請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27974完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊台鴻(Tai-Horng Young) | |
| dc.contributor.author | Jui-Nan Lu | en |
| dc.contributor.author | 陸瑞男 | zh_TW |
| dc.date.accessioned | 2021-06-12T18:31:05Z | - |
| dc.date.available | 2011-08-22 | |
| dc.date.copyright | 2011-08-22 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-08 | |
| dc.identifier.citation | Background
1. Liu HC, Lee IC, Wang JH, Yang SH, Young TH. Preparation of PLLA membranes with different morphologies for culture of MG-63 Cells. Biomaterials 2004 Aug;25(18):4047-4056. 2. Hung CH, Lin YL, Young TH. The effect of chitosan and PVDF substrates on the behavior of embryonic rat cerebral cortical stem cells. Biomaterials 2006 Sep;27(25):4461-4469. 3. Hoshiba T, Cho CS, Murakawa A, Okahata Y, Akaike T. The effect of natural extracellular matrix deposited on synthetic polymers on cultured primary hepatocytes. Biomaterials 2006 Sep;27(26):4519-4528. 4. Verma P, Verma V, Ray P, Ray AR. Formation and characterization of three dimensional human hepatocyte cell line spheroids on chitosan matrix for in vitro tissue engineering applications. In vitro cellular & developmental biology 2007 Nov-Dec;43(10):328-337. 5. Sanchez A, Alvarez AM, Pagan R, Roncero C, Vilaro S, Benito M, et al. Fibronectin regulates morphology, cell organization and gene expression of rat fetal hepatocytes in primary culture. Journal of hepatology 2000 Feb;32(2):242-250. 6. Wang CC, Lu JN, Young TH. The alteration of cell membrane charge after cultured on polymer membranes. Biomaterials 2007 Feb;28(4):625-631. Part I 1. Katsura N, Ikai I, Mitaka T, Shiotani T, Yamanokuchi S, Sugimoto S, et al. Long-term culture of primary human hepatocytes with preservation of proliferative capacity and differentiated functions. The Journal of surgical research 2002;106(1):115-123. 2. Zhao P, Kunze KL, Lee CA. Evaluation of time-dependent inactivation of CYP3A in cryopreserved human hepatocytes. Drug metabolism and disposition: the biological fate of chemicals 2005;33(6):853-861. 3. Hewitt NJ, Buhring KU, Dasenbrock J, Haunschild J, Ladstetter B, Utesch D. Studies comparing in vivo:in vitro metabolism of three pharmaceutical compounds in rat, dog, monkey, and human using cryopreserved hepatocytes, microsomes, and collagen gel immobilized hepatocyte cultures. Drug metabolism and disposition: the biological fate of chemicals 2001;29(7):1042-1050. 4. Alexandre E, Viollon-Abadie C, David P, Gandillet A, Coassolo P, Heyd B, et al. Cryopreservation of adult human hepatocytes obtained from resected liver biopsies. Cryobiology 2002;44(2):103-113. 5. Katenz E, Vondran FW, Schwartlander R, Pless G, Gong X, Cheng X, et al. Cryopreservation of primary human hepatocytes: the benefit of trehalose as an additional cryoprotective agent. Liver Transpl 2007;13(1):38-45. 6. Kafert-Kasting S, Alexandrova K, Barthold M, Laube B, Friedrich G, Arseniev L, et al. Enzyme induction in cryopreserved human hepatocyte cultures. Toxicology 2006;220(2-3):117-125. 7. Li AP, Lu C, Brent JA, Pham C, Fackett A, Ruegg CE, et al. Cryopreserved human hepatocytes: characterization of drug-metabolizing enzyme activities and applications in higher throughput screening assays for hepatotoxicity, metabolic stability, and drug-drug interaction potential. Chemico-biological interactions 1999;121(1):17-35. 8. Chesné C, Guyomard C, Fautrel A, Poullain MG, Fremond B, De Jong H, et al. Viability and function in primary culture of adult hepatocytes from various animal species and human beings after cryopreservation. Hepatology (Baltimore, Md 1993;18(2):406-414. 9. Li AP. Human hepatocytes: isolation, cryopreservation and applications in drug development. Chemico-biological interactions 2007;168(1):16-29. 10. Wang C-C, Lin C-C, Young T-H, Chen Y-S, Yong C-C, Kobayashi E, et al. Culture and characterization of human hepatocytes isolated from hepatitis C virus infected liver: Effect of collagen-coated surface and FBS-supplemented medium. Biochemical Engineering Journal 2006;29(1-2):149-156. 11. Fu T, Guo D, Huang X, O'Gorman MR, Huang L, Crawford SE, et al. Apoptosis occurs in isolated and banked primary mouse hepatocytes. Cell transplantation 2001;10(1):59-66. 12. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of Immunological Methods 1983;65(1-2):55-63. 13. Ryan CM, Carter EA, Jenkins RL, Sterling LM, Yarmush ML, Malt RA, et al. Isolation and long-term culture of human hepatocytes. Surgery 1993;113(1):48-54. 14. Schulze-Bergkamen H, Untergasser A, Dax A, Vogel H, Buchler P, Klar E, et al. Primary human hepatocytes--a valuable tool for investigation of apoptosis and hepatitis B virus infection. Journal of hepatology 2003;38(6):736-744. 15. Rajaraman R, Rounds DE, Yen SP, Rembaum A. A scanning electron microscope study of cell adhesion and spreading in vitro. Experimental cell research 1974;88(2):327-339. 16. Chen HL, Wu HL, Fon CC, Chen PJ, Lai MY, Chen DS. Long-term culture of hepatocytes from human adults. Journal of biomedical science 1998;5(6):435-440. 17. Wang CC, Lu JN, Young TH. The alteration of cell membrane charge after cultured on polymer membranes. Biomaterials 2007;28(4):625-631. 18. Baust JM. Molecular Mechanisms of Cellular Demise Associated with Cryopreservation Failure. Cell Preservation Technology 2002;1:17-31. 19. Fassett J, Tobolt D, Hansen LK. Type I collagen structure regulates cell morphology and EGF signaling in primary rat hepatocytes through cAMP-dependent protein kinase A. Molecular biology of the cell 2006;17(1):345-356. 20. Terry C, Dhawan A, Mitry RR, Hughes RD. Cryopreservation of isolated human hepatocytes for transplantation: State of the art. Cryobiology 2006;53(2):149-159. 21. Garcia AJ. Get a grip: integrins in cell-biomaterial interactions. Biomaterials 2005;26(36):7525-7529. 22. Chen RS, Chen YJ, Chen MH, Young TH. Cell-surface interactions of rat tooth germ cells on various biomaterials. J Biomed Mater Res A 2007;83(1):241-248. 23. Chen MH, Hsu YH, Lin CP, Chen YJ, Young TH. Interactions of acinar cells on biomaterials with various surface properties. J Biomed Mater Res A 2005;74(2):254-262. 24. Baugh L, Vogel V. Structural changes of fibronectin adsorbed to model surfaces probed by fluorescence resonance energy transfer. J Biomed Mater Res A 2004;69(3):525-534. 25. Hansen LK, Mooney DJ, Vacanti JP, Ingber DE. Integrin binding and cell spreading on extracellular matrix act at different points in the cell cycle to promote hepatocyte growth. Molecular biology of the cell 1994;5(9):967-975. 26. Bhadriraju K, Hansen LK. Hepatocyte adhesion, growth and differentiated function on RGD-containing proteins. Biomaterials 2000;21(3):267-272. 27. Li J, Li L, Yu H, Cao H, Gao C, Gong Y. Growth and metabolism of human hepatocytes on biomodified collagen poly(lactic-co-glycolic acid) three-dimensional scaffold. Asaio J 2006;52(3):321-327. 28. Koide N, Sakaguchi K, Koide Y, Asano K, Kawaguchi M, Matsushima H, et al. Formation of multicellular spheroids composed of adult rat hepatocytes in dishes with positively charged surfaces and under other nonadherent environments. Experimental cell research 1990;186(2):227-235. 29. Matsushita T, Ijima H, Koide N, Funatsu K. High albumin production by multicellular spheroids of adult rat hepatocytes formed in the pores of polyurethane foam. Applied microbiology and biotechnology 1991;36(3):324-326. Part II 1. Kulig KM, Vacanti JP. Hepatic tissue engineering. Transplant immunology 2004 Apr;12(3-4):303-310. 2. McKellop H, Clarke I, Markolf K, Amstutz H. Friction and wear properties of polymer, metal, and ceramic prosthetic joint materials evaluated on a multichannel screening device. J Biomed Mater Res 1981 Sep;15(5):619-653. 3. Chamuleau RA. [Liver and artificial liver]. Nederlands tijdschrift voor geneeskunde 1998 Jun 6;142(23):1300-1305. 4. Horiuti Y, Nakamura T, Ichihara A. Role of serum in maintenance of functional hepatocytes in primary culture. Journal of biochemistry 1982 Dec;92(6):1985-1994. 5. Sanchez A, Alvarez AM, Pagan R, Roncero C, Vilaro S, Benito M, et al. Fibronectin regulates morphology, cell organization and gene expression of rat fetal hepatocytes in primary culture. Journal of hepatology 2000 Feb;32(2):242-250. 6. Lin RZ, Chou LF, Chien CC, Chang HY. Dynamic analysis of hepatoma spheroid formation: roles of E-cadherin and beta1-integrin. Cell and tissue research 2006 Jun;324(3):411-422. 7. Hoshiba T, Cho CS, Murakawa A, Okahata Y, Akaike T. The effect of natural extracellular matrix deposited on synthetic polymers on cultured primary hepatocytes. Biomaterials 2006 Sep;27(26):4519-4528. 8. Muzzarelli R, Baldassarre V, Conti F, Ferrara P, Biagini G, Gazzanelli G, et al. Biological activity of chitosan: ultrastructural study. Biomaterials 1988 May;9(3):247-252. 9. Li K, Qu X, Wang Y, Tang Y, Qin D, Wang Y, et al. Improved performance of primary rat hepatocytes on blended natural polymers. J Biomed Mater Res A 2005 Nov 1;75(2):268-274. 10. Suh JK, Matthew HW. Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials 2000 Dec;21(24):2589-2598. 11. Elcin YM, Dixit V, Gitnick G. Hepatocyte attachment on biodegradable modified chitosan membranes: in vitro evaluation for the development of liver organoids. Artificial organs 1998 Oct;22(10):837-846. 12. Silva SS, Santos MI, Coutinho OP, Mano JF, Reis RL. Physical properties and biocompatibility of chitosan/soy blended membranes. Journal of materials science 2005 Jun;16(6):575-579. 13. Knasmuller S, Mersch-Sundermann V, Kevekordes S, Darroudi F, Huber WW, Hoelzl C, et al. Use of human-derived liver cell lines for the detection of environmental and dietary genotoxicants; current state of knowledge. Toxicology 2004 May 20;198(1-3):315-328. 14. Knowles BB, Howe CC, Aden DP. Human hepatocellular carcinoma cell lines secrete the major plasma proteins and hepatitis B surface antigen. Science (New York, NY 1980 Jul 25;209(4455):497-499. 15. Verma P, Verma V, Ray P, Ray AR. Formation and characterization of three dimensional human hepatocyte cell line spheroids on chitosan matrix for in vitro tissue engineering applications. In vitro cellular & developmental biology 2007 Nov-Dec;43(10):328-337. 16. Koide N, Sakaguchi K, Koide Y, Asano K, Kawaguchi M, Matsushima H, et al. Formation of multicellular spheroids composed of adult rat hepatocytes in dishes with positively charged surfaces and under other nonadherent environments. Experimental cell research 1990 Feb;186(2):227-235. 17. Hofmann C, Obermeier F, Artinger M, Hausmann M, Falk W, Schoelmerich J, et al. Cell-cell contacts prevent anoikis in primary human colonic epithelial cells. Gastroenterology 2007 Feb;132(2):587-600. 18. Schubert SY, Benarroch A, Ostvang J, Edelman ER. Regulation of endothelial cell proliferation by primary monocytes. Arteriosclerosis, thrombosis, and vascular biology 2008 Jan;28(1):97-104. 19. Ali IU, Hynes RO. Effects of LETS glycoprotein on cell motility. Cell 1978 Jun;14(2):439-446. 20. Shen M, Horbett TA. The effects of surface chemistry and adsorbed proteins on monocyte/macrophage adhesion to chemically modified polystyrene surfaces. Journal of biomedical materials research 2001 Dec 5;57(3):336-345. 21. Garcia AJ, Keselowsky BG. Biomimetic surfaces for control of cell adhesion to facilitate bone formation. Critical reviews in eukaryotic gene expression 2002;12(2):151-162. 22. Armstrong PB. Cell sorting out: the self-assembly of tissues in vitro. Critical reviews in biochemistry and molecular biology 1989;24(2):119-149. 23. Gauss-Muller V, Kleinman HK, Martin GR, Schiffmann E. Role of attachment factors and attractants in fibroblast chemotaxis. The Journal of laboratory and clinical medicine 1980 Dec;96(6):1071-1080. Part III 1. Michalopoulos GK, DeFrances MC. Liver regeneration. Science (New York, NY 1997 Apr 4;276(5309):60-66. 2. Nakamura T. Structure and function of hepatocyte growth factor. Progress in growth factor research 1991;3(1):67-85. 3. Hepatotrophic factors. Lancet 1978 Jul 29;2(8083):244-245. 4. Plas C, Desbuquois B. Receptor-mediated insulin degradation and insulin-stimulated glycogenesis in cultured foetal hepatocytes. The Biochemical journal 1982 Feb 15;202(2):333-341. 5. Beynen AC, Vaartjes WJ, Geelen MJ. Opposite effects of insulin and glucagon in acute hormonal control of hepatic lipogenesis. Diabetes 1979 Sep;28(9):828-835. 6. Knowles BB, Howe CC, Aden DP. Human hepatocellular carcinoma cell lines secrete the major plasma proteins and hepatitis B surface antigen. Science (New York, NY 1980 Jul 25;209(4455):497-499. 7. Lobner D. Comparison of the LDH and MTT assays for quantifying cell death: validity for neuronal apoptosis? Journal of Neuroscience Methods 2000;96(2):147 - 152 8. Richman RA, Claus TH, Pilkis SJ, Friedman DL. Hormonal stimulation of DNA synthesis in primary cultures of adult rat hepatocytes. Proceedings of the National Academy of Sciences of the United States of America 1976 Oct;73(10):3589-3593. 9. Cheng JQ, Lindsley CW, Cheng GZ, Yang H, Nicosia SV. The Akt/PKB pathway: molecular target for cancer drug discovery. Oncogene 2005 Nov 14;24(50):7482-7492. 10. Guilherme A, Torres K, Czech MP. Cross-talk between insulin receptor and integrin alpha5 beta1 signaling pathways. The Journal of biological chemistry 1998 Sep 4;273(36):22899-22903. 11. Griffith LG, Naughton G. Tissue engineering--current challenges and expanding opportunities. Science (New York, NY 2002 Feb 8;295(5557):1009-1014. 12. Lutolf MP, Hubbell JA. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nature biotechnology 2005 Jan;23(1):47-55. 13. Hoshiba T, Cho CS, Murakawa A, Okahata Y, Akaike T. The effect of natural extracellular matrix deposited on synthetic polymers on cultured primary hepatocytes. Biomaterials 2006 Sep;27(26):4519-4528. 14. Koide N, Sakaguchi K, Koide Y, Asano K, Kawaguchi M, Matsushima H, et al. Formation of multicellular spheroids composed of adult rat hepatocytes in dishes with positively charged surfaces and under other nonadherent environments. Experimental cell research 1990 Feb;186(2):227-235. 15. Hofmann C, Obermeier F, Artinger M, Hausmann M, Falk W, Schoelmerich J, et al. Cell-cell contacts prevent anoikis in primary human colonic epithelial cells. Gastroenterology 2007 Feb;132(2):587-600. 16. Schubert SY, Benarroch A, Ostvang J, Edelman ER. Regulation of endothelial cell proliferation by primary monocytes. Arteriosclerosis, thrombosis, and vascular biology 2008 Jan;28(1):97-104. 17. von Sengbusch G, Bowry S, Vienken J. Focusing on membranes. Artificial organs 1993 Apr;17(4):244-253. 18. Klinkmann H, Vienken J. Membranes for dialysis. Nephrol Dial Transplant 1995;10 Suppl 3:39-45. 19. Parsons-Wingerter PA, Saltzman WM. Growth versus function in the three-dimensional culture of single and aggregated hepatocytes within collagen gels. Biotechnology progress 1993 Nov-Dec;9(6):600-607. 20. Semler EJ, Ranucci CS, Moghe PV. Mechanochemical manipulation of hepatocyte aggregation can selectively induce or repress liver-specific function. Biotechnology and bioengineering 2000 Aug 20;69(4):359-369. 21. Verma P, Verma V, Ray P, Ray AR. Formation and characterization of three dimensional human hepatocyte cell line spheroids on chitosan matrix for in vitro tissue engineering applications. In vitro cellular & developmental biology 2007 Nov-Dec;43(10):328-337. 22. Li K, Qu X, Wang Y, Tang Y, Qin D, Wang Y, et al. Improved performance of primary rat hepatocytes on blended natural polymers. Journal of biomedical materials research 2005 Nov 1;75(2):268-274. 23. Tong JZ, Sarrazin S, Cassio D, Gauthier F, Alvarez F. Application of spheroid culture to human hepatocytes and maintenance of their differentiation. Biology of the cell / under the auspices of the European Cell Biology Organization 1994;81(1):77-81. 24. Wang S, Nagrath D, Chen PC, Berthiaume F, Yarmush ML. Three-dimensional primary hepatocyte culture in synthetic self-assembling peptide hydrogel. Tissue engineering 2008 Feb;14(2):227-236. 25. Li J, Pan J, Zhang L, Yu Y. Culture of hepatocytes on fructose-modified chitosan scaffolds. Biomaterials 2003 Jun;24(13):2317-2322. 26. Wittmer CR, Phelps JA, Lepus CM, Saltzman WM, Harding MJ, Van Tassel PR. Multilayer nanofilms as substrates for hepatocellular applications. Biomaterials 2008 Oct;29(30):4082-4090. Part IV 1. Gao J, Yao JQ, Caplan AI (2007) Stem cells for tissue engineering of articular cartilage. Proc Inst Mech Eng H 221: 441-450. 2. McKay R (1997) Stem cells in the central nervous system. Science 276: 66-71. 3. Gage FH (2000) Mammalian neural stem cells. Science 287: 1433-1438. 4. Spradling A, Drummond-Barbosa D, Kai T (2001) Stem cells find their niche. Nature 414: 98-104. 5. Hung CH, Lin YL, Young TH (2006) The effect of chitosan and PVDF substrates on the behavior of embryonic rat cerebral cortical stem cells. Biomaterials 27: 4461-4469. 6. Wang JH, Wei CW, Liu HC, Young TH (2003) Behavior of MG-63 cells on nylon/chitosan-blended membranes. J Biomed Mater Res A 64: 606-615. 7. Wang JH, Hung CH, Young TH (2006) Proliferation and differentiation of neural stem cells on lysine-alanine sequential polymer substrates. Biomaterials 27: 3441-3450. 8. Tsai RY, McKay RD (2000) Cell contact regulates fate choice by cortical stem cells. J Neurosci 20: 3725-3735. 9. Bottenstein JE, Sato GH (1979) Growth of a rat neuroblastoma cell line in serum-free supplemented medium. Proc Natl Acad Sci U S A 76: 514-517. 10. Draberova E, Lukas Z, Ivanyi D, Viklicky V, Draber P (1998) Expression of class III beta-tubulin in normal and neoplastic human tissues. Histochem Cell Biol 109: 231-239. 11. Weclewicz K, Svensson L, Billger M, Holmberg K, Wallin M, et al. (1993) Microtubule-associated protein 2 appears in axons of cultured dorsal root ganglia and spinal cord neurons after rotavirus infection. J Neurosci Res 36: 173-182. 12. Bignami A, Eng LF, Dahl D, Uyeda CT (1972) Localization of the glial fibrillary acidic protein in astrocytes by immunofluorescence. Brain Res 43: 429-435. 13. Sommer I, Schachner M (1981) Monoclonal antibodies (O1 to O4) to oligodendrocyte cell surfaces: an immunocytological study in the central nervous system. Dev Biol 83: 311-327. 14. Wang CC, Lu JN, Young TH (2007) The alteration of cell membrane charge after cultured on polymer membranes. Biomaterials 28: 625-631. 15. Mironov SL, Dolgaya EV (1985) Surface charge of mammalian neurones as revealed by microelectrophoresis. J Membr Biol 86: 197-202. 16. Young TH, Hung CH (2003) Change in electrophoretic mobility of PC12 cells after culturing on PVA membranes modified with different diamines. J Biomed Mater Res A 67: 1238-1244. 17. Hung CH, Young TH (2006) Differences in the effect on neural stem cells of fetal bovine serum in substrate-coated and soluble form. Biomaterials 27: 5901-5908. 18. Carpenter MK, Cui X, Hu ZY, Jackson J, Sherman S, et al. (1999) In vitro expansion of a multipotent population of human neural progenitor cells. Exp Neurol 158: 265-278. 19. Ruegg UT, Hefti F (1984) Growth of dissociated neurons in culture dishes coated with synthetic polymeric amines. Neurosci Lett 49: 319-324. 20. Mingyu C, Kai G, Jiamou L, Yandao G, Nanming Z, et al. (2004) Surface modification and characterization of chitosan film blended with poly-L-lysine. J Biomater Appl 19: 59-75. 21. Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255: 1707-1710. 22. Camp JP, Capitano AT (2005) Size-dependent mobile surface charge model of cell electrophoresis. Biophys Chem 113: 115-122. 23. Durbec P, Cremer H (2001) Revisiting the function of PSA-NCAM in the nervous system. Mol Neurobiol 24: 53-64. 24. Nguyen L, Rigo JM, Malgrange B, Moonen G, Belachew S (2003) Untangling the functional potential of PSA-NCAM-expressing cells in CNS development and brain repair strategies. Curr Med Chem 10: 2185-2196. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27974 | - |
| dc.description.abstract | 在此研究中,我們利用高分子基材培養冷凍四年的人類肝臟細胞,結果顯示肝臟細胞在冷凍四年後在聚乙烯醇上仍然可以保有肝臟細胞的功能及活性,因此我們認為聚乙烯醇是一個未來能夠應用在培養冷凍肝臟細胞的有潛力之高分基材。在第二部分我們以同時含有幾丁聚醣及組織培養的聚苯乙烯之複合材料培養環境去培養人類肝臟的細胞株HepG2,從實驗中我們可以知道決定一個細胞的行為表現主要的因素是來自於細胞基底下面的基材,景館一個環境中還有兩種行為表現不同的細胞存在,彼此並不會相互影響而改變細胞在基材上的特性。在第三部分,我們利用胰島素的添加去改變細胞在幾丁聚醣上的行為表現,從實驗中我們知道利用胰島素的添加可以明顯的提升肝臟細胞在幾丁聚醣上的貼付能力與增生的能力,此外我們同樣的利用抑制PI-3 kinase路徑的藥劑來終止胰島素對細胞行為的影響。在最後的部分,我們利用細胞電泳來偵測神經幹細胞初期的分化。此外我們發現神經幹細胞初期的分化會伴隨著表面電位的提升。 | zh_TW |
| dc.description.abstract | The purpose of the first part was to evaluate the behaviors of long-term (more than 4 years) cryopreserved human hepatocytes on biomaterials. Human hepatocytes could be cryopreserved for more than 4 years without losing liver-specific function and PVA was proposed to serve as an appropriate and promising substrate for the use in culturing long-term cryopreserved hepatocytes by maintaining high cell attachment and of high level of liver-specific function. In the second part, cells were cultured on a multi-biomaterials substrate (C/T substrate) both composed of chitosan and TCPS (tissue culture polystyrene) for 8 days. Cells expressed the behaviors based on the substrate under the cells, and none of cell was found that migrated from one substrate to the other substrate. And in the third part, insulin was added into the CT substrate to control the cell behaviors on the chitosan. Insulin greatly promted cell adhesion and enhanced the proliferation on chitosan. The insulin induced cellular behaviors can be removed by blocking the PI-3 kinase pathway, and cell behaviors restored to the chitosan-induced behaviors. And in the final part, macroelectrophoresis was used to detected the differentiation of neural stem/progenitor cell (NSPC). We found that the surface charge of NSPC was up-regulated during the early period of differentialtion. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-12T18:31:05Z (GMT). No. of bitstreams: 1 ntu-100-D93548005-1.pdf: 3275459 bytes, checksum: e2608fe169b5a34beb18b27afca18280 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 致謝 I
ABSTRACT II 摘要 III BACKGROUND 1 REFERENCES 3 PART I THE SUITABLE BIOMATERIALS FOR CULTURING LONG TERM CRYOPRESERVED HUMAN PRIMARY HEPATOCYES 4 INTRODUCTION 5 MATERIALS AND METHODS 7 Preparation of culturing substrates 7 Isolation of human hepatocytes 8 Cryopreservation and thawing of human hepatocytes 8 Culture of post-thaw human hepatocytes 10 Cell attachment assay 10 Cell viability and function assay 11 Cell morphology assay 12 RESULTS 13 Cell attachment 13 Cell viability 15 Albumin secretion 16 Urea synthesis 16 DISCUSSION 17 REFERENCES 22 TABLE AND FIGURES 25 PART II THE CELL BEHAVIORS OF HEPG2 ON THE CHITOSAN/TCPS COMBINDED SUBSTRATE 31 INTRODUCTION 32 MATERIALS AND METHODS 34 Preparation chitosan and C/T substrates 34 Cell culture and assays for cell morphology 35 Assessment of cell proliferation and death 35 SDS-PAGE/Western Blotting 36 The adsorbed fibronectin on the chitosan and TCPS substrates 37 RESULTS 38 Cell morphology 38 Cell migration 39 Cell proliferation and death 40 Cell function 41 Synthesis and adsorption of fibronectin 41 DISCUSSION 42 REFERENCE 48 FIGURES 50 PART III THE EFFECTIVENESS OF INSULIN ON THE CELLULAR BEHAVIORS OF HEPG2 ON THE CHITOSAN 58 INTRODUCTION 59 MATERIALS AND METHODS 60 Preparation chitosan and C/T substrates 60 Cell culture and assays for cell morphology 61 Assessment of cell proliferation and death 61 SDS-PAGE/Western Blotting 62 RESULTS 63 The effects of the insulin on the behaviors of HepG2 on the chitosan 63 Cell morphology 63 Cell proliferation and liver specific function 64 The effects of the insulin on the behaviors of HepG2 on the chitosan/TCPS (C/T) combined substrates. 66 Cell morphology and the behaviors of cells at the boundary of chitosan and TCPS in C/T substrate 66 Cell growth and liver specific function 67 The behaviors of insulin-treated HepG2 after insulin were removed from culture system. 69 The alteration of insulin on the behaviors of HepG2 can be related to PI-3 kinase pathway. 69 DISCUSSION 71 REFERENCE 75 FIGURES 78 PART IV THE APPLICATION OF MACROELECTROPHOSESIS ON THE EARLY DETECTION OF THE DIFFERENTIATED STEM CELLS 86 INTRODCTION 87 MATERIALS AND METHODS 88 Materials 88 Preparation of polymer substrates 89 Culture of neural stem/progenitor cells (NSPCs) 89 Immunocytochemistry 91 Assessment of cell electrophoretic mobility 92 Quantification of migrated out NSPCs from neurospheres 93 RESULTS 94 Electrophoretic mobility of NSPCs on PVDF and TCPS 94 The effect of serum on electrophoretic mobility of NSPCs 96 The effect of PDL on electrophoretic mobility of NSPCs 97 The relationship between the electrophoretic mobility and differentiation of NSPCs 98 The regulation of NSPC differentiation by controlling cell electrophoretic mobility 100 DISCUSSION 102 NSPC differentiation accompanied by elevation of cellular electrophoretic mobility. 102 The energy barrier of NSPC differentiation. 104 The role of high activation energy in maintaining the stability of NSPCs. 105 To regulate NSPC differentiation by controlling the cellular electrophoretic mobility. 106 REFERENCES 109 FIGURES 111 | |
| dc.language.iso | en | |
| dc.subject | 細胞電泳 | zh_TW |
| dc.subject | 人類肝細胞 | zh_TW |
| dc.subject | 冷凍保存 | zh_TW |
| dc.subject | HepG2細胞株 | zh_TW |
| dc.subject | 幾丁聚醣 | zh_TW |
| dc.subject | hepatocyte | en |
| dc.subject | macroelectrophoresis | en |
| dc.subject | chitosan | en |
| dc.subject | HepG2 | en |
| dc.subject | cryopreservation | en |
| dc.title | 人類肝臟細胞在高分子基材上之行為表現及細胞電永在組織工程上的應用 | zh_TW |
| dc.title | The study pf behaviors of hepatocyte on different biomaterials and the application of macroelectrophoresis on tissue engineering | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 鄭廖平(Liao-Ping Cheng),林達鎔(Dar-Jong Lin),林宏殷(Hung-Yin Lin),李玫樺(Mei-Hwa Lee),胡威文(Wei-Wen Hu),洪智煌 | |
| dc.subject.keyword | 人類肝細胞,冷凍保存,HepG2細胞株,幾丁聚醣,細胞電泳, | zh_TW |
| dc.subject.keyword | hepatocyte,cryopreservation,HepG2,chitosan,macroelectrophoresis, | en |
| dc.relation.page | 126 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-08 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 3.2 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
