請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28033完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 洪傳揚(HONG CHWAN-YANG) | |
| dc.contributor.author | Ping-Hung Hsieh | en |
| dc.contributor.author | 謝秉宏 | zh_TW |
| dc.date.accessioned | 2021-06-12T18:34:40Z | - |
| dc.date.available | 2012-08-03 | |
| dc.date.copyright | 2007-08-03 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-31 | |
| dc.identifier.citation | 參考文獻
戶刈義次 (1963) 作物學試驗法。東京農業技術學會印行。第 159-176 頁。 Agrawal, G.K., Yamazaki, M., Kobayashi, M., Hirochika, R., Miyao, A., and Hirochika, H. (2001). Screening of the rice viviparous mutants generated by endogenous retrotransposon Tos17 insertion. Tagging of a zeaxanthin epoxidase gene and a novel ostatc gene. Plant Physiology 125, 1248-1257. Agusti, J., Zapater, M., Iglesias, D.J., Cercos, M., Tadeo, F.R., and Talon, M. (2007). Differential expression of putative 9-cis-epoxycarotenoid dioxygenases and abscisic acid accumulation in water stressed vegetative and reproductive tissues of citrus. Plant Science 172, 85-94. Audenaert, K., De Meyer, G.B., and Hofte, M.M. (2002). Abscisic acid determines basal susceptibility of tomato to Botrytis cinerea and suppresses salicylic acid-dependent signaling mechanisms. Plant Physiology 128, 491-501. Audran, C., Borel, C., Frey, A., Sotta, B., Meyer, C., Simonneau, T., and Marion-Poll, A. (1998). Expression studies of the zeaxanthin epoxidase gene in nicotiana plumbaginifolia. Plant Physiology 118, 1021-1028. Auldridge, M.E., Block, A., Vogel, J.T., Dabney-Smith, C., Mila, I., Bouzayen, M., Magallanes-Lundback, M., DellaPenna, D., McCarty, D.R., and Klee, H.J. (2006). Characterization of three members of the Arabidopsis carotenoid cleavage dioxygenase family demonstrates the divergent roles of this multifunctional enzyme family. The Plant Journal 45, 982-993. Bai, Y., Han, X., Wu, J., Chen, Z., and Li, L. (2004). Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature 431, 181-184. Burbidge, A., Grieve, T.M., Jackson, A., Thompson, A., McCarty, D.R., and Taylor, I.B. (1999). Characterization of the ABA-deficient tomato mutant notabilis and its relationship with maize Vp14. The Plant Journal 17, 427-431. Cheng, W.H., Endo, A., Zhou, L., Penney, J., Chen, H.C., Arroyo, A., Leon, P., Nambara, E., Asami, T., Seo, M., Koshiba, T., and Sheen, J. (2002). A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. The Plant Cell 14, 2723-2743. Chernys, J.T., and Zeevaart, J.A. (2000). Characterization of the 9-cis-epoxycarotenoid dioxygenase gene family and the regulation of abscisic acid biosynthesis in avocado. Plant Physiology 124, 343-353. Cowan, A.K., Turner, S.L., and Botha, C.E.J. (1995). Effect of water stress and diclofop-methyl on photosynthesis, carotenoid and abscisic acid content of leaves of Avena byzantina and Avena fatua. South African Journal of Botany 61, 29-34. Djebali, W., Zarrouk, M., Brouquisse, R., El Kahoui, S., Limam, F., Ghorbel, M.H., and Chaibi, W. (2005). Ultrastructure and lipid alterations induced by cadmium in tomato (Lycopersicon esculentum) chloroplast membranes. Plant Biology 7, 358-368. Fediuc, E., Lips, S.H., and Erdei, L. (2005). O-acetylserine (thiol) lyase activity in Phragmites and Typha plants under cadmium and NaCl stress conditions and the involvement of ABA in the stress response. Journal of Plant Physiology 162, 865-872. Foo, E., Turnbull, C.G., and Beveridge, C.A. (2001). Long-distance signaling and the control of branching in the rms1 mutant of pea. Plant Physiology 126, 203-209. Gong, M., Li, Y.J., and Chen, S.Z. (1998). Abscisic acid-induced thermotolerance in maize seedlings is mediated by calcium and associated with antioxidant systems. Journal of Plant Physiology 153, 488-496. Gonzalez-Guzman, M., Abia, D., Salinas, J., Serrano, R., and Rodriguez, P.L. (2004). Two new alleles of the abscisic aldehyde oxidase 3 gene reveal its role in abscisic acid biosynthesis in seeds. Plant Physiology 135, 325-333. Gonzalez-Guzman, M., Apostolova, N., Belles, J.M., Barrero, J.M., Piqueras, P., Ponce, M.R., Micol, J.L., Serrano, R., and Rodriguez, P.L. (2002). The short-chain alcohol dehydrogenase ABA2 catalyzes the conversion of xanthoxin to abscisic aldehyde. The Plant Cell 14, 1833-1846. Guan, J.C., Jinn, T.L., Yeh, C.H., Feng, S.P., Chen, Y.M., and Lin, C.Y. (2004). Characterization of the genomic structures and selective expression profiles of nine class I small heat shock protein genes clustered on two chromosomes in rice (Oryza sativa L.). Plant Molecular Biology 56, 795-809. Han, S.Y., Kitahata, N., Saito, T., Kobayashi, M., Shinozaki, K., Yoshida, S., and Asami, T. (2004). A new lead compound for abscisic acid biosynthesis inhibitors targeting 9-cis-epoxycarotenoid dioxygenase. Bioorganic & Medicinal Chemistry Letters 14, 3033-3036. Hansen, H., and Grossmann, K. (2000). Auxin-induced ethylene triggers abscisic acid biosynthesis and growth inhibition. Plant physiology 124, 1437-1448. Hirai, N., Yoshida, R., Todoroki, Y., and Ohigashi, H. (2000). Biosynthesis of abscisic acid by the non-mevalonate pathway in plants, and by the mevalonate pathway in fungi. Bioscience, Biotechnology, and Biochemistry 64, 1448-1458. Hsu, Y.T., and Kao, C.H. (2003). Role of abscisic acid in cadmium tolerance of rice (Oryza sativa L.) seedlings. Plant, Cell & Environment 26, 867-874. Hsu, Y.T., and Kao, C.H. (2004). Cadmium toxicity is reduced by nitric oxide in rice leaves. Plant Growth Regulation 42, 227-238. Imai, R., Moses, M.S., and Bray, E.A. (1995). Expression of an ABA-induced gene of tomato in transgenic tobacco during periods of water deficit. Journal of Experimental Botany 46, 1077-1084. Ishitani, M., Xiong, L., Stevenson, B., and Zhu, J.K. (1997). Genetic analysis of osmotic and cold stress signal transduction in Arabidopsis: interactions and convergence of abscisic acid-dependent and abscisic acid-independent pathways. The Plant Cell 9, 1935-1949. Iuchi, S., Kobayashi, M., Taji, T., Naramoto, M., Seki, M., Kato, T., Tabata, S., Kakubari, Y., Yamaguchi-Shinozaki, K., and Shinozaki, K. (2001). Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. The Plant Journal 27, 325-333. Jakab, G., Ton, J., Flors, V., Zimmerli, L., Metraux, J.P., and Mauch-Mani, B. (2005). Enhancing Arabidopsis salt and drought stress tolerance by chemical priming for its abscisic acid responses. Plant Physiology 139, 267-274. Karssen, C.M., Brinkhorst-van der Swan, D.L.C., Breekland, A.E., and Koornneef, M. (1983). Induction of dormancy during seed development by endogenous abscisic acid: studies on abscisic acid deficient genotypes of Arabidopsis thaliana (L.) Heynh. Planta 157, 158-165. Kasahara, H., Takei, K., Ueda, N., Hishiyama, S., Yamaya, T., Kamiya, Y., Yamaguchi, S., and Sakakibara, H. (2004). Distinct isoprenoid origins of cis- and trans-zeatin biosyntheses in Arabidopsis. The Journal of Biological Chemistry 279, 14049-14054. Kitahata, N., Han, S.Y., Noji, N., Saito, T., Kobayashi, M., Nakano, T., Kuchitsu, K., Shinozaki, K., Yoshida, S., Matsumoto, S., Tsujimoto, M., and Asami, T. (2006). A 9-cis-epoxycarotenoid dioxygenase inhibitor for use in the elucidation of abscisic acid action mechanisms. Bioorganic & Medicinal Chemistry 14, 5555-5561. Kraft, M., Kuglitsch, R., Kwiatkowski, J., Frank, M., and Grossmann, K. (2007). Indole-3-acetic acid and auxin herbicides up-regulate 9-cis-epoxycarotenoid dioxygenase gene expression and abscisic acid accumulation in cleavers (Galium aparine): interaction with ethylene. Journal of Experimental Botany 58, 1497-1503. Lee, T.-M., Lur, H.-S., and Chu, C. (1993). Role of abscisic acid in chilling tolerance of rice (Oryza sativa L.) seedlings. I: Endogenous abscisic acid levels. Plant, Cell & Environment 16, 481-490. Lefebvre, V., North, H., Frey, A., Sotta, B., Seo, M., Okamoto, M., Nambara, E., and Marion-Poll, A. (2006). Functional analysis of Arabidopsis NCED6 and NCED9 genes indicates that ABA synthesized in the endosperm is involved in the induction of seed dormancy. The Plant Journal 45, 309-319. Leung, J., and Giraudat, J. (1998). Abscisic acid signal transduction. Annual Review of Plant Biology 49, 199-222. Lin, P.C., Hwang, S.G., Endo, A., Okamoto, M., Koshiba, T., and Cheng, W.H. (2007). Ectopic expression of ABSCISIC ACID 2/GLUCOSE INSENSITIVE 1 in Arabidopsis promotes seed dormancy and stress tolerance. Plant Physiology 143, 745-758. Lobell, D.B., and Asner, G.P. (2003). Climate and management contributions to recent trends in U.S. agricultural yields. Science 299, 1032. Marin, E., Nussaume, L., Quesada, A., Gonneau, M., Sotta, B., Hugueney, P., Frey, A., and Marion-Poll, A. (1996). Molecular identification of zeaxanthin epoxidase of Nicotiana plumbaginifolia, a gene involved in abscisic acid biosynthesis and corresponding to the ABA locus of Arabidopsis thaliana. The EMBO Journal 15, 2331-2342. McCarty, D.R. (1995). Genetic control and integration of maturation and germination pathways in seed development. Annual Review of Plant Biology 46, 71-93. Millar, A.A., Jacobsen, J.V., Ross, J.J., Helliwell, C.A., Poole, A.T., Scofield, G., Reid, J.B., and Gubler, F. (2006). Seed dormancy and ABA metabolism in Arabidopsis and barley: the role of ABA 8'-hydroxylase. Plant J 45, 942-954. Moons, A. (2003). Ospdr9, which encodes a PDR-type ABC transporter, is induced by heavy metals, hypoxic stress and redox perturbations in rice roots. FEBS Letters 553, 370-376. Nambara, E., and Marion-Poll, A. (2003). ABA action and interactions in seeds. Trends in Plant Science 8, 213-217. Niyogi, K.K., Grossman, A.R., and Bjorkman, O. (1998). Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion. The Plant Cell 10, 1121-1134. Ohmiya, A., Kishimoto, S., Aida, R., Yoshioka, S., and Sumitomo, K. (2006). Carotenoid cleavage dioxygenase (CmCCD4a) contributes to white color formation in chrysanthemum petals. Plant Physiology 142, 1193-1201. Oncel, I., Keles, Y., and Ustun, A.S. (2000). Interactive effects of temperature and heavy metal stress on the growth and some biochemical compounds in wheat seedlings. Environmental Pollution 107, 315-320. Peng, S., Huang, J., Sheehy, J.E., Laza, R.C., Visperas, R.M., Zhong, X., Centeno, G.S., Khush, G.S., and Cassman, K.G. (2004). Rice yields decline with higher night temperature from global warming. Proceedings of the National Academy of Sciences of the United States of America 101, 9971-9975. Qiang, X., Henry, R.L., Guikema, J.A., and Paulsen, G.M. (1995). Association of high-temperature injury with increased sensitivity of photosynthesis to abscisic acid in wheat. Environmental and Experimental Botany 35, 441-454. Qin, X., and Zeevaart, J.A. (1999). The 9-cis-epoxycarotenoid cleavage reaction is the key regulatory step of abscisic acid biosynthesis in water-stressed bean. Proceedings of the National Academy of Sciences of the United States of America 96, 15354-15361. Razem, F.A., El-Kereamy, A., Abrams, S.R., and Hill, R.D. (2006). The RNA-binding protein FCA is an abscisic acid receptor. Nature 439, 290-294. Ridvan Sivaci, E., Sivaci, A., and Sokmen, M. (2004). Biosorption of cadmium by Myriophyllum spicatum L. and Myriophyllum triphyllum orchard. Chemosphere 56, 1043-1048. Robertson, A.J., Ishikawa, M., Gusta, L.V., and MacKenzie, S.L. (1994). Abscisic acid-induced heat tolerance in Bromus inermis Leyss Cell-suspension cultures. Heat-stable, abscisic acid-responsive polypeptides in combination with sucrose confer enhanced thermostability. Plant Physiology 105, 181-190. Rodrigo, M.J., Alquezar, B., and Zacarias, L. (2006). Cloning and characterization of two 9-cis-epoxycarotenoid dioxygenase genes, differentially regulated during fruit maturation and under stress conditions, from orange (Citrus sinensis L. Osbeck). Journal of Experimental Botany 57, 633-643. Rodriguez-Serrano, M., Romero-Puertas, M.C., Zabalza, A., Corpas, F.J., Gomez, M., Del Rio, L.A., and Sandalio, L.M. (2006). Cadmium effect on oxidative metabolism of pea (Pisum sativum L.) roots. Imaging of reactive oxygen species and nitric oxide accumulation in vivo. Plant, Cell & Environment 29, 1532-1544. Schwartz, S.H., Qin, X., and Zeevaart, J.A. (2001). Characterization of a novel carotenoid cleavage dioxygenase from plants. The Journal of Biological Chemistry 276, 25208-25211. Schwartz, S.H., Qin, X., and Loewen, M.C. (2004). The biochemical characterization of two carotenoid cleavage enzymes from Arabidopsis indicates that a carotenoid-derived compound inhibits lateral branching. The Journal of Biological Chemistry 279, 46940-46945. Schwartz, S.H., Tan, B.C., Gage, D.A., Zeevaart, J.A., and McCarty, D.R. (1997). Specific oxidative cleavage of carotenoids by VP14 of maize. Science 276, 1872-1874. Seo, M., Aoki, H., Koiwai, H., Kamiya, Y., Nambara, E., and Koshiba, T. (2004). Comparative studies on the Arabidopsis aldehyde oxidase (AAO) gene family revealed a major role of AAO3 in ABA biosynthesis in seeds. Plant & Cell Physiology 45, 1694-1703. Seo, M., Koiwai, H., Akaba, S., Komano, T., Oritani, T., Kamiya, Y., and Koshiba, T. (2000a). Abscisic aldehyde oxidase in leaves of Arabidopsis thaliana. The Plant Journal 23, 481-488. Seo, M., Peeters, A.J., Koiwai, H., Oritani, T., Marion-Poll, A., Zeevaart, J.A., Koornneef, M., Kamiya, Y., and Koshiba, T. (2000b). The Arabidopsis aldehyde oxidase 3 (AAO3) gene product catalyzes the final step in abscisic acid biosynthesis in leaves. Proceedings of the National Academy of Sciences of the United States of America 97, 12908-12913. Shah, N., and Paulsen, G. (2003). Interaction of drought and high temperature on photosynthesis and grain-filling of wheat. Plant and Soil 257, 219-226. Simkin, A.J., Schwartz, S.H., Auldridge, M., Taylor, M.G., and Klee, H.J. (2004a). The tomato carotenoid cleavage dioxygenase 1 genes contribute to the formation of the flavor volatiles beta-ionone, pseudoionone, and geranylacetone. The Plant Journal 40, 882-892. Simkin, A.J., Underwood, B.A., Auldridge, M., Loucas, H.M., Shibuya, K., Schmelz, E., Clark, D.G., and Klee, H.J. (2004b). Circadian regulation of the PhCCD1 carotenoid cleavage dioxygenase controls emission of beta-ionone, a fragrance volatile of petunia flowers. Plant Physiology 136, 3504-3514. Snowden, K.C., Simkin, A.J., Janssen, B.J., Templeton, K.R., Loucas, H.M., Simons, J.L., Karunairetnam, S., Gleave, A.P., Clark, D.G., and Klee, H.J. (2005). The Decreased apical dominance1/Petunia hybrida CAROTENOID CLEAVAGE DIOXYGENASE8 gene affects branch production and plays a role in leaf senescence, root growth, and flower development. The Plant Cell 17, 746-759. Tan, B.C., Schwartz, S.H., Zeevaart, J.A., and McCarty, D.R. (1997). Genetic control of abscisic acid biosynthesis in maize. Proceedings of the National Academy of Sciences of the United States of America 94, 12235-12240. Tan, B.C., Joseph, L.M., Deng, W.T., Liu, L., Li, Q.B., Cline, K., and McCarty, D.R. (2003). Molecular characterization of the Arabidopsis 9-cis- epoxycarotenoid dioxygenase gene family. The Plant Journal 35, 44-56. Thompson, A.J., Mulholland, B.J., Jackson, A.C., McKee, J.M., Hilton, H.W., Symonds, R.C., Sonneveld, T., Burbidge, A., Stevenson, P., and Taylor, I.B. (2007). Regulation and manipulation of ABA biosynthesis in roots. Plant, Cell & Environment 30, 67-78. Toyofuku, K., Loreti, E., Vernieri, P., Alpi, A., Perata, P., and Yamaguchi, J. (2000). Glucose modulates the abscisic acid-inducible Rab16A gene in cereal embryos. Plant Molecular Biology 42, 451-460. Turnbull, C.G., Booker, J.P., and Leyser, H.M. (2002). Micrografting techniques for testing long-distance signalling in Arabidopsis. The Plant Journal 32, 255-262. Wan, X.R., and Li, L. (2006). Regulation of ABA level and water-stress tolerance of Arabidopsis by ectopic expression of a peanut 9-cis-epoxycarotenoid dioxygenase gene. Biochemical and Biophysical Research Communications 347, 1030-1038. Wilkinson, S., and Davies, W.J. (2002). ABA-based chemical signalling: the co-ordination of responses to stress in plants. Plant, Cell & Environment 25, 195-210. Xiong, L., Lee, H., Ishitani, M., and Zhu, J.K. (2002). Regulation of osmotic stress-responsive gene expression by the LOS6/ABA1 locus in Arabidopsis. The Journal of Biological Chemistry 277, 8588-8596. Xu, Z.Z., and Zhou, G.S. (2006). Combined effects of water stress and high temperature on photosynthesis, nitrogen metabolism and lipid peroxidation of a perennial grass Leymus chinensis. Planta 224, 1080-1090. Yan, C., Shen, H., Li, Q., and He, Z. (2006). A novel ABA-hypersensitive mutant in Arabidopsis defines a genetic locus that confers tolerance to xerothermic stress. Planta 224, 889-899. Yang, S.H., and Choi, D. (2006). Characterization of genes encoding ABA 8'-hydroxylase in ethylene-induced stem growth of deepwater rice (Oryza sativa L.). Biochemical and Biophysical Research Communications 350, 685-690. Yang, J., and Guo, Z. (2007). Cloning of a 9-cis-epoxycarotenoid dioxygenase gene (SgNCED1) from Stylosanthes guianensis and its expression in response to abiotic stresses. Plant Cell Reports, DOI 10.1007/s00299-007-0325-8 Zeevaart, J.A.D., and Creelman, R.A. (1988). Metabolism and physiology of abscisic acid. Annual Review of Plant Biology 39, 439-473. Zengin, F.K. (2006). The effects of Co2+ and Zn2+ on the contents of protein, abscisic acid, proline and chlorophyll in bean (Phaseolus vulgaris cv. Strike) seedlings. Journal of Environmental Biology 27, 441-448. Zhu, C., Kauder, F., Romer, S., and Sandmann, G. (2007). Cloning of two individual cDNAS encoding 9-cis-epoxycarotenoid dioxygenase from Gentiana lutea, their tissue-specific expression and physiological effect in transgenic tobacco. Journal of Plant Physiology 164, 195-204. Zhu, J.K., Hasegawa, P.M., and Bressan, R.A. (1997). Molecular aspects of osmotic stress in plants. Critical Review in Plant Sciences 16, 253-277. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28033 | - |
| dc.description.abstract | 鎘及高溫逆境會嚴重限制植物的生長及產量。過去的研究顯示,常溫下 (日溫30℃/夜溫25 ℃),鎘逆境使得耐鎘水稻TNG67的根部及葉片比不耐鎘水稻TCN1累積較高含量的ABA,而在高溫 (日溫35 ℃/夜溫30 ℃)與鎘的雙重逆境下,TNG67及TCN1則都會在葉片中累積高含量的ABA。為了瞭解鎘及高溫逆境對水稻ABA生合成的調控機制,本試驗以阿拉伯芥基因為藍本,經由生物資訊學的方法找出水稻中ABA生合成相關的基因,並分析這些基因對鎘及高溫的反應。試驗中一共找出2個ZEP基因、13個NCED基因、3個SDR基因、及5個AAO基因。半定量RT-PCR分析結果顯示,各基因家族在TNG67不同組織間多具有不同的表現量。TNG67及TCN1的葉片及根部對鎘及高溫有不同的反應。在葉片中,所有OsZEPs與OsAAOs的表現都不受鎘及高溫的影響,但一些OsNCEDs (OsNCED1、OsNCED2、OsNCED3、OsNCED5及OsCCD8b)、及OsSDRs (OsSDR2及OsSDR3),則有差異表現。在根部中,OsZEPs (OsZEP1a及OsZEP1b)、OsNCEDs (OsNCED1、OsNCED2、OsNCED3、OsNCED5、OsNCED6、OsNCED7、OsCCD1及OsCCD8b)、OsSDR3、及OsAAOs (OsAAO3及OsAAO4)等基因,在鎘、高溫或高溫加鎘雙重逆境下,分別受到不同程度的調控。這些結果顯示,耐鎘與對鎘敏感水稻在鎘逆境或高溫逆境下,葉片及根部ABA生合成具有不同但複雜的調控機制。 | zh_TW |
| dc.description.abstract | Cadmium (Cd) and high temperature are limiting factors of plant growth and yield. Previous studies demonstrated that Cd stress increased the accumulation of ABA in Cd-tolerant cultivar TNG67 under normal temperature condition 30 ℃/25 ℃ (day /night), while no significant change was observed in Cd-sensitive cultivar TCN1 in both leaf and root tissue. On the other hand, with treatment of Cd and high temperature 35 ℃/30 ℃ (day /night), ABA was shown to highly accumulated in leaves of TCN1 and TNG67. To dissect the molecular mechanisms affecting ABA accumulation under Cd and high temperature stresses in rice seedling, this study identified ABA biosynthetic genes by bioinformatics approach, and gene expression patterns were analyzed by semi-quantitative RT-PCR. Totally, 2 ZEP genes, 13 NCED genes, 3 SDR genes, and 5 AAO genes were identified. Gene expression analysis revealed that genes of each gene family differentially expressed in different tissues. ABA biosynthetic genes showed different expression patterns to Cd and high temperature between Cd-tolerant cultivar TNG67 and Cd-sensitive cultivar TCN1. In leaf tissue, OsZEPs and OsAAOs did not response to Cd and high temperature stresses, but some genes of OsNCEDs (OsNCED1, OsNCED2, OsNCED, OsNCED5, OsCCD8b), and OsSDRs (OsSDR2 and OsSDR3) were regulated by Cd and high temperature. In root tissue, expression of OsZEPs (OsZEP1a and OsZEP1b), OsNCEDs (OsNCED1, OsNCED2, OsNCED3,OsNCED5, OsNCED6, OsNCED7, OsCCD1 and OsCCD8b), OsSDR3 and OsAAOs (OsAAO3 and OsAAO4) were regulated by Cd, high temperature, or Cd plus high temperature stresses. Taken together, our data reveals that under Cd, high temperature or Cd plus high temperature conditions, leaf or root tissue of TCN1 and TNG67 have diverse regulatory modes controlling the biosynthesis of ABA. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-12T18:34:40Z (GMT). No. of bitstreams: 1 ntu-96-R94623005-1.pdf: 2527101 bytes, checksum: c5d6c2c07bb44923ba3eb7b0d5ae9146 (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 口試委員會審定書
志謝 目錄…………………………………………………………………………...I 圖表目錄………………….………………………………………………….………..III 表目錄…………………………………………………………………….……III 圖目錄…………………………………………………………………….……IV 縮寫字對照…………………………………………………………………………..VI 摘要……………………………………………………………………………..1 Abstract……………………………………………………………………………..2 前言…………………………………………………………….………………4 文獻回顧………………………………………………………………………5 一、 ABA的生理功能…………………………………………………………5 二、 ABA的生合成……………………………………………………………5 三、 ZEP基因在ABA生合成扮演的角色…………………………………...6 四、 NCED基因在ABA生合成扮演的角色…………………………………8 (一) CCD基因家族………………………………………………………8 (二) NCED基因家族 ……………………………………………………9 五、 SDR基因在ABA生合成扮演的角色………………….…….…………12 六、 AAO基因在ABA生合成扮演的角色……………….……….…………12 七、 ABA代謝基因調控與荷爾蒙對ABA含量的影響………………….....…13 八、 鎘逆境對植物的影響………….....................................................................13 九、 高溫逆境對植物的影響……….....................................................................14 十、 高溫與重金屬雙重逆境……….....................................................................15 材料與方法………………………………………………………………………16 一、 材料之種植、選取與處理……………………………………………………16 二、RNA製備……………………………………………………………17 三、 水稻中,可能的ZEP、NCED、SDR及AAO基因搜尋……………………19 四、 NCED基因可能的葉綠體導引胜 20 五、基因專一性引子對的設計………………………………………………20 六、 二步驟RT-PCR……………………………………………………………20 七、 PCR 產物瓊脂凝膠電泳分析………………………………………………22 八、 PCR產物之回收與定序……………….……………………………………22 九、 親緣演化樹之建立…………………………………………………………23 結果………………………………………………………………………………25 一、 氯化鎘及高溫逆境對TCN1及TNG67水稻幼苗生長的影響……………25 二、 生物資訊學及親緣關係分析水稻中ABA生合成基因……………………25 (一) ZEP基因部份……………………………………………………………25 (二) NCED基因部份 ………………………………….……………………25 (三) SDR基因部份……………………………………………………………26 (四) AAO基因部份……………………………………………………………26 三、NCED基因可能的葉綠體導引胜肽(putative transit peptide)預測……27 四、水稻不同組織中ABA生合成相關基因的表現………………………………27 (一) OsZEP……………………………………………..………………………27 (二) OsNCED……………………………………………………..……………27 (三) OsSDR……………………………………………………..………………27 (四) OsAAO…………………………………………………….………………27 五、 氯化鎘及高溫處理下,葉片中的ABA生合成相關基因的表現…………28 六、 氯化鎘及高溫處理下,根部的ABA生合成相關基因的表現……………28 (一) OsZEP……………………………………………………………..………28 (二) OsNCED………………………………………………………..…………28 (三) OsSDR……………………………………………………………..………29 (四) OsAAO…………………………………………………………….………29 討論………………………………………………………………………………51 參考文獻…………………………………………………………………………56 圖表目錄 表目錄 表1 水稻中可能的ZEP、NCED、SDR及AAO基因總表。………………65 表2a 半定量RT-PCR分析中所使用的OsNCED專一性引子對序列、預測擴增片段及黏合溫度。………………………………………………....66 表2b 半定量RT-PCR分析中所使用的OsZEP、OsSDR、OsAAO及控制組基因─Oshsp17.3、OsPDR9及OsActin專一性引子對序列、預測擴增片段及黏合溫度。……….………………………………………………....67 表3 水稻中NCED家族基因、CCD家族基因、玉米ZmVP14基因 (玉米的NCED基因)及阿拉伯芥AtNCED3基因間,胺基酸序列以及3’ UTR序列相似性比對 (%)。.………………………………………………....68 表4 水稻NCED及CCD基因中可能的葉綠體導引訊息胜肽(putative transit peptide)預測。…….………………………………………………....69 附表1 木村氏水耕液配方。…….……………………………………………….70 圖目錄 附圖1 ABA生合成與代謝之途徑 。…………………….………………………7 圖1 氯化鎘 (500 μM) 於 30 ℃/25 ℃ (日/夜溫) 與 35 ℃/30 ℃ 對水稻幼苗生長之影響 (24h)。.……………………………….………………30 圖2 氯化鎘 (500 μM) 於 30 ℃/25 ℃ (日/夜溫) 與 35 ℃/30 ℃ 對水稻幼苗生長之影響 (48h)。..…………………………………………….…31 圖3a 水稻OsZEP1基因和其他物種ZEP基因保守性序列的比對。……..32 圖3b 水稻OsZEP1基因有Alternative Splicing現象,其具有兩種基因結構。……………………………………………………………….…….33 圖4 OsZEP基因的親緣演化樹。……………………….…………….……….34 圖5 水稻OsNCED及OsCCD和其他物種NCED及CCD基因四個保守性Histidine的比對。……………………………………………….……..35 圖6 水稻OsNCED及OsCCD的親緣演化樹。……………………..….….36 圖7 NCED及CCD結構示意圖。…………………………….…….….….37 圖8 水稻OsSDR基因和其他物種SDR基因保守性序列的比對。.…...….38 圖9 水稻OsSDR的親緣演化樹。…………………………………….…….39 圖10 水稻OsAAO基因家族保守性區域和其他物種AAO基因的比對。......40 圖11 OsAAO基因的親緣演化樹。……….…..………………………….…….41 圖12 OsZEP1基因於水稻不同組織中的表現。.……….……………….…….42 圖13 OsNCED及OsCCD基因於水稻不同組織中的表現。………………….43 圖14 OsSDR基因於水稻不同組織中的表現。…………..……..……….…….44 圖15 OsAAO基因於水稻不同組織中的表現。…………..……………….…….45 圖16 三葉齡水耕栽培幼苗分別在30 ℃/25 ℃ (日/夜溫) 與 35 ℃/30 ℃下以氯化鎘 (500 μM)處理是24及48小時後,分別選取水稻幼苗第二葉(A)及根部(B)抽取RNA,進行OsZEP1基因分析。………….………………46 圖17 三葉齡水耕栽培幼苗分別在30 ℃/25 ℃ (日/夜溫) 與 35 ℃/30 ℃下以氯化鎘 (500 μM)處理是24及48小時後,選取水稻幼苗第二葉抽取RNA,進行OsNCED及OsCCD基因分析。…………..………….…….47 圖18 三葉齡水耕栽培幼苗分別在30 ℃/25 ℃ (日/夜溫) 與 35 ℃/30 ℃下以氯化鎘 (500 μM)處理是24及48小時後,選取水稻幼苗根部抽取RNA,進行OsNCED及OsCCD基因分析。..…………..………….…….48 圖19 三葉齡水耕栽培幼苗分別在30 ℃/25 ℃ (日/夜溫) 與 35 ℃/30 ℃下以氯化鎘 (500 μM)處理是24及48小時後,分別選取水稻幼苗第二葉(A)及根部(B)抽取RNA,進行OsSDR基因分析。.…………………..….49 圖20 三葉齡水耕栽培幼苗分別在30 ℃/25 ℃ (日/夜溫) 與 35 ℃/30 ℃下以氯化鎘 (500 μM)處理是24及48小時後,分別選取水稻幼苗第二葉(A)及根部(B)抽取RNA,進行OsAAO基因分析。…………..………….50 | |
| dc.language.iso | zh-TW | |
| dc.subject | ABA生合成相關基因 | zh_TW |
| dc.subject | 基因表現 | zh_TW |
| dc.subject | 高溫逆境 | zh_TW |
| dc.subject | 鎘逆境 | zh_TW |
| dc.subject | gene expression | en |
| dc.subject | Cadmium stress | en |
| dc.subject | ABA biosynthetic genes | en |
| dc.subject | high temperature stress | en |
| dc.title | 鎘及高溫調控水稻幼苗ABA生合成分子機制之研究 | zh_TW |
| dc.title | Studies on the molecular mechanism of ABA biosynthesis in response to cadmium and high temperature in rice seedlings | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 高景輝,鍾仁賜,張孟基,葉靖輝 | |
| dc.subject.keyword | ABA生合成相關基因,鎘逆境,高溫逆境,基因表現, | zh_TW |
| dc.subject.keyword | ABA biosynthetic genes,Cadmium stress,high temperature stress,gene expression, | en |
| dc.relation.page | 64 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-08-01 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農業化學研究所 | zh_TW |
| 顯示於系所單位: | 農業化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 2.47 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
