Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28014
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor戴怡德
dc.contributor.authorCha-Haung Leeen
dc.contributor.author李佳鴻zh_TW
dc.date.accessioned2021-06-12T18:33:30Z-
dc.date.available2009-08-02
dc.date.copyright2007-08-02
dc.date.issued2007
dc.date.submitted2007-07-31
dc.identifier.citation參考文獻
Brechtelsbauer, C., P. Oxley, F. Richard, N. Lewis and C. Ramshaw, “Evaluation of spinning disk reactor technology for the manufacture of pharmaceuticals“, Industrial & Engineering Chemistry Research, 39 (7), 2175-2182 (2000)
Cafiero, L. M., G. Baffi, A. Chianese, and R. J. Jachuck, “Process intensification: precipitation of barium sulfate using a spinning disk reactor”, Industrial & Engineering Chemistry Research, 41, 5240-5246 (2002)
Cardarell, H., “Controlled Release Pesticides Formulation“, CRC Press., Boca Raton, Florida, pp.37-48 (1976)
Chen, Y. S. and H. S. Liu, “Absorption of VOCs in a rotating packed bed”, Industrial & Engineering Chemistry Research, 41, 1583-1588 (2002)
Chen, J. F., Y. H. Wang, F. Guo, X. M. Wang, and C. Zheng, “Synthesis of nanoparticles with novel technology: high-gravity reactive precipitation”, Industrial & Engineering Chemistry Research, 39, 948-954 (2000)
Chen, J. F., M. Y. Zhou, L. Shao, Y. Y. Wang, J. Yun, Y. K. Nora Chew, and H. K. Chan, “Feasibility of preparing nanodrugs by high-gravity reactive precipitation”, International Journal of Pharmaceutics, 269, 267-274 (2004)
Chen, J. F., J. Y. Zhang, Z. G. Shen, J. Zhong, and J. Yun,, “Preparation and characterization of amorphous Cefuroxime Axetil drug nanoparticles with novel technology:High-gravity anti-solvent precipitation”, Industrial & Engineering Chemistry Research, 45, 8723-8727 (2006)
Chien, Y. W., “Novel drug delivery system”, Marcel Dekker, Inc. New York, pp.62-79 (1992)
Craig, D., P. Royall, V. Kett, and L. Hopton, “The relevance of the amorphous state to pharmaceutical dosage forms glassy drugs and freeze dried systems”, International Journal of Pharmaceutics, 179, 179-207 (1999)
Don, C. C., C. C. Douglas, W. B. Furman, R. D. Kirchhoefer, J. W. Myrick, and C. E. Wells, “Guidelines for dissolution testing”, Pharmaceutical Technology, 2(4), 40-53 (1978)
Edwards, A., B. Shekunov, A. Kordikowski, R. Forbes, and P. York, “Crystallization of pure anhydrous polymorphs of carbamazepine by solution enhanced dispersion with supercritical fluids (SEDSTM)”, Journal of Pharmaceutical Science 90, 1115-1124 (2001)
Fan, L. T. and S. K. Singh, “Controlled release a quantitative treatment”, Springer-Verlag, Berlin, pp.30-52 (1989)
Foster, N., R. Mammucari, F. Dehghani, A. Barrett, K. Bezanehtak, E. Coen, G. Combes, L. Meure, Ng. Aaron, H. Regtop, and A. Tandya, “Processing pharmaceutical compounds using dense gas technology”, Industrial & Engineering Chemistry Research, 42 (64), 6476-6493 (2003)
Gennaro, A., “Remington’s Pharmaceutical Science”, Chapter 35,17th ed., Mack Publishing Co. (1985)
Harris, F. W., “Proceeding International Controlled release Pesticides Symposium“, New York, pp.77-93 (1997)
Herbert, B. S., “Controlled Release Delivery System for Pesticides”, Marcel Dekker, New York, pp.36-48 (1999)
Herbert, C., L. Li, T. Hu, H. K. Chan, J. F. Chen, and J. Yun, “Production of salbutamal sulfate for inhalation by high-gravity controlled anti-solvent precipitation”, International Journal of Pharmaceuticals, 331, 93-98 (2007)

Hecq, J., M. Deleers, D. Fanara, H. Vranckx, and K. Amighi, “Preparation and characterization of nanocrystals for solubility and dissolution rate enhancement of nifedipine”, International Journal of Pharmaceutics, 299, 167-177 (2005)
Jie, Z., Z. Shen, Y. Yang, and J. F. Chen, “Preparation and Characterization of uniform nanosized cephradine by combination of reactive precipitation and liquid anti-solvent precipitation under high gravity environment”, International Journal of Pharmaceutics, 301, 286-293 (2005)
Jachuck, R. J., and J. Ramshaw, “C. Process intensification: Heat transfer characteristics of tailored rotating surfaces”, Heat Recovery Sys., CHP , 14, 475 (1994)
Julia, H., S. Holtge, S. Schrader, and R. Kreuzig, “Chemical and biological characterization of non-extractable sulfonamide residues in soil”, Chemosphere, 65, 2352-2357 (2006)

Kayrak, D., U. Akman, and O. Hortacsu, “Micronization of ibuprofen by RESS”, Journal of Supercritical Fluids, 26, 17-31 (2003)
Kerc, J., S. Srcic, Z. Knez, and P. Sencar-Bozic, “Micronization of drugs using supercritical carbon dioxide“, International Journal of Pharmaceutics, 182, 33-39 (1999)
Kipp, J. E., J. C. T. Wong, M. J. Doty and C. L. Rebbeck, “Microprecipitation Method for Preparing Submicron Suspensions”, U.S. Patent 6, 607, 784 (2003)
Krober, H. and U. Teipel, “Materials processing with supercritical anti-solvent precipitation:process parameters and morphology of tartaric aicd“, Journal of Supercritical Fluids, 22, 229-235 (2002)
Lee, P. I., “Controlled-release:pharmaceutical application”, American Chemical Society, Washington, DC, pp.88-101 (1987)
Leon, S. and Y. Andrew, “Applied Biopharmaceutics and Pharmacokinetics“, 4th ed., McGraw-Hill, pp.72-98 (1999)
Leuner, C. and J. Dressman, “Improving drug solubility for oral delivery using solid dispersions”, European Journal of Pharmaceutics and Biopharmaceutics, 50, 47-60 (2000)
Liesegang, R. E., “Uber die reifung von Silberhaloidemulsionen”, Zeitschrift fur Physikalische Chemie, 75, 374-377 (1911)
Li, J. D., Y. Q. Cai, Y. L. Shi, L. Ya, S. F. Mou, and G. B. Jiang, “Determination of sulfonamide compounds in sewage and river by mixed hemimicells solid-phase extraction prior to liquid chromatography-spectrophotometry”, Journal of Chromatography A, 1139, 178-184 (2007)
Lin, C. C. and H. S. Liu, “Adsorption in a centrifugal field: basic dye adsorption by
activated carbon”, Ind. Eng. Chem. Res., 39, pp.161-167 (2000)
Lin, C. C., W. T. Liu, and C. S. Tan, “Removal of carbon dioxide by absorption in a rotating packed bed”, Industrial & Engineering Chemistry Research, 42, 2381-2386 (2003)
Liversidge, G. C., K. C. Cundy, J. F. Bishop and D. A. Czekai, “Surface modified drug nanoparticles”, U.S. Patent 5, 145, 684 (1992)
Miers, H. A., “The concentration of the solution in contact with a growing crystal”, Phil. Trans., A, 202, 492. (1904)
Monlina, M., S. Blanco, and F. Ferretti, “Structure and UV solvatochromic shifts of sulfamethoxazole in alcoholic solvent and water”, Journal of Molecular Structure:Theochem, 582, 143-157 (2002)
Mosharraf, M. and C. Nystrom, “The effect of particle size and shape on the surface specific dissolution rate of microsized practically insoluble drugs”, International Journal of Pharmaceutics, 122, 35 (1995)
Moshashaee, S., M. Bisrat, R. T. Forbes, N. Nyqvist, and P. York, “Supercritical fluid processing of proteins:Lysozyme precipitation from organic solution“, European Journal of Pharmaceutical Science, 11, 239-245 (2000)
Muller, R. H., and K. Peters, “Nanosuspensions for the formulation of poorly soluble drugs I. preparation by a size-reduction technique“, International Journal of Pharmaceutics, 160, 229 (1998)
Nielsen, A. E., “Electrolyte crystal growth mechanisms”, J. Crystal Growth, 67, 289 (1984)
Nobert, R., H. Helge, and B. W. Muller, “Microcrystals for dissolution rate enhancement of poorly water-soluble drugs”, International Journal of Pharmaceutics, 254, 137-145 (2003)
Ostwald, W., “Lehrbuch der algemeinen chemie”, Englemann, Leipzig, 2, 444 (1986)
Perrut, M., J. Jung, and F. Leboeuf, “Enhancement of dissolution rate of poorly-soluble active ingredients by supercritical fluid processes Part I:Micronization of neat particles“, International Journal of Pharmaceutics, 228, 3-10 (2005)
Rainer, H. M., K. Peters, “Nanosuspensions for the formulation of poorly soluble drugs I. preparation by a size-reduction technique“, International Journal of Pharmaceutics, 160, 229-237 (1998)
Ramshaw, C. and R. H. Mallinson, “Mass Transfer Process”, United States Patent 4383255 (1981)
Ramshaw, C., and J. R. Burns., “Process intensification: Visual study of liquid maldistribution in rotating packed beds”, Chemical Engineering Science, 51 (8), 1347-1352 (1996)
Roy, D. S., and B. D. Rohera, “Comparative evaluation of rate of hydration and matrix erosion of HEC and HPC and study of drug release from their matrices”, European Journal of Pharmaceutical Science, 16, 193-199 (2002)
Sawistowski, H., “Flooding velocities in packed columns operating at reduced pressure”, Chemical Engineering Science, 6, 138 (1957)
Shekunov, B. and P. York, “Crystallization process in pharmaceutical technology and
drug delivery design“, Journal of Crystal Growth, 211, 122-136 (2000)
Snavely, W. K., B. Subramaniam, R. A. Rajewski, and M. R. Defelippis,“Mircronization of isulin from halogenated alcohol solution using supercritical carbon dioxide as an anti-solvent”, Journal of Pharmaceutical Science, 91 (9),
2026-2039 (2002)
Tai, C.Y., and F. B. Chen, “Polymorphism of CaCO3 precipitated in a constant-composition environment“, AIChE J., 44, 1790 (1998)
Tai, C.Y., W. C. Chien, and P. C. Chen, “Particle nucleation and growth”, Encyclopedia of Surface and Colloid Science (2002)
Trevour, K., and James, R. F., “Distillation studies in a high- gravity contactor “,
Industrial & Engineering Chemistry Research, 35, 4646-4655 (1996)
Ventosa, N., S. Sala, and J. Veciana, “Depressurization of an expanded liquid organic solution(DELOS):A new procedure for obtaining submicron-or micron-sized crystalline particles“, Crystal Growth and Design, 1, 299-303 (2001)
Wu, C. Y. and L. Z. Bent, “Predicting drug disposition via appication of BCS:transport/absorption/elimination/ interplay and development of a biopharmaceutics drug disposition classification system“, Pharmaceutical Research, 22, 11 (2005)
Wubbolts, F., O. Bruinsma, and G.. M. van Rosmalen, “Dry- spraying of ascorbic acid or acetaminophen solutions with supercritical carbon dioxide“, Journal of Crystal Growth, 198/199, 767-772 (1999)
Yeo, S. D. and J. C. Lee, “Crystallization of sulfamethizole using the supercritical and liquid anti-solvent process”, Journal of Supercritical Fluids, 30, 315-323 (2004)
Xianzhi, P., W. Zhendi, K. Wenxing, T. Jianhua, and L. Ken, “A preliminary study on the occurrence and behavior of sulfonamides, ofloxacin and chloramphenicol antimicrobials in wastewaters of two sewage treatment plants in Guangzhou, China”, Science of the Total Environment, 371, 314-322 (2006)
王玉紅、周緒美、郭偕,「超重力場技術用於油田注水脫氧的工業研究」,石油化工,第807-812頁,(1994)
王耀萱,「利用超重力系統開發奈米銀的綠色製程」,碩士學位論文,台大化工所,(2006)
林佳璋,「高重力場之研究」,博士學位論文,台大化工所,(1999)
陳昱劭,「旋轉填充床中黏度對質傳影響之研究」,博士學位論文,台大化工所,(2004)
陳建峰,「超重力技術及應用-新一代反應與分離技術」,第9 -11頁,第147-148頁,化學工業出版社,(2002)
翁政義,財團法人工業技術研究院,「用於製備超微粒之反應器」台灣專利538817, (2002)

曾益民與劉文宗,「超重力反應器之原理及應用」,化工技術,第9卷第11期,第12-27頁,(2001)
張名惠,「在超重力系統中製備氫氧化鎂與氧化鎂粉體」,碩士學位論文,台大化工所,(2005)
張雲評,「以超臨界反溶劑沉澱法進行藥物微粒化之研究」,碩士學位論文,台大化工所,(2005)
楊國明,「藥物釋放之親疏水性乙基纖維素/丙基纖維素摻合微粒的製備與其藥物釋放之研究」,博士學位論文,成大化工所,(2006)
戴嘉德,「以超重力反應沉澱技術製備碳酸鹽微粒」,博士學位論文,台大化工所,
(2007)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28014-
dc.description.abstract摘要
近年來,生技製藥產業成為我國生物科技的主流,但在新開發出來的藥物中,卻有近40%的藥物因溶解度與溶解速率過低,不易被生物體利用,為了解決這個問題,將藥物微粒化是提升藥物溶解度與溶解速率最普遍與有效的方法之一。本研究於超重力系統中分別採用反應沉澱法以及反溶劑沉澱法進行藥物的微粒化。
本實驗所選取的藥品為SMZ(sulfamethoxazole),此藥物為磺胺類(Sulfonamide)抗生素的一種,主要用作抗菌,常用於呼吸系統感染、泌尿系統感染、腸道感染等。此外,用於眼用製劑時,可治療結膜炎、砂眼等眼疾。
本研究中,於反應沉澱法下討論添加劑效應、噴嘴效應、盤面大小效應、轉速效應、靜置時間效應、溫度效應、流量效應、產物研磨後的影響以及再現性,並測量產物溶解度及溶解速率。於反溶劑沉澱法下討論添加劑效應、溫度效應、轉速效應、噴嘴效應、連續式改為循環式的影響,並測量產物溶解度及溶解速率。最後,將兩種方法所得結果加以比較及討論。
本研究所用原料藥大小約在10~25μm之間,而觀察實驗結果,採用反應沉澱法時,粒徑約在1~5μm,僅有少數大顆粒的粒子存在,加入Tween80作為添加劑可避免產物黏附於盤面上,產率最高可達88%。採用反溶劑沉澱法時,粒徑也約在1~5μm之間,但分布較為均勻,幾乎無大顆粒的粒子存在,加入Tween80後產率最高可達77%,其中若將連續式操作改為循環式操作則可達83%。
比較兩種實驗方法,反應沉澱法與反溶劑沉澱法所得粒子大小相近,但反溶劑沉澱法所得粒子分布較為均勻。在pH=1.12時測量溶解速率,反應沉澱法約在25分鐘達90%的溶解,反溶劑沉澱法則約在13分鐘時即可達到90%的溶解,顯現了採用反溶劑沉澱法較有助於提升藥物的溶解速率。而加入HPC則可有效提升產物的溶解速率,在這兩種實驗方法中添加至與SMZ相對量為10~15wt%的HPC時,在5到6分鐘內即可達到95%的溶解。
zh_TW
dc.description.abstractAbstract
In recent years, pharmaceutical industry becomes the main stream of biotechnology in Taiwan. However, 40% of new drugs have two problems: low solubility and low dissolution rate, and thus low bioavailability. In order to overcome these two problems, one of the most common and effective method was to reduce the drug size. In this research, reaction precipitation method and anti-solvent precipitation method were adopted to reduce the particle size of the drugs in a high-gravity system.
Sulfamethoxazole(SMZ) was chosen as the model drug, which was one kind of sulfonamide antibiotics. It was used as antiseptic to treat respiratory system infection, urinary system infection and intestines infection. Moreover, when it was used as eyewash agent, it could treat conjunctivitis and sand holes.
In this study, when using reaction precipitation method, the effect of operating variables, including additive, nozzle size, disk diameter, rotating speed, aging time, temperature, flow rate, milling condition and reappearance were studied, also solubility and dissolution rate of product were measured. Moreover, when using anti-solvent precipitation method, the effect of operating variables, including additive, temperature, rotating speed, nozzle size and the operation mode, i.e, continuous vs. recycle were studied, also solubility and dissolution rate were measured. Finally, the results obtained from the two methods were compared and discussed.

The particle size of original drugs in this study was about 10~25μm. The particle size of product obtained in the reaction precipitation experiment was between 1~5μm, and a few particles of larger size were present. Adding Tween80 as additive could prevent products from adhering on the surface of disk, and the yield of this method reached 88%. In the anti-solvent precipitation experiment, particle size was also between 1~5μm. The distribution was more uniform because large particles were almost disappeared. When adding Tween80 as additive, the yield of the anti-solvent precipitation method reached 77%. When the operation mode was changed from continuous to recycle mode, the yield reached 83%.
Comparing the samples from the two methods, the particle size were similar to each other, but the particle size distribution was more uniform for anti-solvent precipitation method. Under pH of 1.12, the 90% SMZ from reaction precipitation method were dissolved in 25 minutes, and the 90% SMZ from anti-solvent precipitation method were dissolved in 13 minutes. It showed that anti-solvent precipitation method was better for promoting dissolution rate of SMZ. Addition of HPC to SMZ could raise products dissolution rate. When the amount of HPC added was 10~15wt% of SMZ, 95% SMZ were dissolved in 5 to 6 minutes for both samples.
en
dc.description.provenanceMade available in DSpace on 2021-06-12T18:33:30Z (GMT). No. of bitstreams: 1
ntu-96-R94524063-1.pdf: 8800369 bytes, checksum: 5101743bffda659bfba2dea395b62d42 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents目錄
口試委員會審定書………………………………………………………i
誌謝………………………………………...…………….…………..ii
中文摘要………………………………,,,……………….………….iii
英文摘要……………………………………………………..………….v
目錄………………………………………………………..……...…vii
圖索引……………………………………………………….………….xi
表索引……………………………………………………....……….xvi
第一章、 緒論………………………………………………………...1
第二章、 文獻回顧…………………………………………………...3
2-1 目標藥物SMZ………...……………………………………………3
2-2 藥物的微粒化………………………………………………………6
2-3 藥物的溶解…………………………………………………………11
2-4 藥物的制放技術…………………………………………………..14
2-5 結晶動力學………………………………….…………………….18
2-5-1 過飽和度與結晶方式………………...………………………18
2-5-2 微觀混合對結晶的影響……………………...………………21
2-6 超重力系統……………………………………………….……….24
2-6-1 超重力系統之誕生……………………………………...……24
2-6-2 超重力系統之構造與原理………………………………...…25
2-7 超重力系統的應用…………………………………………….….28
2-7-1 脫氧…………………………………………………….....…28
2-7-2 精餾…………………………………………………………...31
2-7-3 吸附…………………………………………………………...32
2-7-4 吸收………………………………………………………...…33
2-7-5 結晶…………………………………………………………...36
第三章、 實驗裝置與步驟………………….……………………….43
3-1 實驗藥品………………………………………………………….43
3-2 實驗儀器………………………………………………………….43
3-3 分析儀器………………………………………………………….44
3-4 實驗方法與步驟……………………………………………………44
3-4-1 SMZ溶解度的測量………………………………......………44
3-4-2 反應沉澱法………………………………………………...…45
3-4-3 反溶劑沉澱法-連續式……………………………………....46
3-4-4 反溶劑沉澱法-循環式……………………………………....47
3-5 分析方法與步驟…………………………………………………..49
3-5-1 顆粒型態………………………………………………....….49
3-5-2 結晶特性…………………………………………………..….49
3-5-3 溶解速率測試………………………………………………...49
第四章、 結果與討論…………………………………………….….56
4-1 以反應沉澱法製備SMZ藥品之探討………………………………56
4-1-1 尋找適合的操作條件……………………………………..…56
4-1-2 添加劑效應…………………………………………………..61
4-1-3 噴嘴效應……………………………………………..………67
4-1-4 盤面大小效應…………………………………………..……70
4-1-5 轉速效應…………………………………………………..…71
4-1-6 靜置時間對粒子之影響…………………………………..…75
4-1-7 溫度效應…………………………………………………..…77
4-1-8 流量效應………………………………………………..……80
4-1-9 研磨後對產率及粒徑之影響……………………………..…82
4-1-10溶解度以及溶解速率之比較……………….......………….87
4-1-11 再現性實驗…….……………………………………........91
4-2 以反溶劑沉澱法製備SMZ藥品之探討………………………….…93
4-2-1 尋找適合的操作條件………………………………...………93
4-2-2 添加劑效應………………………………………………...…94
4-2-3 溫度效應…………………………………………...…………99
4-2-4 轉速效應………………………………………………...….103
4-2-5 噴嘴效應…………………………………………...……….107
4-2-6 操作方式的影響………………………………………...….109
4-2-7 溶解度以及溶解速率之比較…………………........…….113
4-3反應沉澱法及反溶劑沉澱法之比較………………………….….115
4-4 與文獻結果之比較…………………………………………….…120
第五章、 結論……………………………………………………...124
參考文獻……………………………………………………………...126
附錄……………………………………………………………..…….133
dc.language.isozh-TW
dc.title以超重力沉澱法進行SMZ藥品微粒化之研究zh_TW
dc.titleMicronization of SMZ Drug Using High-gravity Precipitation Processen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee史宗淮,劉懷勝,陳延平
dc.subject.keywordSMZ藥品,微粒化,旋轉盤反應器,反應沉澱,反溶劑沉澱,zh_TW
dc.subject.keywordSMZ drug,micronization,spinning-disk reactor,reaction precipitation,anti-solvent precipitation,en
dc.relation.page132
dc.rights.note有償授權
dc.date.accepted2007-08-01
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  目前未授權公開取用
8.59 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved