Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥學專業學院
  4. 藥學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28005
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林榮信
dc.contributor.authorEric M. Liuen
dc.contributor.author劉明暐zh_TW
dc.date.accessioned2021-06-12T18:32:57Z-
dc.date.available2009-08-13
dc.date.copyright2007-08-13
dc.date.issued2007
dc.date.submitted2007-08-01
dc.identifier.citationReferences:
1. Fredholm, B.B., Ijzerman, A.P., Jacobson, K.A., Klotz, K.N. & Linden, J. International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacological Reviews 53, 527-552 (2001).
2. Kjelsberg, M.A., Cotecchia, S., Ostrowski, J., Caron, M.G. & Lefkowitz, R.J. Constitutive Activation of the Alpha-1b-Adrenergic Receptor by All Amino-Acid Substitutions at a Single Site - Evidence for a Region Which Constrains Receptor Activation. Journal of Biological Chemistry 267, 1430-1433 (1992).
3. Robinson, P.R., Cohen, G.B., Zhukovsky, E.A. & Oprian, D.D. Constitutively Active Mutants of Rhodopsin. Neuron 9, 719-725 (1992).
4. Arnis, S., Fahmy, K., Hofmann, K.P. & Sakmar, T.P. A Conserved Carboxylic-Acid Group Mediates Light-Dependent Proton Uptake and Signaling by Rhodopsin. Journal of Biological Chemistry 269, 23879-23881 (1994).
5. Lu, Z.L., Curtis, C.A., Jones, P.G., Pavia, J. & Hulme, E.C. The role of the aspartate-arginine-tyrosine triad in the m1 muscarinic receptor: Mutations of aspartate 122 and tyrosine 124 decrease receptor expression but do not abolish signaling. Molecular Pharmacology 51, 234-241 (1997).
6. Rasmussen, S.G.F., et al. Mutation of a highly conserved aspartic acid in the beta(2) adrenergic receptor: Constitutive activation, structural instability, and conformational rearrangement of transmembrane segment 6. Molecular Pharmacology 56, 175-184 (1999).
7. Samama, P., Cotecchia, S., Costa, T. & Lefkowitz, R.J. A Mutation-Induced Activated State of the Beta(2)-Adrenergic Receptor - Extending the Ternary Complex Model. Journal of Biological Chemistry 268, 4625-4636 (1993).
8. Gether, U. Uncovering molecular mechanisms involved in activation of G protein-coupled receptors. Endocrine Reviews 21, 90-113 (2000).
9. Kobilka, B. Agonist binding: A multistep process. Molecular Pharmacology 65, 1060-1062 (2004).
10. Svenningsson, P., Le Moine, C., Fisone, G. & Fredholm, B.B. Distribution, biochemistry and function of striatal adenosine A(2A) receptors. Progress in Neurobiology 59, 355-396 (1999).
11. Ferre, S., Fredholm, B.B., Morelli, M., Popoli, P. & Fuxe, K. Adenosine-dopamine receptor-receptor interactions as an integrative mechanism in the basal ganglia. Trends in Neurosciences 20, 482-487 (1997).
12. Chan, E.Y.W., et al. Increased huntingtin protein length reduces the number of polyglutamine-induced gene expression changes in mouse models of Huntington's disease. Human Molecular Genetics 11, 1939-1951 (2002).
13. Jordan, J.E., Zhao, Z.Q., Sato, H., Taft, S. & VintenJohansen, J. Adenosine A(2) receptor activation attenuates reperfusion injury by inhibiting neutrophil accumulation, superoxide generation and coronary endothelial adherence. Journal of Pharmacology and Experimental Therapeutics 280, 301-309 (1997).
14. Wermuth, G., Ganellin, C.R., Lindberg, P. & Mitscher, L.A. Glossary of terms used in medicinal chemistry (IUPAC Recommendations 1998). Pure and Applied Chemistry 70, 1129-1143 (1998).
15. Baraldi, P.G., et al. 1,2,3-triazolo[5,4-e]1,2,4-triazolo[1,5-c]pyrimidine derivatives: A new class of A(2A) adenosine receptor antagonists. Farmaco 51, 297-300 (1996).
16. Erickson, R.H., et al. 1,3,8-Trisubstituted Xanthines - Effects of Substitution Pattern Upon Adenosine Receptor-A1/A2 Affinity. Journal of Medicinal Chemistry 34, 1431-1435 (1991).
17. DelGiudice, M.R., et al. (E)-1-(heterocyclyl or cyclohexyl)-2-[1,3,7-trisubstituted(xantkin-8-yl)] ethenes as A(2a) adenosine receptor antagonists. European Journal of Medicinal Chemistry 31, 59-63 (1996).
18. Jacobson, K.A., et al. Effect of Trifluoromethyl and Other Substituents on Activity of Xanthines at Adenosine Receptors. Journal of Medicinal Chemistry 36, 2639-2644 (1993).
19. Baraldi, P.G., et al. Synthesis and Antitumor-Activity of a New Class of Pyrazolo[4,3-E]Pyrrolo[1,2-a][1,4]Diazepinone Analogs of Pyrrolo[1,4][2,1-C]Benzodiazepines. Journal of Medicinal Chemistry 37, 4329-4337 (1994).
20. Baraldi, P.G., et al. Pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine derivatives: Potent and selective A(2A) adenosine antagonists. Journal of Medicinal Chemistry 39, 1164-1171 (1996).
21. Maguire, M.H., Nobbs, D.M., Einstein, R. & Middleto.Jc. 2-Alkylthioadenosines, Specific Coronary Vasodilators. Journal of Medicinal Chemistry 14, 415-& (1971).
22. Mathot, R.A.A., Cleton, A., Soudijn, W., Ijzerman, A.P. & Danhof, M. Pharmacokinetic Modeling of the Hemodynamic-Effects of the a(2a) Adenosine Receptor Agonist Cgs 21680c in Conscious Normotensive Rats. British Journal of Pharmacology 114, 761-768 (1995).
23. Siddiqi, S.M., et al. Search for New Purine-Modified and Ribose-Modified Adenosine-Analogs as Selective Agonists and Antagonists at Adenosine Receptors. Journal of Medicinal Chemistry 38, 1174-1188 (1995).
24. Bruns, R.F., Lu, G.H. & Pugsley, T.A. Characterization of the A2 Adenosine Receptor Labeled by [H-3] Neca in Rat Striatal Membranes. Molecular Pharmacology 29, 331-346 (1986).
25. Ukena, D., Bohme, E. & Schwabe, U. Effects of Several 5'-Carboxamide Derivatives on Adenosine Receptors of Human-Platelets and Rat Fat-Cells. Naunyn-Schmiedebergs Archives of Pharmacology 327, 36-42 (1984).
26. Cusack, N.J. & Hourani, S.M.O. 5'-N-Ethylcarboxamidoadenosine - a Potent Inhibitor of Human-Platelet Aggregation. British Journal of Pharmacology 72, 443-447 (1981).
27. Vittori, S., et al. N-cycloalkyl derivatives of adenosine and 1-deazaadenosine as agonists and partial agonists of the A(1) adenosine receptor. Journal of Medicinal Chemistry 43, 250-260 (2000).
28. Moro, S., Gao, Z.G., Jacobson, K.A. & Spalluto, G. Progress in the pursuit of therapeutic adenosine receptor antagonists. Medicinal Research Reviews 26, 131-159 (2006).
29. Cristalli, G., Lambertucci, C., Taffi, S., Vittori, S. & Volpini, R. Medicinal chemistry of adenosine A(2A) receptor agonists. Current Topics in Medicinal Chemistry 3, 387-401 (2003).
30. Edman, K., et al. High-resolution X-ray structure of an early intermediate in the bacteriorhodopsin photocycle. Nature 401, 822-826 (1999).
31. Palczewski, K., et al. Crystal structure of rhodopsin: A G protein-coupled receptor. Science 289, 739-745 (2000).
32. Hoflack, J., Trumppkallmeyer, S. & Hibert, M. Reevaluation of Bacteriorhodopsin as a Model for G-Protein-Coupled Receptors. Trends in Pharmacological Sciences 15, 7-9 (1994).
33. Pandit, S.B., Zhang, Y. & Skolnick, J. TASSER-Lite: An automated tool for protein comparative modeling. Biophysical Journal 91, 4180-4190 (2006).
34. Morris, G.M., et al. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry 19, 1639-1662 (1998).
35. Dolinsky, T.J., Nielsen, J.E., McCammon, J.A. & Baker, N.A. PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Research 32, W665-W667 (2004).
36. Pettersen, E.F., et al. UCSF chimera - A visualization system for exploratory research and analysis. Journal of Computational Chemistry 25, 1605-1612 (2004).
37. Baker, N.A., Sept, D., Joseph, S., Holst, M.J. & McCammon, J.A. Electrostatics of nanosystems: Application to microtubules and the ribosome. Proceedings of the National Academy of Sciences of the United States of America 98, 10037-10041 (2001).
38. Case, D.A., et al. The Amber biomolecular simulation programs. Journal of Computational Chemistry 26, 1668-1688 (2005).
39. Frey, B.J. & Dueck, D. Clustering by passing messages between data points. Science 315, 972-976 (2007).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28005-
dc.description.abstract在最近,活化的腺甘酸A2A受體(adenosine A2A receptor)被確認為是治療亨丁頓舞蹈症(Huntington's Disease)的目標受體之ㄧ。在分類上,腺甘酸A2A受體屬於G蛋白質結合受體(GPCR)中視紫質(rhodopsin)相似家族的一個受體。 腺甘酸A2A受體在結構上由7個α-螺旋組成,每一個螺旋的長度大約為25個胺基酸的長度。直到現今,腺甘酸A2A受體的立體結構都還沒有被用實驗的方法解出來。因為在結構生物學的領域中,用實驗的方法解出膜蛋白(membrane protein)的結構仍然是一件挑戰的工作。除了實驗以外解蛋白質結構的方法是利用同源性模擬法。在本研究中,我們使用牛的視紫質結晶結構(PDB code: 1U19, 2.2Å)當作同源性模擬法的結構模板來建構腺甘酸A2A受體(1-301)。除了C-tail(302-410),腺甘酸A2A受體的結構是使用軟體MODELLER9V1來建構的。在同源性模擬法的序列排序的步驟中,我們把視紫質的序列和腺甘酸受體家族(A1, A2A, A2B, A3)一起排序,為的是把演化的關係考慮在排序中以增進排序的準確度。腺甘酸A2A受體的C-tail(302-410)是使用TASSER-Lite網站,使用摺疊辨識法(Fold recognition)來建構的。當得到腺甘酸A2A受體的全長的結構後,我們把受體結構放進脂質-水的系統中進行2ns的分子動力學模擬使用AMBER9。同時,我們也使用Catalyst建立腺甘酸A2A受體的增效劑(agonist), 對抗劑(antagonist)的藥效基團(pharmacophore)的模型。然後,和藥效基團疊合的最有藥效的增效劑和對抗劑的構形被分別選出並使用Autodock3把這2種構形的化合物和腺甘酸A2A受體嵌合。最後,我們進行10ns的分子動力學模擬在腺甘酸A2A受體-對抗劑,腺甘酸A2A受體-增效劑,腺甘酸A2A受體-NMR-構形限制對抗劑,腺甘酸A2A受體-NMR-構形限制對抗劑。詳細的腺甘酸A2A受體-配位體的交互作用力分析將可以幫助設計更有藥效的腺甘酸A2A受體的抑制劑或是活化劑。zh_TW
dc.description.abstractThe activation of human adenosine A2A receptor has recently been identified as a candidate target for designing therapeutics for the Huntington disease. Adenosine A2A receptor belongs to the GPCR, rhodopsin-like superfamily. It consists of 7 transmembrane α-helices, and each is about 25 residues in length. Nowadays, the three-dimensional structure of adenosine A2A receptor obtained from experimental methods is still unavailable. The determination of membrane protein structures via experimental approaches remains a major challenge in the field of structural genomics. An alternative approach to building a molecular model of a protein is from homology modelling procedure. We used bovine rhodopsin crystal structure (PDB code: 1U19, 2.2Å) as homology modelling template to construct the adenosine A2A receptor (1-301) except its c-tail using MODELLER9v1. In the alignment step, we aligned all the rat adenosine receptor family sequences (A1, A2A, A2B, and A3) with rhodopsin sequence to take evolutionary relationship into account and improve the alignment accuracy by using CLUSTALW. The exceptional long c-tail structure of adenosine A2A receptor (302-410) was modeled from best model of TASSER-Lite web server using the fold-recognition approach. After the full-length adenosine A2A receptor structure has been constructed, we put the receptor into lipid-water environment to run 2-ns molecular dynamics simulation refinement using AMBER9. We also made the pharmacophore model of adenosine A2A receptor agonist and antagonist, respectively, using Catalyst®. Then, the most potent agonist and antagonist conformations which fitted its pharmacophore model best were selected. The chosen agonist and antagonist conformations were docked with adenosine A2A receptor using Autodock3. Finally, we made 10-ns molecular dynamics simulations of receptor with an antagonist, receptor with a NMR-restraint antagonist, receptor with an agonist, and receptor with an NMR-restraint agonist, to analyze the receptor-ligand binding interactions. The detailed knowledge of the binding locations will help to design more potent inhibitors for this receptor.en
dc.description.provenanceMade available in DSpace on 2021-06-12T18:32:57Z (GMT). No. of bitstreams: 1
ntu-96-R94423005-1.pdf: 8018757 bytes, checksum: 6860f23d0f89543dec93c6925e932f0f (MD5)
Previous issue date: 2007
en
dc.description.tableofcontentsTable of Contents
Figure Lists I
Table Lists V
Abbreviations: VII
中文摘要 VIII
Abstract: X
Chapter 1: Introduction 1
1.1 Adenosine as endogenous ligand of A2AR 1
1.2 Classification of A2AR in the GPCR superfamily 1
1.2.1 Structural topology in rhodopsin-like family A 2
1.2.2 Adenosine receptors subfamily 3
1.2.3 Putative A2AR binding pocket 4
1.4 Proposed activation mechanism of GPCRs 6
1.4.1 Molecular mechanisms involved in the activation of GPCRs 6
1.4.2 Two-state model 6
1.4.3 Sequential binding and conformational stabilization model 7
1.5 Adenosine A2A receptor as therapeutically target 8
Chapter 2: Materials and Methods 10
2.1 Modeling flowchart and screw-in dynamics scheme 10
2.2 Generation of pharmacophore models 12
2.2.1 Structure-activity relationship of A2AR ligands in the training sets 13
2.2.2 Generation of A2AR antagonist pharmacophore model 17
2.2.3 Generation of A2AR agonist pharmacophore model 20
2.3 Pharmacophore model validation 23
2.3.1 Cost analysis 23
2.4 Rat A2AR modeling 24
2.4.1 Comparison of current available rat A2AR model 25
2.4.2 Build full-length structure of rat A2AR 35
2.5 Insert ligands into rat A2AR models 41
2.6 Rat A2AR MD refinement 41
2.6.1 System preparation 42
2.6.2 Standard MD simulation scheme 44
2.6.3 Screw-in MD simulation scheme 44
2.7 Clustering trajectories of MD simulations 45
Chapter 3: Results and Discussions 47
3.1 Results of pharmacophore models 47
3.1.1 Results of antagonist pharmacophore model 47
3.1.2 Results of agonist pharmacophore model 51
3.2 Results of A2AR structure modeling validation 55
3.3 Molecular docking 56
3.3.1 Results of antagonist docking with A2AR 56
3.3.2 Results of agonist docking with A2AR 58
3.4 Results of MD refinements 60
3.4.1 Antagonist-bound rat A2AR with standard MD simulation 60
3.4.2 Agonist-bound rat A2AR with standard MD simulation 68
3.4.3 Antagonist-bound rat A2AR with screw-in MD simulation 78
3.4.4 Agonist-bound rat A2AR with screw-in MD simulation 89
3.5 Principle component analysis of MD trajectories 98
3.5.1 Essential dynamics of antagonist-bound A2AR screw-in MD simulation 100
3.5.2 Essential dynamics of agonist-bound A2AR screw-in MD simulation 101
3.6 Ligand binding mode analysis 101
Chapter 4: Conclusions 108
References: 109
dc.language.isoen
dc.subject腺甘酸A2Azh_TW
dc.subject同源性模擬法zh_TW
dc.subject膜蛋白zh_TW
dc.subject分子動力學模擬zh_TW
dc.subject結構預測zh_TW
dc.subjectmembrane proteinen
dc.subjecthomology modelingen
dc.subjectadenosine A2A receptoren
dc.subjectstructure predictionen
dc.subjectMD simulationen
dc.title腺甘酸A2A受體結構預測以及靜止態和活化態的結構比較zh_TW
dc.titleStructural prediction of the adenosine A2A receptor and comparison of its resting state and active state conformationsen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee孫英傑,謝昌煥,許世宜
dc.subject.keyword結構預測,腺甘酸A2A,分子動力學模擬,膜蛋白,同源性模擬法,zh_TW
dc.subject.keywordstructure prediction,adenosine A2A receptor,MD simulation,membrane protein,homology modeling,en
dc.relation.page111
dc.rights.note有償授權
dc.date.accepted2007-08-01
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥學研究所zh_TW
顯示於系所單位:藥學系

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
7.83 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved