Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28001
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 呂東武(Tung-Wu Lu) | |
dc.contributor.author | Chien-Chin Chen | en |
dc.contributor.author | 陳建今 | zh_TW |
dc.date.accessioned | 2021-06-12T18:32:44Z | - |
dc.date.available | 2017-07-31 | |
dc.date.copyright | 2007-08-02 | |
dc.date.issued | 2007 | |
dc.date.submitted | 2007-07-31 | |
dc.identifier.citation | Andriacchi, T. P. and Alexander, E. J., 2000. Studies of human locomotion: past, present and future. J. Biomech. 33, 1217-1224.
Baltzopoulos, V., 1995. A videofluoroscopy method for optical distortion correction and measurement of knee-joint kinematics. Clin. Biomech. 10, 85-92. Banks, S. A. (1992) Model based 3D kinematic estimation from 2D perspective silhouettes: Application with total knee prostheses. Ph.D, Press, Cambridge. Cappello, A., Cappozzo, A., Lucchetti, L., La Palombara, P.F., Leardini,A., 1997. Multiple anatomical landmark calibration for optimalbone pose estimation. Human Movement Science 16, 259-274. Challis, J.H., 1995. A procedure for determining rigid body transformationparameters. Journal of Biomechanics 28, 733-737. Danielsson, P. E., 1980. Euclidean Distance Mapping. Comput. Graph. Image Process. 14, 227-248. de Groot, J. H., 1999. The scapulp-humeral rhythm: effects of 2-D roentgen projection. Clin. Biomech., 14, 63-68. Gage, J. R., 1994. The clinical use of kinematics for evaluation of pathological gait cerebral palsy. J. Bone Jt. Surg., Am. Vol. 76-A, 622-631. Gage, J. R., Deluca, P. A. and Renshaw, T., S., 1995. Gait analysis: Principles and applications. J. Bone Jt. Surg., Am. Vol. 77-A, 1607-1623. Gue'ziec, A., Kazanzides, P., Williamson, B. and Taylor, R. H., 1998. Anatomy-based registration of CT-scan and intraoperative x-ray images for guiding a sugical robot. IEEE Trans. Med. Imag. 17, 715-728. Hoff, W. A., Komistek, R. D., Dennis, D. A., Gabriel, S. M. and Walker, S. A., 1998. Three-dimensional determination of femoral-tibial contact positions under in vivo conditions using fluoroscopy. Clin. Biomech. 13, 455-472. Jae Hun Ryu, Nasuki Miyata, Makiko Kouchi, Masaaki MoChimaru, Kwan H. Lee, 2006. Analysis of skin movement with respect to flexional bone motion using MR images of a hand. Journal of Biomechanics 39, 844-852. James, J. J., Davies, A. G., Cowen, A. R. and O'Connor, P. J., 2001. Developments in digital radiography: an equipment update. Eur. Radiol. 11, 2616-2626. Kärrholm, J., 1989. Reotgen stereophotogrammetry: Review of orthopedic application. Acta Orthop. Scand. 60, 491-503. Kadaba, M. P., Ramakrishnan, H. K. and Wootten, M. E., 1990. Measurement of lower extremity kinematics during level walking. J. Orthop. Res. 8, 383-392. Kozinska, D., Tretiak, O. J., Nissanov, J. and Ozturk, C., 1997. Multidimensional alignment using the eudlidean distance transform. Graph. Models Image Proc. 59, 373-387. Kriegman, D. J. and Ponce, J., 1990. On recognizing and positioning curved 3-D objects from image contours. IEEETrans. Pattern Anal. Mach. Intell. 12, 1127-1137. Lafortune, M. A., Cavanagh, P. R., Sommer, H. J. r. and Kalenak, A., 1992. Three-dimensional kinematics of the human knee during walking. J. Biomech. 25, 347-357. Lorensen, W. E. and Cline, H. E., 1987. Marching cubes: A high resolution 3D surface construction algorithm. Comput. Graph. 21, 163-169. Lu, T. W. and O'Connor, J. J., 1999. Bone position estimation from skin marker co-ordinates using globla optimisation with joint constraints. J. Biomech. 32, 129-134. Mohr, R. and Bajcsy, R., 1983. Packing volumes by spheres. IEEE Trans. Pattern Anal. Mach. Intell. 5, 111-116. Ragnemalm, I., 1993. The Euclidean distance transform in arbtrary dimensions. Pattern Recogn. Lett. 14, 883-888. Ramsey, D. K., Lamontagne, M., Wretenberg, P. F., Valentin, A., Engström, b. r. and Ne'meth, G., 2001. Assessment of functional knee bracing: An in vivo three-dimensional kinematic analysis of the anterior cruciate deficient knee. Clin. Biomech. 16, 61-70. Reinschmidt, C., van Den Bogert, A.J., Lundberg, A., Nigg, B.M., Murphy, N., Stacoff, A.,Stano, A., 1997. Tibiofemoral and tibiocalcaneal motion during walking : external V.S. skeletal markers. Gait Posture 6, 98-109. Rita Stagni, Silvia Fantozzi, Angelo Cappello, Alberto Leardini, 2005. Quantification of soft tissue artefact in motion analysis by combining 3D fluoroscopy and stereophotogrammetry : a study on two subjects. Rohen, J. W. and C, Y., 1998. Color Atlas of Anatomy Schmidt et al., 1999. A marker-based measurement procedure for unconstrained wrist and elbow mortions. Journal of Biomechanics 32, 615-621 Selvik, G. r., 1989. Roentgen stereophotogrammetry. Acta Orthop. Scand. 60[Supplement]232, Sheehan, F. T. (1997) A non-invasive, in vivo study of the patella using cine phase contrast magnetic resonance imaging: three-dimensional kinematics and tendon strain. Ph.D. Thesis, Stanford University Press, Stanford. Sutherland, D. H. and Hagy, J. L., 1972. Measurement of gait movements from motion picture film. J. Bone Jt. Surg., Am. Vol. 54-A, 787-797. Sutherland, D. H., Olshen, R., Cooper, L. and Woo, S. L.-Y., 1980. The development of mature gait. J. Bone Jt. Surg., Am. Vol. 62-A, 336-353. Torzilli, P. A., Greenberg, R. L. and Insall, J., 1981. An in vivo biomechanical evaluation of anterior-posterior motion of the knee. J. Bone Jt. Surg., Am. Vol. 63-A, 960-968. Wallace, W. A. and Johnson, F., 1980. Dynamic radiography in shoulder kinematics-Problems and their solutions. J. Bone Jt. Surg., Br. Vol. 62-B, 256. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28001 | - |
dc.description.abstract | 截至目前為止,並沒有一種量測方法可以在非侵入式的情況下,正確量測上肢運動學資料,立體攝影術最大誤差來源是皮膚移動誤差,為了取得活體上肢肘關節三維運動學正確資料。本研究的目的便是運用正確量測方法,準確得到上肢活動之皮膚移動誤差。
本研究使用動態X光(fluoroscopy)配合電腦骨骼模型,量測活體關節運動學;透過動態X光取得動態關節影像,運用電腦斷層掃瞄得到骨骼之斷面影像,可用來重建完整肘關節之三維幾何模型,再搭配動作分析(motion analysis)、影像處理(image processing)與影像契合(image registration)之技術,找出實驗時骨骼正確之空間位置及方向。另外經由座標轉換計算出反光標記相對於骨骼局部座標系統之座標值改變,不僅獲得立體攝影術中使用皮膚標記所造成的皮膚移動誤差,又可獲得人體肘關節三維運動學資料、尺骨與橈骨之間相對運動,進而找出正確的肘關節、尺骨與橈骨間運動學機制。 未來,希望能應用我們所發展的方法,量測不同關節及其他骨骼肌肉系統疾患,以利未來骨科、復健科、物理治療、職能治療、運動醫學、電腦輔助手術與人工關節設計等領域的進步。 | zh_TW |
dc.description.abstract | The upper limb motions are essential in daily activities. Knowledge of the kinematics of the upper limb is essential for the understanding of its function. To the best knowledge of the author, no study has investigated the in vivo kinematics of the upper limb using non-invasive method. The major source of error in human motion analysis is soft tissue artifact (STA). There is still a very limited amount of existing literature on STA measurement of the upper limb motions.
The purposes of the study were to use a non-invasive method for the determination of three-dimensional (3D) dynamic skeletal motions in vivo using fluoroscopy and to apply this method to measure STA of the upper limb motions. The new method involves the match of two-dimensional (2D) fluoroscopic images of the upper limb during motion with projections of the computer upper limb models reconstructed from serial computer tomography images. The 3D upper limb position that produced best-matched projection with the fluoroscopic image was then taken as the special position of the tested upper limb. Through techniques of 3D upper limb computer geometric model reconstruction, motion analysis, image processing and image registration. The upper limb kinematics function and relative motions between humerus, radius and ulna can be found. Further more, soft tissue artifact can be measured with transforming of the coordinate systems of markers that attached to the upper limb in stereo-photogrammetry. In the future, we hope that it will be helpful in orthopedics, rehabilitation, physical therapy, occupational therapy, medicine of sports and computer-aided surgery with the application of this method on motions of varies joints. | en |
dc.description.provenance | Made available in DSpace on 2021-06-12T18:32:44Z (GMT). No. of bitstreams: 1 ntu-96-R93548038-1.pdf: 7226609 bytes, checksum: 9ac8354d70107c4a5edc5ca1b2f89aa5 (MD5) Previous issue date: 2007 | en |
dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 中文摘要 iii 英文摘要 iv 目錄 vi 圖目錄 viii 表目錄 x 第壹章 緒論 1 第一節 研究背景 1 第二節 上肢解剖構造之簡介 2 第三節 人體上肢動作之量測 4 一、試體量測 4 二、活體量測 4 第四節 影像量測 8 一、二維影像量測 8 二、三維影像量測 9 第五節 研究目的 13 第貳章 實驗材料與流程 14 第一節 受試者 15 第二節 實驗設備與儀器 15 一、電腦斷層掃瞄 15 二、動態X光 16 三、影像擷取設備 18 四、動作分析實驗設備 19 五、軟體設備 19 六、其他實驗設備 20 第三節 動作分析實驗 22 一、 反光標記位置 22 二、 實驗流程 23 三、 影像前處理 25 第參章 系統校正 26 第一節 影像扭曲及系統校正 26 第二節 假設與數學模型 29 一、 影像校正 29 二、 投影參數之決定 30 第三節 電腦模擬分析 32 一、 實驗設計分析 32 二、 校正模擬 34 第四節 實驗校正結果 39 第肆章 實驗資料分析 40 第一節 骨骼三維模型建立 41 一、 三維模型重建之重要性與目的 41 二、 利用二維電腦斷層影像分割與重建 41 三、 人體肘關節三維幾何模型 42 第二節 動態X光影像處理 44 第三節 三維幾何模型處理 45 第四節 取得骨骼空間中正確位置、方向 48 第五節 動作分析上肢局部座標之定義 50 一、 軀幹 50 二、 肩胛骨 51 三、 肱骨 51 四、 尺骨 52 五、 橈骨 52 六、 掌骨 53 第六節 參考座標與皮膚移動誤差計算方法 54 一、 參考體 54 二、 座標轉換 54 三、 剛體方位的描述 55 四、 實際運用及計算方式 56 第伍章 結果與討論 58 第一節 初步處理實驗結果 58 第二節 皮膚移動誤差及討論 60 第六章 總結與未來方向 65 參考文獻 66 附錄 皮膚移動誤差原始資料 70 | |
dc.language.iso | zh-TW | |
dc.title | 上肢動作之皮膚移動誤差量測 | zh_TW |
dc.title | Soft Tissue Artifacts Measurement in Upper Limb Motions | en |
dc.type | Thesis | |
dc.date.schoolyear | 95-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 賴達明(Ta-Ming Lai),王至弘(Chih-Hung Wang),陳文斌(Weng-Pin Chen) | |
dc.subject.keyword | 皮膚移動誤差,上肢運動學,動態X光,電腦骨骼模型,動作分析, | zh_TW |
dc.subject.keyword | soft tissue artifact,upper limb kinematics,fluoroscopy,computer bone model,motion analysis, | en |
dc.relation.page | 85 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2007-08-01 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
Appears in Collections: | 醫學工程學研究所 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-96-1.pdf Restricted Access | 7.06 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.