Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28027
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳宜良(I-Liang Chern)
dc.contributor.authorYu-Chun Linen
dc.contributor.author林煜鈞zh_TW
dc.date.accessioned2021-06-12T18:34:18Z-
dc.date.available2009-08-28
dc.date.copyright2007-08-28
dc.date.issued2007
dc.date.submitted2007-07-31
dc.identifier.citation[ 1] A. Brandt, S.F McCormick, and J. W. Ruge, Algebraic multigrid (AMG) for sparse matrix equations, in Sparsity and Its Applications, D.J. Evans, ed., Cambridge University Press, Cambridge, 1984
[ 2] AN Tikhonov and AA Samarskii, Homogeneous difference schemes, USSR Comput. Math. And Math. Phys. 1 5–67 , 1962 .
[ 3] I-Liang Chern, Jian-Guo Liu and Wei-Cheng Wang , Accurate Evaluation of Electrostatics for Macromolecules in Solution ,methods and applications of analysis,Vol.10, No.2, pp.309-308, June 2003, 2005.
[ 4] I-Liang Chern and Yu-Chen Shu, A Coupling Interface Method for Elliptic Interface Problems , Journal of Computational Physics, 2007 .
[ 5] M Holst and F Saied, Multigrid solution of the Poisson-Boltzmann equation, Journal of Computational Chemistry 14 (1993), 105–113.
[ 6] P. Debye-H ckel , Physik. Z , 24 , pp185 ,1923.
[ 7] Wolfgang. Hackbusch:Multi-Grid Methods and Applications, Springer-Verlag, 1985 .
[ 8] Xu-Dong Liu and Thomas C. Sideris, Convergence of the ghost fluid method for elliptic equations with interfaces, Mathematics of Computation 72 (2003), no. 244, 1731–1746 .
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28027-
dc.description.abstractWe present a first order accurate method for solving the partial differential equation, Poisson-Boltzmann Equation
where the coefficients is assumed to be discontinuous across an interface and the source term is allowed to be a delta function. In one-dimension, we take a finite differential approach. Near the discontinuities, the unknown is approximated by a piecewise function. We extend it in two dimensions by taking a dimension-by-dimension in discretization. The underlying grid is regular. We also present two efficient iterative solvers; the algebraic multigrid method to solve the resulting linear system, and the Newton’s method to solve the corresponding nonlinear equations. The main point of this article is to propose an initialization based on geometric multigrid method to reduce number of Newton’s iterations. We show by numerical experiments that total CPU time is nearly proportional to the number of unknowns.
en
dc.description.provenanceMade available in DSpace on 2021-06-12T18:34:18Z (GMT). No. of bitstreams: 1
ntu-96-R93221035-1.pdf: 1913716 bytes, checksum: 3609820b86bfcf88ce846d1e8127a2f0 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontentsAbstract . 1
I.Introduction………………………………………………2
I.1 About the Poisson-Boltzmann Equation……..…..2
I.2 Fast Algorithm for Solving Poisson-Boltzmann Equation…….….…................................4
II.Approach for solving PBE……………………….……5
II.1.Multigrid method …….……….……………………5
II.2 Algebraic Multigrid Method……………………….7
II.3 Newton method………….……………………………10
III.Multigrid Method for Solving the PBE with discontinuous coefficients……………………………12
III.1.Multigrid Method for Solving the Poisson Boltzmann Equation with Discontinuous Coefficients in One-Dimension…………............................….12
III.2.Multigrid Method for Solving the Poisson Boltzmann Equation with Discontinuous Coefficients in Two-Dimension……..………...........................17
III.3.Operator Review……………………….…………21
IV.Numerical Experiments………………………………22
IV.1 One-dimensional examples……….………..…..22
IV.2 Two-dimensional examples……………………….29
V.Conclusion……………………………………………..38
VI.References…………………………………………….39
dc.language.isoen
dc.subject波瓦松-波茲曼方程zh_TW
dc.subject多重網格法zh_TW
dc.subjectalgebraic multigrid methoden
dc.subjectnewtonen
dc.subjectPoission-Boltzmann equationen
dc.title波瓦松-波茲曼方程之多重網格解法zh_TW
dc.titleMultigrid Method for Solving Poisson-Boltzmann Equationen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee周謀鴻(Mo-Hong Chou),薛克民(KEH-MING SHYUE)
dc.subject.keyword多重網格法,波瓦松-波茲曼方程,zh_TW
dc.subject.keywordalgebraic multigrid method,newton,Poission-Boltzmann equation,en
dc.relation.page39
dc.rights.note有償授權
dc.date.accepted2007-08-01
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
1.87 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved