Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27944
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳蕙芬(Whi Fin Wu)
dc.contributor.authorKuei-Peng Chenen
dc.contributor.author陳圭芃zh_TW
dc.date.accessioned2021-06-12T18:29:21Z-
dc.date.available2010-08-28
dc.date.copyright2007-08-28
dc.date.issued2007
dc.date.submitted2007-08-03
dc.identifier.citation施如珊 (2004). 大腸桿菌熱休克蛋白ClpY I domain之突變蛋白及其專一性基質辨識之研究. 台大農化所碩士論文.
張道遠 (2004). 分析大腸桿菌ClpYQ蛋白之ClpY功能性羧基端. 台大農化所碩士論文.
Achebach, S., Tran, Q. H., Vlamis-Gardikas, A., Mullner, M., Holmgren, A. & Unden, G. (2004). Stimulation of Fe-S cluster insertion into apoFNR by Escherichia coli glutaredoxins 1, 2 and 3 in vitro. FEBS Lett 565, 203-206.
Ahn, B. Y. & Moss, B. (1992). Glutaredoxin homolog encoded by vaccinia virus is a virion-associated enzyme with thioltransferase and dehydroascorbate reductase activities. Proc Natl Acad Sci U S A 89, 7060-7064.
Alphey, M. S., Bond, C. S., Tetaud, E., Fairlamb, A. H. & Hunter, W. N. (2000). The structure of reduced tryparedoxin peroxidase reveals a decamer and insight into reactivity of 2Cys-peroxiredoxins. J Mol Biol 300, 903-916.
Belli, G., Polaina, J., Tamarit, J., De La Torre, M. A., Rodriguez-Manzaneque, M. T., Ros, J. & Herrero, E. (2002). Structure-function analysis of yeast Grx5 monothiol glutaredoxin defines essential amino acids for the function of the protein. J Biol Chem 277, 37590-37596.
Board, P. G., Coggan, M., Chelvanayagam, G., Easteal, S., Jermiin, L. S., Schulte, G. K., Danley, D. E., Hoth, L. R., Griffor, M. C., Kamath, A. V., Rosner, M. H., Chrunyk, B. A., Perregaux, D. E., Gabel, C. A., Geoghegan, K. F. & Pandit, J. (2000). Identification, characterization, and crystal structure of the Omega class glutathione transferases. J Biol Chem 275, 24798-24806.
Bochtler, M., Hartmann, C., Song, H. K., Bourenkov, G. P., Bartunik, H. D. & Huber, R. (2000). The structures of HsIU and the ATP-dependent protease HsIU-HsIV. Nature 403, 800-805.
Bushweller, J. H., Aslund, F., Wuthrich, K. & Holmgren, A. (1992). Structural and functional characterization of the mutant Escherichia coli glutaredoxin (C14----S) and its mixed disulfide with glutathione. Biochemistry 31, 9288-9293.
Carmel-Harel, O. & Storz, G. (2000). Roles of the glutathione- and thioredoxin-dependent reduction systems in the Escherichia coli and saccharomyces cerevisiae responses to oxidative stress. Annu Rev Microbiol 54, 439-461.
Carroll, M. C., Outten, C. E., Proescher, J. B., Rosenfeld, L., Watson, W. H., Whitson, L. J., Hart, P. J., Jensen, L. T. & Cizewski Culotta, V. (2006). The effects of glutaredoxin and copper activation pathways on the disulfide and stability of Cu,Zn superoxide dismutase. J Biol Chem 281, 28648-28656.
Cho, Y. W., Kim, J. C., Jin, C. D., Han, T. J. & Lim, C. J. (1998). Thioltransferase from Arabidopsis thaliana seed: purification to homogeneity and characterization. Mol Cells 8, 550-555.
Chuang, S. E., Burland, V., Plunkett, G., 3rd, Daniels, D. L. & Blattner, F. R. (1993). Sequence analysis of four new heat-shock genes constituting the hslTS/ibpAB and hslVU operons in Escherichia coli. Gene 134, 1-6.
Datsenko, K. A. & Wanner, B. L. (2000). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97, 6640-6645.
Davis, D. A., Dorsey, K., Wingfield, P. T., Stahl, S. J., Kaufman, J., Fales, H. M. & Levine, R. L. (1996). Regulation of HIV-1 protease activity through cysteine modification. Biochemistry 35, 2482-2488.
Fernandes, A. P. & Holmgren, A. (2004). Glutaredoxins: glutathione-dependent redox enzymes with functions far beyond a simple thioredoxin backup system. Antioxid Redox Signal 6, 63-74.
Fernandes, A. P., Fladvad, M., Berndt, C., Andresen, C., Lillig, C. H., Neubauer, P., Sunnerhagen, M., Holmgren, A. & Vlamis-Gardikas, A. (2005). A novel monothiol glutaredoxin (Grx4) from Escherichia coli can serve as a substrate for thioredoxin reductase. J Biol Chem 280, 24544-24552.
Fladvad, M., Bellanda, M., Fernandes, A. P., Mammi, S., Vlamis-Gardikas, A., Holmgren, A. & Sunnerhagen, M. (2005). Molecular mapping of functionalities in the solution structure of reduced Grx4, a monothiol glutaredoxin from Escherichia coli. J Biol Chem 280, 24553-24561.
Foloppe, N., Sagemark, J., Nordstrand, K., Berndt, K. D. & Nilsson, L. (2001). Structure, dynamics and electrostatics of the active site of glutaredoxin 3 from Escherichia coli: comparison with functionally related proteins. J Mol Biol 310, 449-470.
Gerdes, S. Y., Scholle, M. D., Campbell, J. W., Balazsi, G., Ravasz, E., Daugherty, M. D., Somera, A. L., Kyrpides, N. C., Anderson, I., Gelfand, M. S., Bhattacharya, A., Kapatral, V., D'Souza, M., Baev, M. V., Grechkin, Y., Mseeh, F., Fonstein, M. Y., Overbeek, R., Barabasi, A. L., Oltvai, Z. N. & Osterman, A. L. (2003). Experimental determination and system level analysis of essential genes in Escherichia coli MG1655. J Bacteriol 185, 5673-5684.
Gottesman, S. & Maurizi, M. R. (1992). Regulation by proteolysis: energy-dependent proteases and their targets. Microbiol Rev 56, 592-621.
Herrero, E. & de la Torre-Ruiz, M. A. (2007). Monothiol glutaredoxins: a common domain for multiple functions. Cell Mol Life Sci 64, 1518-1530.
Holmgren, A., Soderberg, B. O., Eklund, H. & Branden, C. I. (1975). Three-dimensional structure of Escherichia coli thioredoxin-S2 to 2.8 A resolution. Proc Natl Acad Sci U S A 72, 2305-2309.
Holmgren, A. (1976). Hydrogen donor system for Escherichia coli ribonucleoside-diphosphate reductase dependent upon glutathione. Proc Natl Acad Sci U S A 73, 2275-2279.
Holmgren, A. (1979a). Glutathione-dependent synthesis of deoxyribonucleotides. Characterization of the enzymatic mechanism of Escherichia coli glutaredoxin. J Biol Chem 254, 3672-3678.
Holmgren, A. (1979b). Glutathione-dependent synthesis of deoxyribonucleotides. Purification and characterization of glutaredoxin from Escherichia coli. J Biol Chem 254, 3664-3671.
Holmgren, A. (1989). Thioredoxin and glutaredoxin systems. J Biol Chem 264, 13963-13966.
Holmgren, A. & Aslund, F. (1995). Glutaredoxin. Methods Enzymol 252, 283-292.
Hopper, S., Johnson, R. S., Vath, J. E. & Biemann, K. (1989). Glutaredoxin from rabbit bone marrow. Purification, characterization, and amino acid sequence determined by tandem mass spectrometry. J Biol Chem 264, 20438-20447.
Jeong, D., Cha, H., Kim, E., Kang, M., Yang, D. K., Kim, J. M., Yoon, P. O., Oh, J. G., Bernecker, O. Y., Sakata, S., Le, T. T., Cui, L., Lee, Y. H., Kim do, H., Woo, S. H., Liao, R., Hajjar, R. J. & Park, W. J. (2006). PICOT inhibits cardiac hypertrophy and enhances ventricular function and cardiomyocyte contractility. Circ Res 99, 307-314.
Lundberg, M., Johansson, C., Chandra, J., Enoksson, M., Jacobsson, G., Ljung, J., Johansson, M. & Holmgren, A. (2001). Cloning and expression of a novel human glutaredoxin (Grx2) with mitochondrial and nuclear isoforms. J Biol Chem 276, 26269-26275.
Majeran, W., Cai, Y., Sun, Q. & van Wijk, K. J. (2005). Functional differentiation of bundle sheath and mesophyll maize chloroplasts determined by comparative proteomics. Plant Cell 17, 3111-3140.
Minakuchi, K., Yabushita, T., Masumura, T., Ichihara, K. & Tanaka, K. (1994). Cloning and sequence analysis of a cDNA encoding rice glutaredoxin. FEBS Lett 337, 157-160.
Molina, M. M., Belli, G., de la Torre, M. A., Rodriguez-Manzaneque, M. T. & Herrero, E. (2004). Nuclear monothiol glutaredoxins of Saccharomyces cerevisiae can function as mitochondrial glutaredoxins. J Biol Chem 279, 51923-51930.
Morell, S., Follmann, H. & Haberlein, I. (1995). Identification and localization of the first glutaredoxin in leaves of a higher plant. FEBS Lett 369, 149-152.
Nordstrand, K., Sandstrom, A., Aslund, F., Holmgren, A., Otting, G. & Berndt, K. D. (2000). NMR structure of oxidized glutaredoxin 3 from Escherichia coli. J Mol Biol 303, 423-432.
Porat, A., Lillig, C. H., Johansson, C., Fernandes, A. P., Nilsson, L., Holmgren, A. & Beckwith, J. (2007). The reducing activity of glutaredoxin 3 toward cytoplasmic substrate proteins is restricted by methionine 43. Biochemistry 46, 3366-3377.
Rahlfs, S., Fischer, M. & Becker, K. (2001). Plasmodium falciparum possesses a classical glutaredoxin and a second, glutaredoxin-like protein with a PICOT homology domain. J Biol Chem 276, 37133-37140.
Rodriguez-Manzaneque, M. T., Ros, J., Cabiscol, E., Sorribas, A. & Herrero, E. (1999). Grx5 glutaredoxin plays a central role in protection against protein oxidative damage in Saccharomyces cerevisiae. Mol Cell Biol 19, 8180-8190.
Rodriguez-Manzaneque, M. T., Tamarit, J., Belli, G., Ros, J. & Herrero, E. (2002). Grx5 is a mitochondrial glutaredoxin required for the activity of iron/sulfur enzymes. Mol Biol Cell 13, 1109-1121.
Rouhier, N., Gelhaye, E., Sautiere, P. E. & Jacquot, J. P. (2002). Enhancement of poplar glutaredoxin expression by optimization of the cDNA sequence. Protein Expr Purif 24, 234-241.
Tamarit, J., Belli, G., Cabiscol, E., Herrero, E. & Ros, J. (2003). Biochemical characterization of yeast mitochondrial Grx5 monothiol glutaredoxin. J Biol Chem 278, 25745-25751.
Uzzau, S., Figueroa-Bossi, N., Rubino, S. & Bossi, L. (2001). Epitope tagging of chromosomal genes in Salmonella. Proc Natl Acad Sci U S A 98, 15264-15269.
Vlamis-Gardikas, A. & Holmgren, A. (2002). Thioredoxin and glutaredoxin isoforms. Methods Enzymol 347, 286-296.
Wang, Y., Amegbey, G. & Wishart, D. S. (2004). Solution structures of reduced and oxidized bacteriophage T4 glutaredoxin. J Biomol NMR 29, 85-90.
Witte, S., Villalba, M., Bi, K., Liu, Y., Isakov, N. & Altman, A. (2000). Inhibition of the c-Jun N-terminal kinase/AP-1 and NF-kappaB pathways by PICOT, a novel protein kinase C-interacting protein with a thioredoxin homology domain. J Biol Chem 275, 1902-1909.
Won, H. S., Low, L. Y., Guzman, R. D., Martinez-Yamout, M., Jakob, U. & Dyson, H. J. (2004). The zinc-dependent redox switch domain of the chaperone Hsp33 has a novel fold. J Mol Biol 341, 893-899.
Xia, B., Vlamis-Gardikas, A., Holmgren, A., Wright, P. E. & Dyson, H. J. (2001). Solution structure of Escherichia coli glutaredoxin-2 shows similarity to mammalian glutathione-S-transferases. J Mol Biol 310, 907-918.
Yang, Y. F. & Wells, W. W. (1991). Identification and characterization of the functional amino acids at the active center of pig liver thioltransferase by site-directed mutagenesis. J Biol Chem 266, 12759-12765
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27944-
dc.description.abstractGlutaredoxin是一種普遍存在生物體中的蛋白質,可以藉由glutathione(GSH)催化雙硫鍵還原。大腸桿菌中,Grx4是一個新發現的glutaredoxin,除了Grx4外,還具有其他具雙硫醇活化中心(CPYC)的glutaredoxin(Grx1、Grx2、Grx3),然而,Grx4具有單硫醇的活化中心(CFGS)。Grx4是由grxD基因所轉錄轉譯而來,包含115個胺基酸,分子量為12.7 kDa。在細胞中可以和還原態的GSH合作以消除細胞內產生的氧化壓力。在本研究中,我們嘗試建構grxD基因缺失的突變株(grxD knockout mutant),但無法建構單純具有grxD::kan的突變株,只能得到帶有雙套grxD基因的突變株,但此結果和國外其他研究報告結果互相吻合,因此可以推論,grxD為E. coli中之一必須基因。而在此突變株中,也觀察到其生長速度較野生株來得緩慢,但在加入野生型grxD基因後,生長速度可回復至和野生型相雷同的程度。另外,也以質體大量表現Grx4-6xHis蛋白質產生,並以SDS-PAGE方式,確認其分子量為12.7kDa。最後,我們也發現Grx4和大腸桿菌ClpYQ蛋白中的ClpY部份有交互作用,在後續的ClpY I domain突變株與Grx4蛋白質的酵母菌雙雜交試驗中,也確認了Grx4蛋白質可受到ClpY蛋白的辨認,並與之結合;並可支持「I domain為ClpY蛋白質辨識受質區域」的推論。zh_TW
dc.description.abstractAbstract
Glutaredoxins are ubiquitous proteins that catalyze the reduction of disulfides via reduced glutathione (GSH). Escherichia coli has three glutaredoxins (Grx1, Grx2, Grx3), all containing the classical dithiol active site CPYC. In this work, we are focus at Grx4, a newly found glutaredoxin in E. coli, encoded by gene grxD. The protein consists of 115 amino acids (ca. 12.7 kDa), has a potential monothiol (CGFS) active site. The grxD gene was reported as an essential gene in Escherichia coli. In this work, we tried different strategy to make a disruption mutant and suspect that the gene is essential for E. coli; however, only a two-copy “knock out” mutant was obtained. In the growth test, the two-copy “knock out” mutant grew slowly, but after obtaining another wild-type grxD copy, the growth condition was compensated. In the protein purification, a Grx4-6xHis recombination protein was constructed, and then purified with an affinity resin. As examined with SDS-PAGE, the protein size is 12.7kDa, matching the theoretical size. At the last, Grx4 may have an interaction with ClpY protein, a part of protease ClpYQ in E. coli. In this work, the yeast two-hybrid system was performed on the ClpY mutants and Grx4 protein, thus it is likely the result that Grx4 would be a substrate of ClpY protease in vivo, and thus implying that ClpY might recognize and bind the substrate with the I domain.
en
dc.description.provenanceMade available in DSpace on 2021-06-12T18:29:21Z (GMT). No. of bitstreams: 1
ntu-96-R92623006-1.pdf: 1297084 bytes, checksum: 74158783b013f278aa2f71d4ee923cd1 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents口試委員審定書 ……………………………………………………………… ii
謝誌 ………………….……………………………………………………… iii
中文摘要 …………………………………………………………………….. iv
英文摘要 …………….………………………………………………………. v
前言 ………………….……………………………………………………… 1
氧化壓力 ……….……………………………………………………… 1
Glutaredoxin系統簡介 ……………………………………………... 2
不同種類的Glutaredoxin ……………………………………………... 3
Glutaredoxin折疊構型 ……………………………………………... 5
Glutaredoxin的催化機制 ……………………………………………... 6
Glutaredoxin蛋白的功能 ……………………………………………... 7
Glutaredoxin系統介紹 ……………………………………………... 9
實驗緣由及目的 ……………………………………………………………… 13
材料與方法 ………………………………………………………………… 14
實驗材料 ……………………………….……………………………… 14
實驗方法 ……………………………….……………………………… 15
一般研究方法 …………...……..………………………………... 15
建構grxD突變株 ………………..……………………………... 20
grxD生長測試 ..………………………………………………... 24
Grx4表現 ………………………………………………………… 25
Grx4交互作用 ..………………………………………………... 32
實驗結果 …………….………………………………………………………. 36
建構grxD knock-out突變株 ………………………………………… 36
測定grxD::kan突變株中生長情況 …………………………………... 36
表現並純化Grx4蛋白質 ……………………………………………. 37
Grx4與ClpY蛋白質間的交互作用 …………………………………... 37
討論 …………………………………………………………………………. 40
Reference …………….………………………………………………………. 43
表 …………………..….……………………………………………………… 49
圖 …………………..….……………………………………………………… 51
附圖 …………………………………………………………………………. 57
dc.language.isozh-TW
dc.title大腸桿菌中 Grx4 蛋白質之研究zh_TW
dc.titleStudy of the Grx4 protein in Escherichia colien
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee丁一倪(I-Ni Ting),杜宜殷(Yi-Yin Do)
dc.subject.keyword大腸桿菌,氧化壓力,zh_TW
dc.subject.keywordEscherichia coli,glutaredoxin,en
dc.relation.page63
dc.rights.note有償授權
dc.date.accepted2007-08-03
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  目前未授權公開取用
1.27 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved