請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27955完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李佳音(Chia-Yin Lee) | |
| dc.contributor.author | Yi-Chia Liu | en |
| dc.contributor.author | 劉以葭 | zh_TW |
| dc.date.accessioned | 2021-06-12T18:29:59Z | - |
| dc.date.available | 2010-08-28 | |
| dc.date.copyright | 2007-08-28 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-08-02 | |
| dc.identifier.citation | 林欣瑩、李佳音. 1997. 腸炎弧菌胞外蛋白酶之分離及其特性.台灣大學農業化學研究所碩士論文.
鄭敏孚. 1998. 腸炎弧菌疑似致病因子之純化與特性分析. 台灣大學農業化學研究所碩士論文. 余美萱. 2002. 腸炎弧菌PrtV膠原蛋白酶的生化特性及其胺基酸序列功能之研究. 台灣大學農業化學研究所博士論文. 林貞杏. 2003. 群體密度之調控子LuxO在創傷弧菌毒力的角色. 成功大學微生物及免疫學研究所碩士論文. Baross, J. A., J. Liston, and R. Y. Morita. 1978. Ecological relationship between Vibrio parahaemolyticus and agar-digesting vibrios as evidenced by bacteriophage susceptibility patterns. Appl Environ Microbiol 36:500-505. Bassler, B. L., Gibbons, P. J., Yu, C., and Roseman, S. 1991. Chitin Utilization by Marine Bacteria. J. Biol. Chem. 266: 24268-24275. Bhattacharya, D., A. Nagpure, and R. K. Gupta. 2007. Bacterial Chitinases: Properties and Potential. Critical Rev. Biotech. 27:21-28. Bina, J. E., and J. J. Mekalanos. 2001. Vibrio cholerae tolC is Required for Bile Resistance and Colonization. Infect Immun 69:4681-4685. Bradford, M. M. 1976. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 72:248-254. Bullock, W. O., J. M. Fernandez, and J. M. Short. 1987. XL1-Blue: A high efficiency plasmid transforming recA Escherichia coli strain with beta-galactosidase selection. Biotechniques:376-379. Chatterjee, S. N., and K. Chaudhuri. 2006. Lipopolysaccharides of Vibrio cholerae: III. Biological functions. Biochimica et Biophysica Acta:1-16. Christian A. Heid, J. S., Kenneth J. Livak, and P. Mickey Williams. 1996. Real time quantitative PCR. Genome Methods 6:986-994. Colwell, R. R. 1996. Global Climate and Infectious Disease: The Cholera Paradigm. Science 274:2025 - 2031. Colwell, R. R., J. Kaper, and S. W. Joseph. 1977. Vibrio cholerae, Vibrio parahaemolyticus, and other vibrios: occurrence and distribution in Chesapeake Bay. Science 198:394-396. Connell, T. D., D. J. Metzger, J. Lynch, and J. P. Folster. 1998. Endochitinase Is Transported to the Extracellular Milieu by the eps-Encoded General Secretory Pathway of Vibrio cholerae J Bacteriol 180:5591-5600. Corpet, F., J. Gouzy, and D. Kahn. 1999. Recent imprevements of the ProDom database of protein domain families. Nucleic Acids Res. 27:263-267. Costerton, J. W., P. S. Stewart, and E. P. Greenberg. 1999. Bacterial biofilms: a common cause of persistent infections. Science 284:1318 - 1322. Dahiya, N., R. Tewari, and G. S. Hoondal. 2006. Biotechnological aspects of chitinolytic enzymes: a review. Appl. Microbiol. Biotech. 71:773-782. DiRita, V. 1994. Multiple regulatory systems in Vibrio cholerae pathogenesis. Trends Microbiol 2:37038. Faruque, S. M., K. Biswas, S. M. N. Udden, Q. S. Ahmad, D. A. Sack, G. B. Nair, and J. J. Mekalanos. 2006. Transmissibility of cholera: In vivo-formed biofilms and their relationship to infectivity and persistence in the environment. Proc. Natl. Acad. Sci. USA. 103:6350-6355. Franzon, V. L., A. Barker, and P. A. Manning. 1993. Nucleotide sequence encoding the mannose-fucose-resistant hemagglutinin of Vibrio cholerae O1 and construction of a mutant. Infect Immun 61:3032-3037. Fujino, T., U. Okuno, D. Nakada, A. Aoyama, K. Fukai, T. Mukai, and T. Uebo. 1953. On the bacteriological examination of Shirasu Food poisoning. Med. J. Osaka Univ. 4: 299-304 Gulig, P. A., K. L. Bourdage, and A. M. Starks. 2005. Molecular Pathogenesis of Vibrio vulnificus. J. Microbiol. 43:118-131. Hang, L., M. John, M. Asaduzzaman, E. A. Bridges, C. Vanderspurt, T. J. Kirn, R. K. Taylor, J. D. Hillman, A. Progulske-Fox, M. Handfield, E. T. Ryan, and S. B. Calderwood. 2003. Use of in vivo-induced antigen technology (IVIAT) to identify genes uniquely expressed during human infection with Vibrio cholerae. Proc. Natl. Acad. Sci. USA 100:8508-8513. Harrington, D. J. 1996. Bacterial Collagenases and Collagen-Degrading Enzymes and Their Potential Role in Human Disease. Infect. Immun. 64:1885-1891. Heidelberg, J. F., J. A. Eisen, W. C. Nelson, R. A. Clayton, M. L. Gwinn, R. J. Dodson, D. H. Haft, E. K. Hickey, J. D. Peterson, L. Umayam, S. R. Gill, K. E. Nelson, T. D. Read, H. Tettelin, D. Richardson, M. D. Ermolaeva, J. Vamathevan, S. Bass, H. Qin, I. Dragoi, P. Sellers, L. McDonald, T. Utterback, R. D. Fleishmann, W. C. Nierman, O. White, S. L. Salzberg, H. O. Smith, R. R. Colwell, J. J. Mekalanos, J. C. Venter, and C. M. Fraser. 2000. DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature 406:477-483. Honda, S., I. Goto, I. Minematsu, N. Ikeda, N. Asano, M. Ishibashi, Y. Kinoshita, M. Nishibuchi, T. Honda, and T. Miwatani. 1987. Gastroenteritis due to Kanagawa negative Vibrio parahaemolyticus. Lancet i:331–332. Islam, M. S., B. S. Drasar, and R. B. Sack. 1994. The aquatic flora and fauna as reservoirs of Vibrio cholerae: a review. J. Diarrhoeal Dis. Res. 12:87-96. Janda, J. M., C. Powers, R. G. Bryant, and S. L. Abbott. 1988. Current perspectives on the epidemiology and pathogenesis of clinically significant Vibrio spp. Clin Microbiol Rev 1:245-267. Jeffrey J.Wilson, O. M., Akinobu Okabe and Joshua Sakon. 2003. A bacterial collagen-binding domain with novel calcium-binding motif controls domain orientation. The EMBO Journal 22:1743-1752. Jong-Hee Lee, S.-H. A., Eun-Mi Lee, Young-Ok Kim, Sang-Jun Lee,, and I.-S. Kong. 2003. Characterization of the enzyme activity of an extracellular metalloprotease (VMC) from Vibrio mimicus and its C-terminal deletions. FEMS Microbiol. Letters 223:293-300. Kang, J.-H., J.-H. Lee, J.-H. Park, S.-H. Huh, and I.-S. Kong. 1998. Cloning and identification of a phospholipase gene from Vibrio mimicus. Biochimica et Biophysica Acta 1394:85-89. Kaper, J. B., J. Michalski, J. M. Ketley, and M. M. Levine. 1994. Potential for reacquisition of cholera enterotoxin genes by attenuated Vibrio cholerae vaccine strain CVD 103-HgR. Infect Immun 62:1480–1483. Kaper, J. o. H. a. J. B. 2000. Pathogenicity Islands and The Evolution of Microbes. Annu. Rev. Microbiol 54:641-679. Keyhani, N. O., and S. Roseman. 1999. Physiological aspects of chitin catabolism in marine bacteria. Biochimica et Biophysical Acta. Kim, Y. R., S. E. Lee, C. M. Kim, S. Y. Kim, E. K. Shin, D. H. Shin, S. S. Chung, H. E. Choy, A. Progulske-Fox, J. D. Hillman, M. Handfield, and J. H. Rhee. 2003. Characterization and Pathogenic Significance of Vibrio vulnificus Antigens Preferentially Expressed in Septicemic Patients Infect Immun 71:5461-5471. Kima, S.-K., J.-Y. Yangb, and J. Cha. 2002. Cloning and sequence analysis of a novel metalloprotease gene from Vibrio parahaemolyticus 04. Gene 283:277-286. Kirn, T. J., B. A. Jude, and R. K. Taylor. 2005. A colonization factor links Vibrio cholerae environmental survival and human infection. Nature 438:863-866. Krarup, A., S. Thiel, A. Hansen, T. Fujita, and J. C. Jensenius. 2004. L-ficolin Is a Pattern Recognition Molecule Specific for Acetyl Groups. J. Biol. Chem. 279:47513-47519. Kudriakova, T. A., L. D. Makedonova, O. S. Dudkina, B. M. Degtiarev, A. B. Khaitovich, B. I. Savchenko, G. A. Riabchinskaia, Z. I. Us, and P. A. Serova. 1992. The phages of halophilic vibrios and its use. Zh. Mikrobiol. Epidemiol. Immunobiol. 9–10:5–7. (In Russian.) Lee, C. Y., M. F. Cheng, M. S. Yu, and M. J. Pan. 2002. Purification and characterization of a putative virulence factor, serine protease, from Vibrio parahaemolyticus. FEMS Microbiol. Lett. 209:31-37. Lee, J.-H., S.-H. Ahna, E.-M. Leea, S.-H. Jeonga, Y.-O. Kimb, S.-J. Leeb, and I.-S. Kong. 2005. The FAXWXXT motif in the carboxyl terminus of Vibrio mimicus metalloprotease is involved in binding to collagen. FEBS Letters 579:2507-2513. Leo Gordon, A. Y. C., Alex J. Gammerman,, and I. A. S. a. V. V. Solovyev. 2003. Sequence alignment kernel for recognition of promoter regions. Bioinformatics 19:1964–1971. Libinzon, A. E., Z. I. Us, G. V. Galtseva, B. M. Degtiareva, and G. M. Golkovskii. 1995. Phages of halophilic vibrios. Zh. Mikrobiol. Epidemiol. Immunobiol. 1:15–18. (In Russian.) Ling, M. M., and B. H. Robinson. 1997. Approaches to DNA Mutagenesis: An Overview. Analytical Biochem. 254:157-178. Lipp, E. K., A. Huq, and R. R. Colwell. 2002. Effects of Global Climate on Infectious Disease: the Cholera Model. Clin. Microbiol. Rev. 15:757-770. Lynch, T., S. Livingstone, E. Buenaventura, E. Lutter, J. Fedwich, A. G. Buret, D. Graham, and R. DeViney. 2005. Vibrio parahaemolyticus disruption of epithelial cell tight junctions occurs independently of toxin production. Infect. Immun. 73:1275-1283 Makino, K., K. Oshim, K. K. E, K. Yokoyam, T. Uda, K. Tagomori, Y. Iijima, M. Najima, M. Nakano, A. Yamashita, Y. Kubota, S. Kimur, T. Yasunaga, T. Honda, H. Shinagawa, M. Hattori, and T. Iida. 2003. Genome sequence of Vibrio parahaemolyticus: a pathogenic mechanism distinct from that of V. cholerae The Lancet 361:743-749. Matsushita, O., T. Koide, R. Kobayashi, K. Nagata, and A. Okabe. 2001. Substrate Recognition by the Collagen-binding Domain of Clostridium histolyticum Class I Collagenase. J. Biol. Chem. 276:8761-8770. Meibom, K. L., M. Blokesch, N. A. Dolganov, C.-Y. Wu, and G. K. Schoolnik. 2005. Chitin Induces Natural Competence in Vibrio cholerae. Science. 310:1824-1827 Meibom, K. L., X. B. Li, A. T. Nielsen, C.-Y. Wu, S. Roseman, and G. K. Schoolnik. 2004. The Vibrio cholerae chitin utilization program. Proc Natl Acad Sci U S A. 101:2524–2529. Miyamoto, K., E. Nukui, M. Hirose, F. Nagai, T. Sato, Y. Inamori, and H. Tsujibo. 2002. A Metalloprotease (MprIII) Involved in the Chitinolytic System of a Marine Bacterium, Alteromonas sp. Strain O-7. Appl. Environ. Microb. 68:5563-5570. Miyamoto, K., E. Nukui, H. Itoh, T. Sato, T. Kobayashi, C. Imada, E. Watanabe, Y. Inamori, and H. Tsujibo. 2002. Molecular Analysis of the Gene Encoding a Novel Chitin-Binding Protease from Alteromonas sp. Strain O-7 and Its Role in the Chitinolytic System. J. Bacteriol. 184:1865-1872. Miyoshia, S.-i. 2001. The C-termical domain promotes the hemorrhagic damage cased by Vibrio vulnificus metalloprotease. Toxicon 39:1883-1886. Montgomery, M. T., and D. L. Kirchman. 1993. Role of Chitin-Binding Proteins in the Specific Attachment of the Marine Bacterium Vibrio harveyi to Chitin. Appl. Environ. Microb. 59:373-379. Nair, G. B., T. Ramamurthy, S. K. Bhattacharya, B. Dutta, Y. Takeda, and D. A. Sack. 2007. Global dissemination of Vibrio parahaemolyticus serotype O3:K6 and its serovariants. Clin. Microbiol. Rev. 20:39-48. Nesper, J., C. M. Lauriano, K. E. Klose, D. Kapfhammer, A. Krai, and J. Reidl. 2001. Characterization of Vibrio cholerae O1 El Tor galU and galE Mutants: Influence on Lipopolysaccharide Structure, Colonization, and Biofilm Formation Infect Immun 69:435-445. Nikaido, H., and M. Vaara. 1985. Molecular basis of bacterial outer membrane permeability. Microbiol Rev 49:1-32. Nishibuchi, M., and J. B. Kaper. 1995. Thermostable Direct Hemolysin Gene of Vibrio parahaemolyticus: a Virulence Gene Acquired by a Marine Bacterium. Infect Immun. 63:2093-2099. Nomura, T., H. Hamashima, and K. Okamoto. 2000. Carboxy terminal region of haemolysin of Aeromonas sobria triggers dimerization Microbiol Pathogenesis 28:25-36. Ono, T., K.-S. Park, M. Ueta, T. Iida, and T. Honda. 2006. Identification of Proteins Secreted via Vibrio parahaemolyticus Type III Secretion System 1. Infect Immun 74:1032-1042. Ottenjann, R. 1994. Inflammatory bowel disease. Endoscopy 26:64-69. Park, K.-S., M. Arita, T. Iida, and T. Honda. 2005. vpaH, a Gene Encoding a Novel Histone-Like Nucleoid Structure-Like Protein That Was Possibly Horizontally Acquired, Regulates the Biogenesis of Lateral Flagella in trh-Positive Vibrio parahaemolyticus TH3996 . Infect. Immun. 73:5754-5761. Philippe, N., J.-P. Alcaraz, E. Coursange, J. Geiselmann, and D. Schneider. 2004. Improvement of pCVD442, a suicide plasmid for gene allele exchange in bacteria Plasmid 51:246-255 Pollizer, R., S. Swaroop, and W. Burrows. 1959. Cholera. Monogr Ser World Health Organ. 58:1001-1019. Reguera, G., and R. Kolter. 2005. Virulence and the environment: a novel role for Vibrio cholerae toxin-coregulated pili in biofilm formation on chitin. J. Bacteriol. 187:3551-3555. Sansonetti, P. 2002. New aspects of intestinal bacterial invasion. Gastroenterol Clin Biol 26:B24-31. Schäfer, A., J. Kalinowski, R. Simon, A. H. Seep-Feldhaus, and A. Pühler. 1990. High-frequency conjugal plasmid transfer from gram-negative Escherichia coli to various gram-positive coryneform bacteria. J Bacteriol 172:1663-1666. Scott, M. E., Z. Y. Dossani, and M. Sandkvist. 2001. Directed polar secretion of protease from single cells of Vibrio cholerae via the type II secretion pathway. Proc. Natl. Acad. Sci. USA. 98:13978-13983. Shime-Hattori, A., T. Iida, M. Arita, K.-S. Park, T. Kodama, and T. Honda. 2006. Two type IV pili of Vibrio parahaemolyticus play different roles in biofilm formation. FEMS Microbiol Lett 264:89-97. Silva, A. J., and J. A. Benitez. 2006. A Vibrio cholerae Relaxed (relA) Mutant Expresses Major Virulence Factors, Exhibits Biofilm Formation and Motility, and Colonizes the Suckling Mouse Intestine. J. Bacteriol. 188:794-800. Skorupski, K., and R. K. Taylor. 1996. Positive selection vectors for allelic exchange Gene 169:47-52. Song, J. K., and J. S. Rhee. 2000. Simultaneous Enhancement of Thermostability and Catalytic Activity of Phospholipase A1 by Evolutionary Molecular Engineering. Appl. Environ. Microb. : 890-894. Su, Y.-C., and C. Liu. 2007. Vibrio parahaemolyticus: A concern of seafood safety. Food Microbiology 24:549-558. Takeda, Y. 1983. Thermostable direct hemolysin of Vibrio parahaemolyticus. Pharmacol. Ther. 19: 123-146 Taylor, R. K., V. L. Miller, D. B. Furlong, and J. J. Mekalanos. 1987. Use of phoA gene fusions to identify a pilus colonization factor coordinately regulated with cholera toxin. Proc Natl Acad Sci U S A. 84:2833-2837. Toratani, T., Y. Kezuka, T. Nonaka, Y. Hiragi, and T. Watanabe. 2006. Structure of full-length bacterial chitinase containing two fibronectin type III domains revealed by small angle X-ray scattering. Biochem. Biophy. Res. Comm. 348:814-818. Waldor, M. K., and J. J. Mekalanos. 1996. A Lysogenic Conversion by a Filamentous Phage Encoding Cholera Toxin. Science 272:1910-1914. Watanabe, K. 2004. Collagenolytic proteases from bacteria. Appl Microbiol Biotechnol 63:520-526. Watanabe, T., Y. Iti, T. Yamada, M. Hashimoto, S. Sekine, and H. Tanaka. 1994. The roles of the C-terminal domain and type III domains of chitinase A1 from Bacillus circulans WL-12 in chitin degradation. J. Bacteriol. 176:4465-4472. Wendt, E.C., Ed. 1885. A Treatise on Asiatic Cholera. William Wood, New York. p. 403. Wright, K. J., P. C. Seed, and S. J. Hultgren. 2005. Uropathogenic Escherichia coli Flagella Aid in Efficient Urinary Tract Colonization. Infect. Immun. 73: 7657–7668. Zampini, M., C. Pruzzo, V. Bondre, R. Tarsi, M. Cosmo, A. Bacciaglia, A. Chhabra, R. Srivastava, and B. Srivastava. 2005. Vibrio cholerae persistence in aquatic environments and colonization of intestinal cells: involvement of a common adhesion mechanism. . FEMS Microbiol. Lett. 244:267-273. Zitzer, P., M. Pansky, R. Maymon, R. Langer, I. Bukovsky, and A. Golan. 1998. Pelvic splenosis mimicking endometriosis, causing low abdominal mass and pain. Human Reproduction 14:1683-1685. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27955 | - |
| dc.description.abstract | 腸炎弧菌胞外絲胺酸蛋白酶PrtA已證實為一個可能的致病因子,本篇研究首先於養分成分不同之培養基中比較腸炎弧菌野生株與PrtA蛋白酶缺陷株的基本生理特性,包括菌株生長速率、膠原蛋白酶及幾丁質酶酵素活性以及上述三種蛋白質的轉錄情形。結果發現野生株及PrtA蛋白酶缺陷株之菌體生長速率於二種培養基中無明顯差異,腸炎弧菌幾丁質酶及膠原蛋白酶的基因及其酵素活性會經由海洋類似成份的培養基誘導而明顯表現。其中之VPA1598幾丁質酶基因表現,會由於prtA基因缺失的影響而表現量減少。經由胺基酸序列比對發現編號VPA1598之幾丁質酶與霍亂弧菌的GlcNAc-binding protein (GbpA, 編號VCA0811)有高達百分之七十的高相似度。由於GbpA已證實為霍亂弧菌附著於浮游生物幾丁質外骨骼,及人體小腸上皮細胞之蛋白質醣基的主要因子,故本篇研究擬繼續探討腸炎弧菌VPA1598 (命名為chitinase A),是否為環境生存及參與人體感染的重要因子。ChiA基因長為1,464 bp,可轉譯成53 kDa幾丁質酶。選殖chiA基因至pET-T7啟動子表現系統,在30℃以0.5 mM IPTG誘導10小時由大腸桿菌大量表現His-tagged ChiA重組蛋白,分子量為56.6 kDa,純化後取2 mg作為抗ChiA抗體製作的抗原。製備一株chiA 基因缺陷株,以序列in-frame的方式建構,目的為踢除chiA基因而不影響前後基因序列,經由定序確認所建構之缺陷株序列無誤。此外亦建構一株ChiA補償株,目的為欲證實ChiA是否為單一影響菌體對環境中幾丁質附著及人體小腸附著的因子,供日後與ChiA缺陷株對照研究幾丁質酶A之功能。本研究所建構的缺陷株及補償株的ChiA存在情形亦經由ChiA抗體偵測證實之。 | zh_TW |
| dc.description.abstract | Vibrio parahaemolyticus no. 93 extracellular serine protease PrtA has been considered as a putative virulence factor. Accordingly, we compared basic physical properties including growth rates, protein activities and specific genes transcriptional level of wild-type and the prtA mutant. Results showed that nutrient differences had no siginificant effect on the growth of wild-type and the prtA mutant. On the contrary, madeium containing marine alike ingredients, such as marine broth, not only apparently induced chitinase and collagenase activities from both of the strains but indeed had effect on those gene transcriptional expressions. It was notced that gene expression of VPA1598 and that of collagenase prtV were extremely low in the prtA deletion mutant when incubated in marine broth medium. The amino acid sequence of VPA1598, encoding a chitinase, had 70% similarity with that of VCA0811, a V. cholerae GlcNAc-binding protein (GbpA). We considered that VPA1598 may have similar properties to GbpA of being a colonization factor that links environmental survival and human infection. The chitinase gene named chiA was cloned from V. parahaemolyticus no. 93 into pET-T7 promoter system and expressed as a His-tagged fusion protein in Escherichia coli BL21star (DE3). The chiA gene, 1,464 bp in length, could be translated to a molecular weight 53 kDa protein. By adding 0.5 mM of IPTG to the culture and inducted at 30℃ for 10 hours, His-tagged ChiA was purified with affinity column and 2 mg of protein was acquired to immunize rabbit for preparing anti-ChiA antibody. Thereafter, we successfully constructed a chiA in-frame deletion mutant and a complement strain of ΔchiA; both sequences were confirmed by nucleotide sequencing. ChiA of wild-type, deletion mutant and complement strains have been detected by using anti-ChiA antibody. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-12T18:29:59Z (GMT). No. of bitstreams: 1 ntu-96-R94623008-1.pdf: 1867091 bytes, checksum: 87d270c7c0119fa0c33416c571bc0a52 (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 目 錄
口試委員審定書 i 誌謝 ii 中文摘要 iv 英文摘要 v 目錄 vii 表次 xii 圖次 xiii 壹、 前言 1 一、 腸炎弧菌棲息環境與生理特性 1 概述 棲息環境與疾病流行 血清型分類與噬菌體(Bacteriophage) 1 1 2 二、 幾丁質酶於細菌中所扮演的角色 3 細菌幾丁質酶的基本特性 3 海洋細菌利用幾丁質酶的作用方式 3 三、 弧菌屬人體致病菌與其致病機制 4 霍亂弧菌 5 創傷弧菌 5 腸炎弧菌 6 四、 基因體全定序後續研究方向 7 環境生存與人體致病的連結 7 五、研究目的與源起 8 貳、 實驗材料與方法 10 I. 實驗材料 10 一、實驗菌株與質體 10 二、培養基 10 三、藥品與試劑 10 四、實驗中使用之套組 12 五、 儀器 12 II. 實驗方法 14 一、一般DNA技術 14 1. DNA膠體電泳 14 2. 質體的製備 14 3. 聚合酶連鎖反應 14 4. DNA片段純化 16 5. 接合作用 16 6. 勝任細胞之製備 17 7. 轉形作用 17 二、分析腸炎弧菌野生株與prtA缺陷株基本生理特性與 特定基因表現 17 1. 細菌生長曲線之測定 17 2. 胞外蛋白酶活性之測定 17 a. 幾丁質酶活性測定 18 b. 膠原蛋白酶活性測定 18 3. 定量基因表現 18 a. 細菌RNA萃取 18 b. RNA反轉錄作用 19 c. 即時定量聚合酶鏈鎖反應 19 三、腸炎弧菌幾丁質酶A基因選殖與抗體製備 20 1. 引子設計 20 2. PCR增幅與基因選殖 20 四、腸炎弧菌幾丁質酶A之表現、純化與抗體製備 21 1. 培養與破菌條件 21 2. His-tagged ChiA重組酵素純化 22 3. 蛋白質膠體電泳 22 4. 西式漬片 22 5. 製備抗體 23 五、建構幾丁質酶A缺陷株 23 1. 引子設計 23 2. PCR條件 23 3. 基因選殖 24 4. 接合生殖與篩選方式 25 六、建構幾丁質酶A補償株 25 1. 引子設計 25 2. 基因選殖 26 3. 轉形作用與篩選 26 七、幾丁質酶A於細胞的分布 27 1. 細胞劃分方式 27 2. 蛋白質膠體電泳 27 3. 西式漬片 28 八、生物資訊庫軟體分析 28 1. 腸炎弧菌基因庫比對 28 2. chiA基因序列分析 29 參、實驗結果 30 一、腸炎弧菌野生株與絲胺酸蛋白酶PrtA缺陷株於不同營養條件之生長情形,與膠原蛋白酶及幾丁質酶活性及特定基因表現情形之比較 30 二、生物資訊分析幾丁質酶蛋白質domain組成與基因交互作用 32 三、腸炎弧菌幾丁質酶A之基因選殖 33 四、腸炎弧菌幾丁酶A之表現與純化 34 五、建構幾丁質酶A之缺陷株 35 六、建構幾丁質酶A之補償株 36 七、測定幾丁質酶A於腸炎弧菌野生株、幾丁質酶缺陷株和幾丁質酶補償株於細胞劃分分布情形 37 肆、討論 39 一、腸炎弧菌的環境生存 39 二、環境生存與致病機轉之連結 40 伍、結論 41 陸、參考文獻 43 柒、表 57 捌、圖 62 玖、附錄表 83 表次 表一、本研究所使用之菌株與質體 57 表二、本研究所使用之引子 58 表三、腸炎弧菌prtA缺陷株幾丁質酶與膠原蛋白酶相較於野生株 59 之基因表現 表四、腸炎弧菌幾丁質酶與相似蛋白之比較 60 圖次 圖一、腸炎弧菌野生株與prtA缺陷株培養於營養條件不同培養基之生長情形 62 圖二、腸炎弧菌野生株與prtA缺陷株培養於營養條件不同的培養基之幾丁質酶與膠原蛋白酶活性 63 圖三、腸炎弧菌野生株與prtA缺陷株培養於營養條件不同的培養基之幾丁質酶基因表現差異 64 圖四、腸炎弧菌五個幾丁質酶之domain組成 65 圖五、腸炎弧菌幾丁質酶A核苷酸與胺基酸序列 66 圖六、 幾丁質酶A核苷酸序列與VPA1598核苷酸序列比對 69 圖七、選殖幾丁質酶A流程圖 70 圖八、測試幾丁質酶重組蛋白表現條件 71 圖九、利用兔子抗His-tag抗體偵測His-tagged ChiA重組蛋白於膠片的位置 72 圖十、His-tagged ChiA進行HiTrap Chelating親和性管柱層析圖 77 圖十一、純化之His-tagged ChiA之SDS-PAGE電泳及免疫染色圖 74 圖十二、幾丁質酶A缺陷株示意圖 75 圖十三、建構chiA缺陷株之原理 76 圖十四、建構突變株自殺式質體的流程 77 圖十五、經由基因定序確認幾丁質酶A缺陷株之序列 79 圖十六、幾丁質酶A補償株之建構流程與結果 81 圖十七、幾丁質酶A在腸炎弧菌野生株、幾丁質酶A缺陷株與幾丁質酶A補償株中各分劃的分佈情形 83 | |
| dc.language.iso | zh-TW | |
| dc.subject | A補償株 | zh_TW |
| dc.subject | A 幾丁質酶 | zh_TW |
| dc.subject | A缺陷株 幾丁質酶 | zh_TW |
| dc.subject | 幾丁質酶 | zh_TW |
| dc.subject | Chitinase A ChiA deletion mutant ChiA complement strain | en |
| dc.title | 探討腸炎弧菌幾丁質酶A所扮演的角色及功能 | zh_TW |
| dc.title | The role and function of Chitinase A from
Vibrio parahaemolyticus | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 邱政洵(Ciou-Jheng Syun),余美萱(Yu-Mei Syuan) | |
| dc.subject.keyword | 幾丁質酶,A 幾丁質酶,A缺陷株 幾丁質酶,A補償株, | zh_TW |
| dc.subject.keyword | Chitinase A ChiA deletion mutant ChiA complement strain, | en |
| dc.relation.page | 56 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-08-02 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農業化學研究所 | zh_TW |
| 顯示於系所單位: | 農業化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 1.82 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
