Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27951
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor魏宏宇
dc.contributor.authorKuo-Tung Hongen
dc.contributor.author洪國棟zh_TW
dc.date.accessioned2021-06-12T18:29:45Z-
dc.date.available2014-08-09
dc.date.copyright2011-08-09
dc.date.issued2011
dc.date.submitted2011-08-08
dc.identifier.citation[1] P. Bolton and M. Dewaripont. Contract theory. 2005.
[2] C. Exchange. http://cloudexchange.org/.
[3] M. Feldman, K. Lai, and L. Zhang. The proportional-share allocation market for
computational resources. IEEE Transactions on Parallel and Distributed Systems,
20(8):1075 –1088, aug. 2009.
[4] Y.-K. Kwok, K. Hwang, and S. Song. Selfish grids: Game-theoretic modeling and
nas/psa benchmark evaluation. IEEE Transactions on Parallel and Distributed Systems,
18:621–636, 2007.
[5] Y.-K. Kwok, S. Song, and K. Hwang. Selfish grid computing: game-theoretic modeling
and nas performance results. In IEEE International Symposium on Cluster
Computing and the Grid, 2005. CCGrid 2005., volume 2, pages 1143 – 1150 Vol. 2,
may 2005.
[6] C. Lee, J. Suzuki, A. Vasilakos, Y. Yamamoto, and K. Oba. An evolutionary game
theoretic approach to adaptive and stable application deployment in clouds. In Proceeding
of the 2nd workshop on Bio-inspired algorithms for distributed systems,
BADS ’10, pages 29–38, New York, NY, USA, 2010. ACM.
[7] M. Mac′ıas and J. Guitart. A genetic model for pricing in cloud computing markets.
In Proceedings of the 2011 ACM Symposium on Applied Computing, SAC ’11, pages
113–118, New York, NY, USA, 2011. ACM.
[8] M. Mihailescu and Y. Teo. Dynamic resource pricing on federated clouds. IEEE
International Symposium on Cluster Computing and the Grid, 0:513–517, 2010.
[9] M. Mihailescu and Y. Teo. On economic and computational-efficient resource pricing
in large distributed systems. IEEE International Symposium on Cluster Computing
and the Grid, 0:838–843, 2010.
[10] M. Mihailescu and Y. Teo. Strategy-proof dynamic resource pricing of multiple
resource types on federated clouds. 6081:337–350, 2010.
[11] M. Mobmann, J. Stober, A. Ouorou, E. Gourdin, R. Krishnaswamy, and D. Neumann.
A combinatorial exchange for complex grid services. In Economic Models
and Algorithms for Distributed Systems, Autonomic Systems, pages 221–237.
Birkhuser Basel, 2010.
[12] L. Rao, X. Liu, L. Xie, and W. Liu. Minimizing electricity cost: Optimization
of distributed internet data centers in a multi-electricity-market environment. In
Proceedings of IEEE INFOCOM, 2010, pages 1 –9, march 2010.
[13] A. E. Service. http://aws.amazon.com/ec2/.
[14] M. Stokely, J. Winget, E. Keyes, C. Grimes, and B. Yolken. Using a market economy
to provision compute resources across planet-wide clusters. IEEE International
Symposium on Parallel Distributed Processing, 2009. IPDPS 2009., pages 1
–8, may. 2009.
[15] R. Subrata, A. Zomaya, and B. Landfeldt. A cooperative game framework for
qos guided job allocation schemes in grids. IEEE Transactions on Computers,
57(10):1413–1422, Oct. 2008.
[16] R. Subrata, A. Zomaya, and B. Landfeldt. Game-theoretic approach for load balancing
in computational grids. IEEE Transactions on Parallel and Distributed Systems,
19(1):66–76, Jan. 2008.
[17] F. Teng and F. Magoules. A new game theoretical resource allocation algorithm for
cloud computing. In P. Bellavista, R.-S. Chang, H.-C. Chao, S.-F. Lin, and P. Sloot,
editors, Advances in Grid and Pervasive Computing, volume 6104 of Lecture Notes
in Computer Science, pages 321–330. Springer Berlin / Heidelberg, 2010.
[18] C. Wang, H. Chen, C. Hsu, and J. Lee. Dynamic resource selection heuristics for
a non-reserved bidding-based grid environment. Future Generation Computer Systems,
26(2):183 – 197, 2010.
[19] G. Wei, A. Vasilakos, Y. Zheng, and N. Xiong. A game-theoretic method of fair
resource allocation for cloud computing services. The Journal of Supercomputing,
pages 1–18, 2009. 10.1007/s11227-009-0318-1.
[20] S. Zaman and D. Grosu. Combinatorial auction-based allocation of virtual machine
instances in clouds. In IEEE Second International Conference on Cloud Computing
Technology and Science (CloudCom), 2010, pages 127 –134, 30 2010-dec. 3 2010.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27951-
dc.description.abstract本論文根據契約理論與賽局理論提出兩種定價模式,這兩種定價模式分別適用於不同情形。差異化定價機制適用於雲端運算剛風行而未普及時,此時顧客的私有運算資源的多寡成為雲端運算廠商關注的焦點。當顧客的私有運算資源愈多,他愈不願意付很多錢購買雲端運算服務;當顧客的私有運算資源很少, 他願意付出較多金錢購買雲端運算服務以得到額外的運算資源。為此,我們設計差異化定價機制來自動區分出顧客私有運算資源的多寡。此機制是廠商先提供菜單給顧客,菜單上標示著不同的單價及其相對應之數量,顧客在看到菜單後,會選出對自己有利的數量及單價來購買。差異化定價機制不僅可以區分出不同類型的顧客, 亦可以最大化廠商的利潤。一般定價機制適用於雲端運算完全普及時,此時顧客的私有運算資源對比於其所購買的雲端運算資源應是很少,故使用差異化定價機制後廠商可能得出很少差異的差異化定價,較無實益。因此,廠商應著重於一般定價機制。在此模型中,雲端運算資源被分成兩類,一類是需求型資源(on-demand instances), 一類是點狀資源(spot instances)。需求型資源是採取固定單價來販賣,點狀資源是顧客投標決定價格。我們考慮廠商先賣需求型資源再把剩下的資源以點狀資源的型式出售。此一般定價機制有兩個重要參數:需求型資源的價格與欲販售之點狀資源的數量。本論文設計這兩個參數,以符合廠商的最大利益。zh_TW
dc.description.abstractWe propose pricing mechanisms for cloud computing systems based on contract theory and game theory. Differentiated pricing mechanism is for the intermediate period in which private data center is still popular. A service provider needs to deal with customers with and without private data center. Those customers without private data center tend to buy more cloud computing resources while customers with private data center use cloud computing only when it is cheap, due to the concept of decreasing marginal value in Economics. As a result, a service provider needs to know if customers have private data center for the purpose of price discrimination. In differentiated pricing mechanism, a service provider provides a menu for customers to order virtual machines, which is similar to the mechanism in Amazon Elastic Compute Cloud. We aim to design a menu that can maximize service provider’s profit. To achieve this goal, we use principal-agent model to induce customers' hidden information, which is endowment computing power (i.e. size of private computing cloud). Our result shows that our differentiated pricing mechanism is able to maximize service provider’s profit and keep customer’s utility at their acceptable level. Differentiated pricing mechanism also shows that customers without her own private computing cloud will be exploited to get a lower utility gain than those with her own private computing cloud. Numerical results are also provided. General pricing mechanism is a general mechanism which can be applied to a system containing on-demand instances and spot instances like Amazon Elastic Compute Cloud. In the system, the service provider sells on-demand instances first. Then the service provider sells the remaining resources for spot instances. Our mechanism determines at which price on-demand instances should be sold and how many remaining resources should be sold for spot instances in order to maximize service provider’s revenue. Empirical data from Amazon Elastic Compute Cloud is also provided.en
dc.description.provenanceMade available in DSpace on 2021-06-12T18:29:45Z (GMT). No. of bitstreams: 1
ntu-100-R97942140-1.pdf: 2078526 bytes, checksum: c42f2cd6bbbe623fd59ba7a4cbdd2f8a (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents口試委員會審定書i
中文摘要iii
Abstract v
1 Introduction 1
2 Related Work 5
3 The System Model For Intermediate Period: Differentiated Pricing Mechanism
9
4 Numerical Results For Differentiated Pricing Mechanism 13
5 The General System Model: General Pricing Mechanism 17
5.1 System Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2 Auction Rules and Utility Functions . . . . . . . . . . . . . . . . . . . . 18
5.3 Analysis of Stage 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.4 Analysis of Stage 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6 Discussions and Empirical Data For General Pricing Mechanism 29
7 Numerical Results for General Pricing Mechanism 35
8 Conclusion 37
Bibliography 39
dc.language.isoen
dc.title差別化雲端運算服務之定價模型zh_TW
dc.titlePricing Over Differentiated Hybrid Cloud Computing Servicesen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊得年,蘇雅韻
dc.subject.keyword雲端運算,賽局理論,契約理論,定價,拍賣,zh_TW
dc.subject.keywordcloud computing,game theory,contract theory,pricing,auction,en
dc.relation.page40
dc.rights.note有償授權
dc.date.accepted2011-08-08
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  目前未授權公開取用
2.03 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved