Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27976
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭光宇(Guang-Yu Guo),林倫年(Michitoshi Hayashi)
dc.contributor.authorJian-Hao Lien
dc.contributor.author李健豪zh_TW
dc.date.accessioned2021-06-12T18:31:12Z-
dc.date.available2008-08-03
dc.date.copyright2007-08-03
dc.date.issued2007
dc.date.submitted2007-08-02
dc.identifier.citation1. J. D. Watson and F. H. C. Crick, April 25, 1953, Nature , 171, 737-738.
2. Setlow, R. B. Nature 1978, 271, 713-717.
3. Friedberg, E. DNA Repair; W. H. Freeman and Company: New York, 1985.
4. Website of Skin Cancer Foundation: “http://www.skincancer.org/aboutus.php”.
5. Ziegler, A.; Leffell, D. J.; Kunala, S.; Sharma, H. W.; Gailani, M.; Simon, J. A.; Halperin, A. J.; Baden, H. P.; Shapiro, P. E.; Bale, A. E.; Brash, D. E. Proc. Natl. Acad. Sci. U.S.A. 1993, 90, 4216-4220.
6. Cadet, J.; Vigny, P. In Bioorganic Photochemistry, Morrison, H., Ed.; John Wiley & Sons: New York, 1990; Vol. 1, Chap. 1, pp 1-272.
7. Krane, Kenneth S. (1988). Introductory Nuclear Physics. J. Wiley & Sons.
8. S. Marguet, D. Markovitsi, J. Am. Chem. Soc. 127, 5780 (2005).
9. The Gaussian 03 official website: “http://www.gaussian.com/”.
10. C. E. Crespo-Hernández, B. Cohen, B. Kohler, Nature 436, 1141 (2005).
11. H. Park et. al., Proc. Natl. Acad. Sci. U.S.A. 99, 15965 (2002).
12. Wolfgang J. Schreier, et. al., Science 315, 625 (2007).
13. The Turbomole official website: “http://www.turbomole.com”.
14. R. Dreizler, E. Gross, Density Functional Theory. (Plenum Press, New York, 1995).
15. W. Koch, M. C. Holthausen, A Chemist's Guide to Density Functional Theory. (Wiley-VCH, Weinheim, ed. 2, 2002).
16. R. G. Parr, W. Yang, Density-Functional Theory of Atoms and Molecules. (Oxford University Press, New York, 1989).
17. Miguel A.L. Marques, Carsten A. Ullrich, Fernando Nogueira, and Angel Rubio, Time-Dependent Density Functional Theory. (Lecture Notes in Physics, Springer Press, 2006).
18. Schlick, T. Molecular Modeling and Simulation: An Interdisciplinary Guide. Springer-Verlag, New York, NY: 2002.
19. C. J. Cramer, Essentials of Computational Chemistry, Wiley, Chichester, (2002), pp. 126 – 131.
20. G. Grosso, G. P. Parravicini, Solid State Physics, Academic Press; 1st edition (April 15, 2000), pp. 110-113.
21. The Sherrill Group’s website, Georgia Institute of Technology, “http://vergil.chemistry.gatech.edu/notes/cis/cis.html”.
22. See the definition of “ab initio” in the “Oxford Reference Online: Premium Collection”, “http://www.oxfordreference.com/views/GLOBAL.html”.
23. David J. Griffiths, Introduction to Quantum Mechanics (2nd Edition), Benjamin Cummings; 2 edition (March 31, 2004).
24. A. L. Fetter, J. D. Walecka, Quantum Theory of Many-Particle Systems, Dover Publications (June 20, 2003).
25. Attila Szabo, Neil S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory, Dover Publications; New Ed edition (July 2, 1996).
26. H.G. Kümmel, A biography of the coupled cluster method - found in R.F. Bishop, T. Brandes, K.A. Gernoth, N.R. Walet, Y. Xian (Eds.), Recent progress in many-body theories, Proceedings of the 11th international conference, World Scientific Publishing, Singapore, 2002, pp. 334-348.
27. Jensen, Frank (2007). Introduction to Computational Chemistry. Chichester, England: John Wiley and Sons, 133 - 158.
28. Doltsinis, Nikos L.; Marx, Dominik. Journal of Theoretical & Computational Chemistry, Oct2002, Vol. 1 Issue 2, p319.
29. W. Kolos, Adv. Quant. Chem. 5, 99(1970).
30. W. Kutzelnigg, Mol. Phys. 90, 909 (1997).
31. C. A. Mead, Rev. Mod. Phys. 64, 51(1992).
32. In particle physics, fermions are particles with half-integer spin, such as protons and electrons. They are named after Enrico Fermi.
33. Functional: the dependent variable(s) is(are) function(s).
34. L. H. Thomas. The calculation of atomic fields. Proc. Camb. Phil. Soc., 23: 542-548, 1927.
35. In optics, dispersion is a phenomenon that causes the separation of a wave into spectral components with different wavelengths, due to a dependence of the wave's speed on its wavelength. The London theory has much similarity to the quantum mechanical theory of light dispersion, which is why London coined the phrase 'dispersion effect' for the interaction that we described in this lemma. See the description of “Dispersion(optics)” and “Intermolecular force” in Wikipedia encyclopedia online.
36. P. Hohenberg and W. Kohn, Phys. Rev. 136 (1964) B864.
37. Reiner M. Dreizler, Gross E.K.U., Density Functional Theory: An Approach to the Quantum Many-Body Problem, Springer-Verlag (January 1991).
38. W. Kohn and L. J. Sham, Phys. Rev. 140 (1965) A1133.
39. Englisch, H., Englisch, R. (1984a): Phys. Stat. Sol. (b) 123, 711.
40. Englisch, H., Englisch, R. (1984b): Phys. Stat. Sol. (b) 124, 373.
41. Chayes, Chayes, Ruskai, J Stat. Phys. 38, 497 (1985).
42. Englisch, H., Englisch, R. (1984a): Phys. Stat. Sol. (b) 123, 711.
43. Englisch, H., Englisch, R. (1984b): Phys. Stat. Sol. (b) 124, 373.
44. E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52, 997 (1984).
45. E. K. U. Gross and W. Kohn, Phys. Rev. Lett. 55, 2850 (1985).
46. G. Onida, L. Reining and A. Rubio, Rev. Mod. Phys. 74, 601 (2002).
47. Density-Functional Group, E.K.U. Gross, Freie Universität Berlin, Fachbereich Physik, “http://www.physik.fu-berlin.de/~ag-gross/”, Lecture 3 of “Talks” on TDDFT.
48. T. Grabo, M. Petersilka, E. K. U. Gross, J. Mol. Struc. (Theochem) 501, 353 (2000).
49. Gaussian 03 product introduction in its official website: “http://www.gaussian.com/g_brochures/g03_intro.htm”.
50. T. Clark, J. Chandrasekhar, G. W. Spitznagel, and P. v. R. Schleyer, J. Comp. Chem. 4, 294 (1983).
51. Gaussian 03 Online Manual: “http://www.gaussian.com/g_ur/k_dft.htm”.
52. A. D. Becke, Phys. Rev. A 38, 3098 (1988).
53. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).
54. B. Miehlich, A. Savin, H. Stoll, and H. Preuss, Chem. Phys. Lett. 157, 200 (1989).
55. S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200 (1980).
56. Korkin A.; Mark F.; Schaffner K.; Gorb L.; Leszczynski J., Journal of Molecular Structure: THEOCHEM, 388, 11 December 1996 , pp. 121-137.
57. C. Yenikaya, C. Öğretir and H. Berber, Journal of Molecular Structure: THEOCHEM, 686, Issues 1-3, 25 October 2004, Pages 153-157.
58. C. Yenikaya, C. Öğretir and H. Berber, Journal of Molecular Structure: THEOCHEM, 725, Issues 1-3, 11 July 2005, Pages 207-214.
59. A. K. Rappé, C. J. Casewit, K. S. Colwell, W. A. Goddard III, and W. M. Skiff, J. Am. Chem. Soc. 114, 10024 (1992).
60. F. Maseras and K. Morokuma, J. Comp. Chem. 16, 1170 (1995).
61. S. Humbel, S. Sieber, and K. Morokuma, J. Chem. Phys. 105, 1959 (1996).
62. T. Matsubara, S. Sieber, and K. Morokuma, Int. J. Quant. Chem. 60, 1101 (1996).
63. M. Svensson, S. Humbel, R. D. J. Froese, T. Matsubara, S. Sieber, and K. Morokuma, J. Phys. Chem. 100, 19357 (1996).
64. M. Svensson, S. Humbel, and K. Morokuma, J. Chem. Phys. 105, 3654 (1996).
65. S. Dapprich, I. Komáromi, K. S. Byun, K. Morokuma, and M. J. Frisch, J. Mol. Struct. (Theochem) 462, 1 (1999).
66. T. Vreven and K. Morokuma, J. Comp. Chem. 21, 1419 (2000).
67. David L. Nelson, Michael M. Cox, Lehninger Principles of Biochemistry, Third Edition, W. H. Freeman (February 15, 2000).
68. Palecek E (1991). 'Local supercoil-stabilized DNA structures'. Critical Reviews in Biochemistry and Molecular Biology 26 (2): 151–226.
69. Leslie AG, Arnott S, Chandrasekaran R, Ratliff RL (1980). 'Polymorphism of DNA double helices'. J. Mol. Biol. 143 (1): 49–72.
70. One of the diagrams in the description of “DNA” in Wikipedia encyclopedia online: “http://en.wikipedia.org/wiki/DNA”.
71. One of the diagrams in the description of “Ultraviolet” in Answer.com: “http://members.lycos.nl/TheDNApage/dnapixdb.html”.
72. One of the diagrams in the description of “nucleotide” in Prof. Juan’s website of biochemistry, Institute of Microbiology and Biochemistry, National Taiwan University: “http://juang.bst.ntu.edu.tw/BCbasics/Nucleic1.htm”
73. See the related information of “DNA repair” in the “Oxford Reference Online: Premium Collection”, “http://www.oxfordreference.com/views/GLOBAL.html”.
74. Some diagrams in the DNA picture collection website: “http://www.answers.com/topic/ultraviolet?cat=health”.
75. The “DNA-RNA RosMol tutorial” in the lab website of Jason D. Kahn, Department of Chemistry and Biochemistry, University of Maryland, College Park: “http://www.biochem.umd.edu/biochem/kahn/teach_res/dna_tutorial/”
76. Information of Gaussview 3.0: “http://www.gaussian.com/gv_plat.htm”.
77. RCSB PROTEIN DATA BANK: “http://www.pdb.org/pdb/home/home.do”.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27976-
dc.description.abstract本論文中我們欲探討生物細胞中重要遺傳信息攜帶分子- DNA -受紫外線照射時導致之常見損壞結構-胸腺嘧啶二聚體-的可能形成過程。這種經吸收紫外線形成的DNA損壞結構-環丁烷嘧啶二聚體-若無成功透過細胞內適當機制啟動來修復,即可能引發嚴重的細胞病變,例如形成皮膚癌。我們使用量子化學計算軟體Gaussian 03 對此反應作理論計算分析。由於這是個分子經吸收紫外線躍遷至電子激發態隨後發生之反應,研究中於牽涉電子激發態計算時,我們採用近年來發展很成功兼具準確及高效率的計算理論方法-時間相關密度泛函理論。於考慮反應區域周邊環境對反應之影響時,我們採用Gaussian 03之ONIOM分子分層計算法,其可降低對整個系統全始算(第一原理計算)時所可能帶來的高計算量。
研究分四個相關部分,皆以DNA最常見之天然構型- B-DNA -為研究對象。
第一,第二部分先分別從理想的和X光決定的B-DNA雙股結構切下靠近雙胸腺嘧啶反應區域的不同大小分子,再使用時間相關密度泛函理論計算其個別的電子量子激發態。藉由對這些電子量子激發態作Kohn-Sham分子軌域躍牽分析,我們可獲知關於反應區域電子量子激發態的些許特性及其電子轉移型態。
第三部分使用ONIOM分層法對實驗上經常成為研究對象的B-DNA序列片段CGCGAATTCGCG作結構最佳化計算。所得結果將來可用以作激發態計算來與第一,二部分之結果作比較,並可納入考量水分子對激發態的影響。
第四部分直接對受損後形成胸腺嘧啶二聚體之碳5-碳5及碳6-碳6鍵作鍵長對基態能量關係的掃描作圖(排除環境影響),從結果我們可對於在激發態上生成之胸腺嘧啶二聚體作可能反應過程的預測。
zh_TW
dc.description.abstractThe important damage type of DNA in cell, the thymine photodimerization, was studied. This UV caused CPD (cyclobutane pyrimidine dimer) structure can be deadly if the repairing is unsuccessful. We used Gaussian 03 Package to perform a theoretical computation analysis on this reaction. TDDFT, an efficient and accurate excitation calculation method that is just well developed in recent years, was used to study this electronic excited state reaction. In considering the environmental effects to this reaction, we have used the ONIOM method, a layer division scheme in Gaussian 03, to reduce the possible high cost of full ab initio calculation in large molecules.
There were four parts in our tasks. We used the most common form of DNA, B-DNA, as our objective.
The first part and second part were the direct excitation calculations on various sizes of molecules cut from the two strands near the reactive di-thymine site in ideal and X-ray determined B-DNA. After the TDDFT calculation the KS orbital transition analysis was performed. Some characteristics and electron redistribution patterns of the excitations on the di-thymine site in B-DNA, can be derived from this analysis.
In the third part the B-DNA self-complementary dodecamer CGCGAATTCGCG, which is often taken as the objective in experiments, was used in the ONIOM structure determination of B-DNA. The resulting structure can be used to perform similar TDDFT calculations of 1st and 2nd part for comparison. The effects of water molecules to excited states can also be studied.
In the fourth part, direct cis-syn thymine dimer ground state scans on the C5-C5 and C6-C6 bond were performed (excluding environmental effects). From the results the reaction path of thymine dimer formation in the excited states might be predicted.
en
dc.description.provenanceMade available in DSpace on 2021-06-12T18:31:12Z (GMT). No. of bitstreams: 1
ntu-96-R94222034-1.pdf: 7055964 bytes, checksum: e4ccbb146518a1d108af1519239539f0 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents誌謝 i
摘要 iii
Abstract iv
Contents v
List of Figures ix
List of Tables xiii
0. Introduction 1
1. Theoretical Background 5
1.1 Ab Initio Calculations ....................................................... 5
1.2 The Born-Oppenheimer
and Adiabatic Approximation .................................................. 8
1.2.1 Derivation of the Born-Oppenheimer
and Adiabatic Approximation .................................................. 8
1.2.2 Comments on the Validity of the BO Approximation ........ 11
1.3 The Hartree-Fock Approximation ...................................... 14
1.3.1 Building on the BO Approximation ................................. 15
1.3.2 Matrix Elements between Determinantal States .............. 17
1.3.3 Replacement of One or Two Spin-Orbital(s)
in Determinantal States ........................................................ 19
1.3.4 Variational Approach to derive Hartree-Fock Equations .... 21
1.4 Improved Ground State Method – MPn ............................ 24
1.4.1 The used Basis Set and Notations ................................ 24
1.4.2 Time-Independent Perturbation Theory ........................... 26
1.4.3 Perturbation Theory in Many-Particle Systems –
The Derivation of MPn .......................................................... 26
1.5 The Traditional Excitation Method – CIS ......................... 28
1.5.1 The Derivation of CIS ................................................... 28
1.6 Density Functional Theory (DFT) ..................................... 30
1.6.1 The Hohenberg-Kohn Theorem ...................................... 32
1.6.2 Establishing the Ground State Energy Functional ........... 37
1.6.3 The Basic Kohn-Sham Scheme .................................... 38
1.6.4 The Question of v-Representability ................................. 39
1.6.5 The Basic Kohn-Sham Equations .................................. 41
1.7 Time-Dependent Extension of DFT –
Time-Dependent Density Functional Theory ............................ 44
1.7.1 The Extended Runge-Gross Theorem ............................ 46
1.7.2 Time-Dependent Kohn-Sham Equations ......................... 50
1.7.3 Linear Response Theory in TDDFT ................................. 51
1.7.4 Discrete Excitation Energies determined by TDDFT ........ 54
2. Computational Background 57
2.1 The Package Used – Gaussian 03 .................................. 58
2.1.1 Major Parameters in DFT Calculation – Basis Sets
and Exchange-Correlation Functionals .................................... 59
2.1.1.1 Basis Sets ................................................................ 59
2.1.1.2 The Exchange-Correlation Functionals ......................... 63
2.1.2 Semi-empirical Method – AM1 ..................................... 65
2.1.3 Molecular Mechanics Method – UFF ............................ 65
2.1.4 The ONIOM Method ...................................................... 66
3. The Calculated System 69
3.1 Structure and Functionality of DNA .................................. 70
3.2 DNA Damage ................................................................. 73
4. Computational Procedures and Results 75
4.1 Calculation Part I – Electronic Excitation of Ideal B-DNA .. 76
4.2 Calculation Part I – Results and Discussions ................... 79
4.3 Calculation Part II –
Electronic Excitations of (dT)6 and (dA)6 ................................ 91
4.4 Calculation Part II – Results and Discussions .................. 95
4.5 Calculation Part III –
Structure Optimization of Normal and Damaged B-DNA ......... 116
4.6 Calculation Part III – Results and Discussions ................ 118
4.6.1 Normal B-DNA Dodecamer Structure ........................... 118
4.6.2 Damaged B-DNA Dodecamer Structure
Containing Cis-Syn Thymine Dimer ...................................... 126
4.6.3 Determination of the Global Structure of Damaged
B-DNA Dodecamer Containing Cis-Syn Thymine Dimer .......... 130
4.7 Calculation Part IV –
Bond Scans in Cis-Syn Thymine Dimer ................................. 133
4.8 Calculation Part IV – Results and Discussions ............... 134
5. Conclusions 139
References 141
dc.language.isoen
dc.subject胸腺嘧啶二聚體zh_TW
dc.subject量子化學zh_TW
dc.subject時間相關密度泛函理論zh_TW
dc.subject密度泛函理論zh_TW
dc.subject激發態zh_TW
dc.subject全始算zh_TW
dc.subject皮膚癌zh_TW
dc.subject光損傷zh_TW
dc.subject紫外線zh_TW
dc.subject環丁烷嘧啶二聚體zh_TW
dc.subject第一原理zh_TW
dc.subject去氧核醣核酸zh_TW
dc.subjectphotodamageen
dc.subjectDNAen
dc.subjectB-DNAen
dc.subjectthymine dimeren
dc.subjectCyclobutane Pyrimidine Dimeren
dc.subjectUVen
dc.subjectskin canceren
dc.subjectphotodimerizationen
dc.subjectexcimeren
dc.subjectexcitationen
dc.subjectDensity Functional Theory (DFT)en
dc.subjectTime-Dependent Density Functional Theory (TDDFT)en
dc.subjectGaussian Packageen
dc.subjectOMIOMen
dc.subjectQM/MMen
dc.subjectQuantum Chemistryen
dc.subjectFirst Principleen
dc.subjectAb Initio Calculationen
dc.title以理論計算研究由紫外線造成的大型生物分子DNA損傷zh_TW
dc.titleComputational Studies of UV Light Damages in Large Biomolecule - DNAen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.advisor-orcid,林倫年(atmyh@ccms.ntu.edu.tw)
dc.contributor.oralexamcommittee李文欽,魏金明,陳俊維
dc.subject.keyword去氧核醣核酸,胸腺嘧啶二聚體,環丁烷嘧啶二聚體,紫外線,光損傷,皮膚癌,激發態,密度泛函理論,時間相關密度泛函理論,量子化學,第一原理,全始算,zh_TW
dc.subject.keywordDNA,B-DNA,thymine dimer,Cyclobutane Pyrimidine Dimer,UV,skin cancer,photodamage,photodimerization,excimer,excitation,Density Functional Theory (DFT),Time-Dependent Density Functional Theory (TDDFT),Gaussian Package,OMIOM,QM/MM,Quantum Chemistry,First Principle,Ab Initio Calculation,en
dc.relation.page146
dc.rights.note有償授權
dc.date.accepted2007-08-02
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
6.89 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved