Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28009
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor關秉宗
dc.contributor.authorLi-Sung Tsaoen
dc.contributor.author曹立松zh_TW
dc.date.accessioned2021-06-12T18:33:12Z-
dc.date.available2007-08-28
dc.date.copyright2007-08-28
dc.date.issued2007
dc.date.submitted2007-07-31
dc.identifier.citation古心蘭、陳添財、賴正偉、林志融、夏禹九 (2006) 利用Generalized Additive Models預測立霧溪流域之樹種分布。第四屆台灣植群多樣性研討會論文集。行政院農業委員會林務局,台北。pp.80-99。
李玲玲 (1996) 全球變遷對台灣陸域生態的影響及因應策略。氣候變遷衝擊評估因應策略建議研討會。國立台灣大學全球變遷中心,台北。
林務局 (1995) 第三次森林資源調查及土地利用調查。台灣省政府農林廳林務局,台北。
柳榗 (1968) 台灣植物群落之研究 (1) 台灣植物群系之分類。台灣省林業試驗所報告166號。
陳正祥 (1957) 氣候之分類與分區。國立台灣大學農學院實驗林林業彙刊第七號。
陳玉峰 (1987) 臺灣植被特色之綜論。臺灣植物資源與保育論文集(周昌弘、彭鏡毅、趙淑妙編)。中華民國自然生態保育協會,台北。pp.123-127。
黃任伯 (2002) 以大氣候與植物型之關係模擬氣候變遷對台灣中部地區植物型之影響。碩士論文。國立台灣大學,台北。
郭寶章 ( 1978) 台灣之森林及樹木分布與溫量指數之關係。中華農學團體67年聯合會特刊。pp.105-113。
環保署 (1997) 氣候變遷對台灣林業的損害度評估與適應策略之研擬(一)。 行政院環境保護署八十六年度空氣污染防治研究發展計畫期末報告。
羅悅心 (1999) 氣候變遷對台灣中部山區植物群系影響之模擬研究。碩士論文。國立台灣大學,台北。
蘇鴻傑 (1992) 台灣之植群:山地植群帶與地理氣候區。台灣生物資源調查及資訊管理研習會論文集(彭鏡毅編)。中央研究院植物研究所,台北。pp.39-53。
Araújo, M.B., Pearson, R.G., 2005. Equilibrium of species’ distribution with climate. Ecography, 28: 693-695.
Cohen, J., 1960. A coefficient of agreement of nominal scales. Educational and Psychological Measurement, 20: 37-46.
Fielding, A.H., Bell, J.F., 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24: 38-49.
Franklin, J., 1998. Predicting the distribution of shrub species in southern California from climate and terrain-derived variables. Journal of Vegetation Science, 9: 733-748.
Guan, B.T., Huang, Z.B, Chung, N.J., 2003. Possible impacts of climate change on potential tree plant forms of a mountain region in Central Taiwan. Taiwania, 48: 259-272.
Guisan, A., Zimmermann, N.E., 2000. Predictive habitat distribution models in ecology. Ecological Modelling, 135: 147-186.
Guisan, A., Edwards, T.C., Hastie, T.J., 2002. Generalized linear and Generalized additive models in studies of species distributions: setting the scene. Ecological Modelling, 157: 89-100.
Guisan, A., Thuiller, W., 2005. Predicting species distribution: offering more than simple habitat models. Ecology Letters, 8: 993-1009.
Hastie, T.J., Tibshirani, R.J.,1990. Generalized Additive Models. Chapman & Hall, London.
Hutchinson, G.E. 1957. Concluding remarks. Cold Spring Symposia on Quantitative Biology, 22: 415-217.
Houghton, J.T, Merio Filho, L.G., Callander, B.A., Harris, N., Kattenburg, A., Maskell, K. (eds) 2001. Climate change 1995-the science of climate change. Working group Ⅰ, Second Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York.
Hsu, H.H, Chen, C.T., 2002. Observed and projected climate change over Taiwan. Meteorology and Atmospheric Physics, 79: 87-104.
Kadmon, R., Schmida, A., 1990. Spatiotemporal demographic processes in plant populations: an approach and case study. American Naturalist, 135: 382-397.
Kearney, M., Porter, W.P., 2004. Mapping the fundamental niche: physiology, climate, and the distribution of a nocturnal lizard. Ecology, 85: 3119-3131.
Landis, J.R., Koch, G.G., 1977. The measurement of observer agreement for categorical data. Biometrics, 33: 159-74.
Lehmann, A., Overton, J.McC., Lethwick, J.R., 2002. GRASP: generalized regression analysis and spatial prediction. Ecological Modelling, 157: 189-207.
Lehmann, A., Leathwick, J.R., Overton, J.McC., 2005. Grasp v. 3.2 user’s manual. Swiss Center For Faunal Cartography, Neuchâtel, Switzerland. Available from http://www.cscf.ch/grasp [accessed 6 October 2006].
Liu, T.S. 1962. A phytogeographic sketch on the forest flora of Taiwan. Acta Phytotaxonomica et Geobotanica, 20:149-157.
Manel, S., Williams, H.C., Ormerod, S.J., 2001. Evaluating presence-absence models in ecology: the need to account for prevalence. Journal of Applied Ecology, 38: 921-931.
Maggini, R., Lehmann, A., Zimmermann, N.E., Guisan, A., 2006. Improving generalized regression analysis for the spatial prediction of forest communities. Journal of Biogeography, 33: 1729-1749.
McKenzie, D., Peterson, D.W., Peterson, D.L., Thornton P.E., 2003. Climatic and biophysical controls on conifer species distribution in mountain forest of Washington State, USA. Journal of Biogeography, 30: 1093-1108.
McPherson, J.M. Jetz, W., Rogers, D.J., 2004. The effects of species’ range sizes on the accuracy of distribution models: ecological phenomenon or statistical artefact? Journal of Applied Ecology, 41: 811-823.
Moisen, G.G., Freeman, E.A., Blackard, J.A., Frescino, T.S., Zimmermann, N.E., Edwards, T.C., 2006. Predicting tree species presence and basal area in Utah: A comparison of stochastic gradient boosting, generalized additive models, and tree-based methods. Ecological Modelling, 199: 176-187.
Nelder, J.A., Wedderburn, R.W.M., 1972. Generalized linear models. Journal of the Royal Statistical Society, Series A 135: 370-384.
Pulliam, H.R., 2000. On the relationship between niche and distribution. Ecology Letters, 3: 349-361.
R Development Core Team, 2007. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available from http://www. r-project.org [accessed 18 January 2007].
Rabinowitz, D., 1981. Seven forms of rarity. The Biological Aspects of Rare Plant Conservation. John Wiley & Sons, New York.
Root, T.L., Price, J.T., Hall, K.R., Schneider, S.H., Rosenzweig, C., Pounds, J.A., 2003. Fingerprints of global warming on wild animals and plants. Nature, 421: 57-60.
Su, H.J.,1984a. Studies on the climate and vegetation types of the natural forests in Taiwan(I). Analysis of the variation in climatic factors. Quarterly Journal of Chinese Forestry, 17(3): 1-14.
Su, H.J.,1984b. Studies on the climate and vegetation types of the natural forests in Taiwan(II). Altitudinal vegetation zones in relation to temperature gradient. Quarterly Journal of Chinese Forestry, 17(4): 57-73.
Svenning, J.C., Skov, F., 2004. Limited filling of the potential range in European tree species. Ecology Letters, 7: 565-573.
Swets, J.A., 1988. Measuring the accuracy of diagnostic systems. Science, 240: 1285-1293.
Thomas, C.D., Cameron, A., Green, R.E., Bakkenes, M., Beaumont, L.J., Collingham, Y.C., Erasmus, B.F.N., de Siqueira, M.F., Grainger, A., Hannah, L., Hughes, L., Huntley, B., van Jaarsveld, A.S., Midgley, G.F., Miles, L., Ortega-Huerta, M.A., Peterson, A.T., Phillips, O.L., Williams, S.E., 2004. Extinction risk from climate change. Nature, 427: 145-148.
Thuiller, W., 2003. Biomod — optimizing predictions of species distributions and projecting potential future shifts under global change. Global Change Biology, 9: 1353-1362.
Thuiller, W., Brotons, L., Araújo, M.B., Lavorel, S., 2004. Effect of restricting environment range of data to project current and future species distribution. Ecography, 27: 165-172.
Vetaas, O.R., 2002. Realized and potential climate niches: a comparison of four Rhododendron tree species. Journal of Biogeography, 29: 545-554.
Whitmore,. T.C., 1975. Tropical Rain Forests of the Far East. Oxford University. London.
Wood, S.N., 2006. Generalized additive models: an introduction with R. Chapman & Hall/CRC. London.
Wu, M.C., 1993. Climate variation in Taiwan — Temperature and precipitation. In Proceedings of International Conference on Regional Environment and Climate Change in East Asia. 30 Nov. - 3 Dec. Global Change Center, National Taiwan University. Taipei. Taiwan. pp. 43-48.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28009-
dc.description.abstract在全球氣候變遷的趨勢之下,未來台灣的氣候可能會變得更溫暖。由於植物的分布與氣候有相當重要的關連性,氣候的暖化可能會造成物種分布範圍的改變,甚至造成物種的滅絕。藉由氣候因子建立物種的分布模式,是評估氣候暖化對於植物分布範圍影響的作法。
本研究藉由統計上的廣義加法模式(generalized additive models, GAMs),嘗試分析六個台灣山區優勢針葉樹物種,包括台灣扁柏(Chamaecyparis obtusa var. formosana )、台灣紅檜(Chamaecyparis formosensis)、台灣冷杉(Abies kawakamii)、台灣鐵杉(Tsuga chinensis)、台灣雲杉(Picea morrisonicola)、台灣二葉松(Pinus taiwanensis),目前的分布範圍與目前氣候狀態之間的關連性,並建立物種的潛在分布模式。物種分布資料,來自於林務局的第三次台灣森林資源調查資料。以Thin-plate smoothing spline方法,將氣象觀測站長期記錄的月均溫和月總降雨量資料,平滑成在地理空間上連續分布的反應曲面。建立模式使用的一組氣溫和雨量解釋變數,彼此之間的相關係數皆低於0.9,可以避免模式產生多元共線性(multicollinearity)的問題。透過逐步選取的程序,從原本的解釋變數當中,找出對各別物種的分布範圍,最具有顯著性的解釋變數。
根據建立完成的六個物種分布模式,其中每一個模式都選入年均溫這項解釋變數,代表這六個物種的分布,皆受到年均溫的影響。年均溫的增加對於物種在一個地區出現的機率,有明顯的負面效應。相反地,沒有任何模式選入了年總降雨量,可能是因為台灣降雨量豐沛的原因。不過,季節性的降雨,對於某些物種的分布,仍然具有影響。
模式的預測結果,係藉由ROC曲線下面積(AUC)值與其他指標加以評估。評估結果顯示,台灣冷杉與台灣台灣鐵杉的預測結果最好,而台灣扁柏與台灣雲杉的預測結果較差,不過其結果仍然具有一定的準確性。
zh_TW
dc.description.abstractUnder the predicted climate change scenarios, many of Taiwan’s endemic conifers may shift their distribution ranges in response. The first step in assessing the likely impacts of climate change on a species’ distribution is to develop a distribution model that relates the species’ current observed distribution to a set of possible climatic variables. In this study, a generalized additive modeling (GAM) approach was used to establish the distribution models for six dominant conifer species in the montane regions of Taiwan. The presence/absence data for each species were extracted from the inventory plot information of The Third Forest Resources and Land Use Inventory in Taiwan. Only plots with an elevation of at least 1000 m a.s.l. were included in this study. Climatic data were from available weather stations. A set of climate surfaces for mean monthly temperatures and precipitations was first developed by using thin-plate smoothing splines. The fitted climate surfaces were then used to estimate climatic parameters for each plot. A stepwise procedure was used to select the best climatic predictors for each species. Model performance was evaluated by area under the receiver-operating characteristic (AUC) curve, Kappa statistic, sensitivity, and specificity.
The results showed that annual mean temperature was the only predictor included in all models, suggesting that the distributions of the six conifer species all were controlled by annual mean temperature. An increase in temperature would reduce the presence probability of the six species at a given site. In contrast, none of the models included annual mean precipitation, likely due to the abundant amount of precipitation in Taiwan. However, the influence of seasonal precipitation was important to some of the conifer species. Model performance criteria suggested the models for Taiwan fir and Taiwan hemlock had a good performance. Based on the AUC criterion, all the models reached the level of useful applications.
en
dc.description.provenanceMade available in DSpace on 2021-06-12T18:33:12Z (GMT). No. of bitstreams: 1
ntu-96-R93625030-1.pdf: 6893249 bytes, checksum: b3d10b48fa16e9291a5988dd247167b9 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents中文摘要..................................................i
英文摘要.................................................ii
目錄.....................................................iv
表目次...................................................vi
圖目次..................................................vii
壹、前言..................................................1
貳、前人研究..............................................3
一、 台灣山地植群帶之垂直分布與氣候之關係.............3
二、物種分布模式的建立過程............................5
1. 模式依據的生態學理論,假設與限制...............5
2. 統計方法:廣義加法模式簡介.....................7
(1) 線性迴歸...................................7
(2) 廣義線性模式...............................8
(3) 廣義加法模式...............................9
(4) 廣義加法模式在物種分布模式中的應用........10
3、模式預測準確性評估............................12
參、研究材料與方法.......................................15
一、物種分布資料.....................................15
二、氣候資料.........................................24
三、物種分布模式的建立與空間預測.....................26
四、物種分布模式的評估...............................28
肆、結果.................................................30
一、氣候資料估計值...................................30
二、物種分布模式建立結果與空間預測...................33
1. 解釋變數之間的相關性..........................33
2. 物種在氣溫和雨量梯度上之分布範圍..............35
3. 逐步選取的結果與最終模式......................45
三、物種分布模式的評估...............................57
伍、討論.................................................60
一、物種的分布與氣候.................................60
二、模式評估的誤差...................................63
陸、參考文獻.............................................66
附表一、氣溫測站之基本地理資料與記錄年份.................71
附表二、雨量測站之基本與地理資料.........................72
附表三、部份氣候資料估計結果.............................75
dc.language.isozh-TW
dc.subjectROC曲線下面積zh_TW
dc.subject廣義加法模式zh_TW
dc.subject物種分布模式zh_TW
dc.subject年均溫zh_TW
dc.subject針葉樹zh_TW
dc.subjectSpecies distribution modelsen
dc.subjectConifer speciesen
dc.subjectGeneralized additive models (GAMs)en
dc.subjectArea under ROC curve (AUC)en
dc.subjectAnnual mean temperatureen
dc.title應用廣義加法模式建構六種台灣針葉樹物種分布範圍與氣候因子之關係zh_TW
dc.titleUsing Generalized Additive Models to Establish the Relationships between Distribution Ranges and Climatic Factors for Six Conifer Species of Taiwanen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳明義,謝長富,陳子英
dc.subject.keyword針葉樹,物種分布模式,廣義加法模式,ROC曲線下面積,年均溫,zh_TW
dc.subject.keywordConifer species,Species distribution models,Generalized additive models (GAMs),Area under ROC curve (AUC),Annual mean temperature,en
dc.relation.page70
dc.rights.note有償授權
dc.date.accepted2007-08-01
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept森林環境暨資源學研究所zh_TW
顯示於系所單位:森林環境暨資源學系

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
6.73 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved