Weinstein, E.G., Rhoades, M.W., Bartel, B., and Bartel, D.P. (2002). MicroRNAs in plants. Genes Dev. 16: 1616-1626.
Rösti, J., Barton, C.J., Albrecht, S., Dupree, P., Pauly, M., Findlay, K., Roberts, K., and Seifert, G.J. (2007). UDP-Glucose 4-Epimerase Isoforms UGE2 and UGE4 Cooperate in Providing UDP-Galactose for Cell Wall Biosynthesis and Growth of Arabidopsis thaliana. Plant Cell 19:1565-1579.
Ori, N., Eshed, Y., Chuck, G., Bowman, J.L., and Hake, S. (2000). Mechanisms that control knox gene expression in the Arabidopsis shoot. Development 127: 5523-5532.
Otsuga, D., DeGuzman, B., Prigge, M.J., Drews, G.N., Clark, S.E. (2001). REVOLUTA regulates meristem initiation at lateral positions. Plant J. 25: 223-236.
Schaffer, R., Landgraf, J., Accerbi, M., Simon, V., Larson, M., and Wisman, E. (2001). Microarray analysis of diurnal and circadian-regulated genes in Arabidopsis. Plant Cell 13: 113–123.
Schaffer, R., Ramsay, N., Samach, A., Corden, S., Putterill, J., Carré, I.A., and Coupland, G. (1998). The late elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering. Cell 93: 1219–1229.
Semiarti, E., Ueno, Y., Tsukaya, H., Iwakawa, H., Machida, C., and Machida, Y. (2001). The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana regulates formation of a symmetric lamina, establishment of venation and repression of meristem-related homeobox genes in leaves. Development 128: 1771-1783.
Siegfried, K.R., Eshed, Y., Baum, S.F., Otsuga, D., Drews, G.N., and Bowman, J.L. (1999). Members of the YABBY gene family specify abaxial cell fate in Arabidopsis. Development 126: 4117-4128.
Sinha, N., Williams, R. E., and Hake, S. (1993). Overexpression of the maize homeobox gene, KNOTTED-1, cause a switch from determinate to indeterminate cell fates. Genes Dev. 7: 787-795.
Smith, L.G., and Hake, S. (1992). The initiation and determination of leaves. Plant Cell 4: 1017-1027.
Smith, L. G., Greene, B., Veit, B., and Hake, S. (1992). A dominant mutation in the maize homeobox gene, Knotted-1, cause its ectopic expression in leaf cells with altered fates. Development 116: 21-30.
Somers, D.E., Webb, A.A.R., Pearson, M., and Kay, S.A. (1998). The short-period mutant, toc1-1, alters circadian clock regulation of multiple outputs throughout development in Arabidopsis thaliana. Development 125: 485–494.
Strayer, C., Oyama, T., Schultz, T.F., Raman, R., Somers, D.E., Mas, P., Panda, S., Kreps, J.A., and Kay, S.A. (2000). Cloning of the Arabidopsis clock gene TOC1, an autoregulatory response regulator homolog. Science 289: 768–771.
Sussex, I. M. (1954). Experiments on the cause of dorsiventrality in leaves. Nature 167: 651-652.
Sussex, I. M. (1955). Morphogenesis in Solanum tuberosum L. Apical structure and developmental pattern of the juvenile shoot. Phytomorphology 5: 253-273.
Takahashi, N., Nakazawa, M., Shibata, K., Yokota, T., Ishikawa, A., Suzuki, K., Kawashima, M., Ichikawa, T., Shimada, H., and Matsui, M. (2005). shk1-D, a dwarf Arabidopsis mutant caused by activation of the CYP72C1 gene, has altered brassinosteroid levels. Plant J. 42: 13-22.
Tsuge, T., Tsukaya, H., and Uchimiya, H. (1996). Two independent and polarized processes of cell elongation regulate leaf blade expansion in Arabidopsis thaliana (L.) Heynh. Development 122: 1589-1600.
Tsukaya, H. (2005). Leaf shape: Genetic controls and environmental factors. Int. J. Dev. Biol. 49: 547–555.
Veylder1, L.D., Beeckman1, T., Beemster, G.T.S., Engler, J.A., Ormenese, S., Maes, S., Naudts, M., Schueren, E.V.D., Jacqmard, A., Engler, G., and Inzé, D. (2002). Control of proliferation, endoreduplication and differentiation by the Arabidopsis E2Fa−DPa transcription factor. E.M.B.O. 21: 1360–1368.
Vollbrecht, E., Reiser, L., and Hake, S. (2000). Shoot meristem size is dependent on inbred background and presence of the maize homeobox gene, knotted1. Development 127: 3161-3172.
Waites, R., Selvadurai, H. R. N., Oliver, I. R., and Hudson, A. (1998). The Phantastica gene encodes a MYB transcription factor involved in growth and dorsoventrality of lateral organs in Antirrhinum. Cell 93: 779-789.
Wang, Z.-Y., and Tobin, E.M. (1998). Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression. Cell 93: 1207–1217.
Weigel, D., Ahn, J.H., Blázquez, M.A., Borevitz, J.O., Christensen, S.K., Fankhauser, C., Ferrándiz, C., Kardailsky, I., Malancharuvil, E.J., Neff, M.M., Nguyen, J.T., Sato, S., Wang, Z.Y., Xia, Y., Dixon, R.A., Harrison, M.J., Lamb, C.J., Yanofsky, M.F., and Chory, J. (2000). Activation Tagging in Arabidopsis. Plant Physiol. 122: 1003-1013.
Yang, D.M., Paulsen H., and Andersson, B. (2000). The N-terminal domain of the light-harvesting chlorophyll a/b-binding protein complex (LHCII) is essential for its acclimative proteolysis. FEBS. 466: 385-388.
Yang, D.M., Webster, J., Adam, Z., Lindahl, M., and Andersson, B. (1998). Induction of Acclimative Proteolysis of the Light-Harvesting Chlorophyll a/b Protein of Photosystem II in Response to Elevated Light Intensities. Plant Physiol. 118: 827-834.
Yang, L., Liu, Z., Lu, F., Dong, A., and Huang, H. (2006). SERRATE is a novel nuclear regulator in primary microRNA processing in Arabidopsis. Plant Journal 47: 841-850.
You, G.W., and Jinn, T.L. (2005). Functional study of a T-DNA insertional mutant with curled leaves and delayed flowering in Arabidopsis thaliana. Master Thesis, National Taiwan University.
Ytterberg, A.J., Peltier, J.B., and Wijk, K.J. (2006). Protein Profiling of Plastoglobules in Chloroplasts and Chromoplasts. A Surprising Site for Differential Accumulation of Metabolic Enzymes Plant Physiol. 140: 984-997.
Zerr D.M., Hall J.C., Rosbash M., and Siwicki K.K. (1990) Circadian fluctuations of period protein immunoreactivity in the CNS and the visual system of Drosophila. J. Neurosci. 10: 2749-2762.
Zgurski, J.M., Sharma, R., Bolokoski, D.A., and Schultz, E.A. (2005). Asymmetric auxin response precedes asymmetric growth and differentiation of asymmetric leaf1 and asymmetric leaf2 Arabidopsis leaves. Plant Cell 17: 77-91.
Zubay, G., Morse, D.E., Schrenk, W.J., and Miller, J.H.M. (1972). Detection and Isolation of the Repressor Protein for the Tryptophan Operon of Escherichia coli. Proc. Nat. Acad. Scd. USA 69: 1100-1103.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28061-
dc.description.abstract葉,植物感受環境變化的營養器官,對光合作用、呼吸作用和氣體交換等生理作用有著重要角色,然而到目前為止對於葉部發育細節仍不是十分清楚。實驗室利用T-DNA載體,pPZP202: SK: BAR,隨機嵌入阿拉伯芥基因體中的方法建構了突變株庫,篩選葉部形態異常的突變株並尋找影響此性狀的基因。R1-2突變株,為本實驗室所篩選一株具有捲曲葉形性狀的突變株,已知T-DNA嵌入在At3g22970上游約2.5-Kbp處且At3g22970的基因表現量下降。本研究,則對At3g22970在植物生理上的功能及T-DNA如何影響基因表現做進一步的研究。實驗結果顯示,At3g22970的基因表現在wild type (WT)中具有日夜週期性(circadian rhythm),於近夜間時期(early-night phase)有最大表現量。但在R1-2植株中,At3g22970的基因表現量大幅下降但仍觀察到有日夜週期性的表現,因此推測T-DNA嵌入在At3g22970上游約2.5-Kbp處可能影響到增強子(enhancer)對基因表現的正向調控。At3g22970是個功能未知的葉綠體蛋白,結構上具有一個高保留性的DUF506區域 (Domain of Unknown Function 506) 並可送入質體。在阿拉伯芥中,共有14個基因含有此區域且功能都尚未被研究。我們利用At3g22970的啟動子表現報導基因,結果顯示在較年輕的組織中有較高的表現量。且在不同的過量表現At3g22970的植株中,葉部形態也展現不一致性狀,推論其表現量對植物發育可能有劑量性的影響。另外,我們利用全長的At3g22970以Yeast Two-Hybrid方法篩選出9個與At3g22970有交互作用的蛋白,已知其分別參與於光合作用,醣類代謝,訊息傳遞以及轉譯作用等。這些與At3g22970有交互作用的蛋白,我們將做更進一步的實驗去探討它們與At3g22970的關係,以幫助我們了解At3g22970蛋白在植物生理上的功能。zh_TW
dc.description.abstractThe frontier of leaf morphogenesis is still undiscovered, particularly in the dicotyledonous plants. Therefore, using a T-DNA tagging vector, pPZP202: SK: BAR, to generate mutant pools. Searching for plants with abnormal leaves phenotype and identify the genes which influenced by T-DNA in Arabidopsis thaliana. In previous study, we have identified a curly leaf mutant, ‘R1-2’. T-DNA inserts in 2.5-Kbp upstream of the At3g22970 and At3g22970 gene expression was down-regulated in the R1-2. In this study, we focused on how and why T-DNA insertion interfered with At3g22970 gene expression in R1-2 to result the phenotype. At3g22970 showed a circadian rhythm expression and the most expression during the subjective dusk. The transcripts level of At3g22970 in R1-2 presented all down-expression and had a slight circadian rhythm expression that was compared to WT. We propose that T-DNA insertion may disrupt the function of some enhancer for promoting At3g22970 gene expression in R1-2. At3g22970 encodes a protein containing a highly conserved DUF506 domain (Domain of Unknown Function 506) and translocated into plastid; however function still unknown. Meanwhile, there are 14 genes which containing DUF506 domain and all shown unknown function in A. thaliana. Moreover, At3g22970 promoter-GUS assay showed that At3g22970 mainly expressed in younger tissues. Overexpression of At3g22970 shown different degree interfere with leaf morphology suggested that At3g22970 function with dosage-effect. Furthermore, yeast two-hybrid results showed that At3g22970 interacts with 9 different proteins which involved in photosynthesis, carbohydrate metabolism, signal transduction and translational regulation. The relationships between At3g22970 and the interacting proteins need further study to understand the physiological function of At3g22970 in the future.en
dc.description.provenanceMade available in DSpace on 2021-06-12T18:36:24Z (GMT). No. of bitstreams: 1
ntu-96-R94b42023-1.pdf: 2711102 bytes, checksum: 4d165f8169b584e265ab1f36b26a37e9 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontentsAbstract in Chinese ……………………………………………………………...… i
Abstract in English ……………………………….………………………………...ii
Abbreviations ……………………………………………………………………... iv
Introduction
Leaf Development …………………………………………………………………… 1
Hormone and Other Factors Involve in Leaf Development ………………….…….. 2
Circadian Oscillator in Arabidopsis ………………………………………………..... 4
Research Strategy for T-DNA Insertion Mutant in Arabidopsis ……………………. 5
Materials and Methods
Plant Material and Growth Conditions …………………………………………….... 6
Leaf-Disc PCR and Genotyping of T-DNA Insertion Lines ………………………... 6
Reverse Transcription (RT)-PCR ………………………………………………….... 7
Promoter-GUS and 35S-overexpression Construction …………………………….... 8
Transgenic Plants Generation ……………………………………………………….. 8
GUS Expression Analysis ………………………………………………………..…. 9
Yeast Competent Cells Preparation ……………………………………………….… 9
Small-Scale LiAc Yeast Transformation …………………………………………... 10
Yeast Two-Hybrid (Y2H) Screening ………………………………………………. 10
β-Galactosidase Activity Analysis …………………………………………………. 11
Bioinformatics ……………………………………………………………………… 12
Results
Characterization of R1-2 Mutant …………………………………………………… 13
At3g22970 Had a Circadian Rhythm Expression Profile ………………………….. 13
At3g22970 in R1-2 Showed an Obviously Decrease in Expression Level during the Maximum Phase ………………………….......................................................... 15
Characterization of At3g22970 Gene and DUF506 Gene Family ………………..... 16
Different Expression of At3g22970 during the Plant Development………………... 16
At3g22970 Loss-of-Function Line ………………………………………………..... 17
At3g22970 Gain-of-Function Line …………………………………………………. 18
Proteins Interact with At3g22970 ………………………………………………….. 19
Discussion
The Promoter of At3g22970 was Disrupted by T-DNA in R1-2...…………………. 20
At3g22970 Has a Circadian Rhythm Expression and the Maximum Transcripts Level near the Early-Night Phase………………………………………………….. 21
Abnormal Expression of At3g22970 May Cause the Alteration of Leaf Morphology ………………………………………………………………………... 21
At3g22970 Gene Expression May Mainly Perform on Younger Tissues …………. 22
At3g22970 Has Other Interacting Proteins and May Involve in Some Known Physiological Process ……………………………………………………………… 22
Tables and Figures ………………………………………………………………...25
References ………………………………………………………………………… 39
Appendixes …………………………………………………………………….….. 47
dc.language.isoen
dc.subject捲曲葉形zh_TW
dc.subjectDUF506en
dc.subjectcircadian rhythmen
dc.subjectcurly leafen
dc.titleT-DNA的嵌入干擾At3g22970基因表現且使阿拉伯芥的葉部形態異常zh_TW
dc.titleThe T-DNA insertion interferes with At3g22970 gene expression to confer the abnormal leaf morphology in Arabidopsis thalianaen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林秋榮,鄭秋萍,林白翎
dc.subject.keyword捲曲葉形,zh_TW
dc.subject.keywordcurly leaf,circadian rhythm,DUF506,en
dc.relation.page63
dc.rights.note有償授權
dc.date.accepted2007-07-31
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept植物科學研究所zh_TW
顯示於系所單位:植物科學研究所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
2.65 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved