請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27918完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張雅雯 | |
| dc.contributor.author | Hsiao-Yun Kuo | en |
| dc.contributor.author | 郭筱筠 | zh_TW |
| dc.date.accessioned | 2021-06-12T18:27:51Z | - |
| dc.date.available | 2013-10-07 | |
| dc.date.copyright | 2011-10-07 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-08 | |
| dc.identifier.citation | 1. Calderone R, Suzuki S, Cannon R, et al. Candida albicans: adherence, signaling and virulence. Med Mycol. 2000;38 Suppl 1:125-137.
2. Hawser SP, Douglas LJ. Resistance of Candida albicans biofilms to antifungal agents in vitro. Antimicrob Agents Chemother. Sep 1995;39(9):2128-2131. 3. Nett Jeniel E, Sanchez H, Cain Michael T, Andes David R. Genetic Basis of Candida Biofilm Resistance Due to Drug‐Sequestering Matrix Glucan. The Journal of Infectious Diseases. 2010;202(1):171-175. 4. Kojic EM, Darouiche RO. Candida Infections of Medical Devices. Clinical Microbiology Reviews. 2004;17(2):255-267. 5. Douglas LJ. Candida biofilms and their role in infection. Trends Microbiol. Jan 2003;11(1):30-36. 6. Chandra J, Kuhn DM, Mukherjee PK, Hoyer LL, McCormick T, Ghannoum MA. Biofilm Formation by the Fungal Pathogen Candida albicans: Development, Architecture, and Drug Resistance. Journal of Bacteriology. 2001;183(18):5385-5394. 7. Williams N. Yeast genome sequence ferments new research. Science. Apr 26 1996;272(5261):481. 8. Berman J, Sudbery PE. Candida albicans: A molecular revolution built on lessons from budding yeast. Nature Reviews Genetics. 2002;3(12):918-932. 9. Smith DL. Brewer's yeast as a cause of infection. Clin Infect Dis. Jan 1996;22(1):201. 10. Cimolai N, Gill MJ, Church D. Saccharomyces cerevisiae fungemia: case report and review of the literature. Diagn Microbiol Infect Dis. Oct 1987;8(2):113-117. 11. Munoz P, Bouza E, Cuenca-Estrella M, et al. Saccharomyces cerevisiae fungemia: an emerging infectious disease. Clin Infect Dis. Jun 1 2005;40(11):1625-1634. 12. Tawfik OW, Papasian CJ, Dixon AY, Potter LM. Saccharomyces cerevisiae pneumonia in a patient with acquired immune deficiency syndrome. J Clin Microbiol. Jul 1989;27(7):1689-1691. 13. Cairoli R, Marenco P, Perego R, de Cataldo F. Saccharomyces cerevisiae fungemia with granulomas in the bone marrow in a patient undergoing BMT. Bone Marrow Transplant. May 1995;15(5):785-786. 14. Henry S, D'Hondt L, Andre M, Holemans X, Canon JL. Saccharomyces cerevisiae fungemia in a head and neck cancer patient: a case report and review of the literature. Acta Clin Belg. Jul-Aug 2004;59(4):220-222. 15. Murphy A, Kavanagh K. Emergence of Saccharomyces cerevisiae as a human pathogen: Implications for biotechnology. Enzyme and Microbial Technology. 1999;25(7):551-557. 16. Reynolds TB. Bakers' Yeast, a Model for Fungal Biofilm Formation. Science. 2001;291(5505):878-881. 17. Baillie GS, Douglas LJ. Role of dimorphism in the development of Candida albicans biofilms. J Med Microbiol. Jul 1999;48(7):671-679. 18. Reynolds TB, Jansen A, Peng X, Fink GR. Mat Formation in Saccharomyces cerevisiae Requires Nutrient and pH Gradients. Eukaryotic Cell. 2008;7(1):122-130. 19. Verstrepen KJ, Klis FM. Flocculation, adhesion and biofilm formation in yeasts. Molecular Microbiology. 2006;60(1):5-15. 20. Guo B. A Saccharomyces gene family involved in invasive growth, cell-cell adhesion, and mating. Proceedings of the National Academy of Sciences. 2000;97(22):12158-12163. 21. Fidalgo M, Barrales RR, Jimenez J. Coding repeat instability in the FLO11 gene of Saccharomyces yeasts. Yeast. 2008;25(12):879-889. 22. Pan X, Harashima T, Heitman J. Signal transduction cascades regulating pseudohyphal differentiation of Saccharomyces cerevisiae. Curr Opin Microbiol. Dec 2000;3(6):567-572. 23. Lo WS, Dranginis AM. The cell surface flocculin Flo11 is required for pseudohyphae formation and invasion by Saccharomyces cerevisiae. Mol Biol Cell. Jan 1998;9(1):161-171. 24. Fidalgo M. Adaptive evolution by mutations in the FLO11 gene. Proceedings of the National Academy of Sciences. 2006;103(30):11228-11233. 25. Palecek SP, Parikh AS, Kron SJ. Genetic analysis reveals that FLO11 upregulation and cell polarization independently regulate invasive growth in Saccharomyces cerevisiae. Genetics. Nov 2000;156(3):1005-1023. 26. Pan X, Heitman J. Cyclic AMP-dependent protein kinase regulates pseudohyphal differentiation in Saccharomyces cerevisiae. Mol Cell Biol. Jul 1999;19(7):4874-4887. 27. Rupp S, Summers E, Lo HJ, Madhani H, Fink G. MAP kinase and cAMP filamentation signaling pathways converge on the unusually large promoter of the yeast FLO11 gene. EMBO J. Mar 1 1999;18(5):1257-1269. 28. Madhani HD. Combinatorial Control Required for the Specificity of Yeast MAPK Signaling. Science. 1997;275(5304):1314-1317. 29. Robertson LS, Fink GR. The three yeast A kinases have specific signaling functions in pseudohyphal growth. Proc Natl Acad Sci U S A. Nov 10 1998;95(23):13783-13787. 30. Lorenz MC, Pan X, Harashima T, et al. The G protein-coupled receptor gpr1 is a nutrient sensor that regulates pseudohyphal differentiation in Saccharomyces cerevisiae. Genetics. Feb 2000;154(2):609-622. 31. McCusker JH, Clemons KV, Stevens DA, Davis RW. Saccharomyces cerevisiae virulence phenotype as determined with CD-1 mice is associated with the ability to grow at 42 degrees C and form pseudohyphae. Infect Immun. Dec 1994;62(12):5447-5455. 32. Wolf JJ, Dowell RD, Mahony S, Rabani M, Gifford DK, Fink GR. Feed-Forward Regulation of a Cell Fate Determinant by an RNA-Binding Protein Generates Asymmetry in Yeast. Genetics. 2010;185(2):513-522. 33. Vyas VK, Kuchin S, Berkey CD, Carlson M. Snf1 Kinases with Different -Subunit Isoforms Play Distinct Roles in Regulating Haploid Invasive Growth. Molecular and Cellular Biology. 2003;23(4):1341-1348. 34. Vinod PK, Sengupta N, Bhat PJ, Venkatesh KV. Integration of global signaling pathways, cAMP-PKA, MAPK and TOR in the regulation of FLO11. PLoS One. 2008;3(2):e1663. 35. Verstrepen KJ, Derdelinckx G, Verachtert H, Delvaux FR. Yeast flocculation: what brewers should know. Appl Microbiol Biotechnol. May 2003;61(3):197-205. 36. Chen H. Feedback control of morphogenesis in fungi by aromatic alcohols. Genes & Development. 2006;20(9):1150-1161. 37. Halme A, Bumgarner S, Styles C, Fink GR. Genetic and epigenetic regulation of the FLO gene family generates cell-surface variation in yeast. Cell. Feb 6 2004;116(3):405-415. 38. Fichtner L, Schulze F, Braus GH. Differential Flo8p-dependent regulation of FLO1 and FLO11 for cell–cell and cell–substrate adherence of S. cerevisiae S288c. Molecular Microbiology. 2007;66(5):1276-1289. 39. Liu H, Styles CA, Fink GR. Saccharomyces cerevisiae S288C has a mutation in FLO8, a gene required for filamentous growth. Genetics. Nov 1996;144(3):967-978. 40. H.J. Busscher BvdB-G, H.C. van der Mei. Implications of microbial adhesion to hydrocarbons for evaluating cell surface hydrophobicity 1. Zeta potentials of hydrocarbon droplets. Colloids and Surfaces B: Biointerfaces. 1995;5:111-116. 41. Thompson GR, Wiederhold NP, Sutton DA, Fothergill A, Patterson TF. In vitro activity of isavuconazole against Trichosporon, Rhodotorula, Geotrichum, Saccharomyces and Pichia species. Journal of Antimicrobial Chemotherapy. 2009;64(1):79-83. 42. Donnelly JP, De Pauw BE. Voriconazole-a new therapeutic agent with an extended spectrum of antifungal activity. Clin Microbiol Infect. Mar 2004;10 Suppl 1:107-117. 43. Odds FC, Vranckx L, Woestenborghs F. Antifungal susceptibility testing of yeasts: evaluation of technical variables for test automation. Antimicrob Agents Chemother. Sep 1995;39(9):2051-2060. 44. Pfaller MA, Diekema DJ, Messer SA, Boyken L, Hollis RJ, Jones RN. In Vitro Activities of Voriconazole, Posaconazole, and Four Licensed Systemic Antifungal Agents against Candida Species Infrequently Isolated from Blood. Journal of Clinical Microbiology. 2003;41(1):78-83. 45. Swinne D, Watelle M, Nolard N. In vitro activities of voriconazole, fluconazole, itraconazole and amphotericin B against non Candida albicans yeast isolates. Rev Iberoam Micol. Mar 2005;22(1):24-28. 46. Sundstrom P. Adhesion in Candida spp. Cell Microbiol. Aug 2002;4(8):461-469. 47. Kovács Mn, StupareviÄ I, MrÅ¡a V, Maráz A. Characterization of Ccw7p cell wall proteins and the encoding genes ofSaccharomyces cerevisiaewine yeast strains: relevance for flor formation. FEMS Yeast Research. 2008;8(7):1115-1126. 48. Antley PP, Hazen KC. Role of yeast cell growth temperature on Candida albicans virulence in mice. Infect Immun. Nov 1988;56(11):2884-2890. 49. Glee PM, Sundstrom P, Hazen KC. Expression of surface hydrophobic proteins by Candida albicans in vivo. Infect Immun. Apr 1995;63(4):1373-1379. 50. Hazen KC. Participation of yeast cell surface hydrophobicity in adherence of Candida albicans to human epithelial cells. Infect Immun. Jul 1989;57(7):1894-1900. 51. Silva TM, Glee PM, Hazen KC. Influence of cell surface hydrophobicity on attachment of Candida albicans to extracellular matrix proteins. J Med Vet Mycol. Mar-Apr 1995;33(2):117-122. 52. Dranginis AM, Rauceo JM, Coronado JE, Lipke PN. A Biochemical Guide to Yeast Adhesins: Glycoproteins for Social and Antisocial Occasions. Microbiology and Molecular Biology Reviews. 2007;71(2):282-294. 53. Verstrepen KJ, Jansen A, Lewitter F, Fink GR. Intragenic tandem repeats generate functional variability. Nat Genet. Sep 2005;37(9):986-990. 54. Verstrepen KJ, Reynolds TB, Fink GR. Origins of variation in the fungal cell surface. Nature Reviews Microbiology. 2004;2(7):533-540. 55. Lambrechts MG, Bauer FF, Marmur J, Pretorius IS. Muc1, a mucin-like protein that is regulated by Mss10, is critical for pseudohyphal differentiation in yeast. Proc Natl Acad Sci U S A. Aug 6 1996;93(16):8419-8424. 56. Schulz BL, Aebi M. Analysis of glycosylation site occupancy reveals a role for Ost3p and Ost6p in site-specific N-glycosylation efficiency. Mol Cell Proteomics. Feb 2009;8(2):357-364. 57. Lengeler KB, Tielker D, Ernst JF. Protein-O-mannosyltransferases in virulence and development. Cellular and Molecular Life Sciences. 2008;65(4):528-544. 58. Van Mulders SE, Christianen E, Saerens SM, et al. Phenotypic diversity of Flo protein family-mediated adhesion in Saccharomyces cerevisiae. FEMS Yeast Res. Mar 2009;9(2):178-190. 59. Alem MAS, Oteef MDY, Flowers TH, Douglas LJ. Production of Tyrosol by Candida albicans Biofilms and Its Role in Quorum Sensing and Biofilm Development. Eukaryotic Cell. 2006;5(10):1770-1779. 60. Finkel JS, Mitchell AP. Genetic control of Candida albicans biofilm development. Nature Reviews Microbiology. 2010;9(2):109-118. 61. Tsukada M, Ohsumi Y. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett. Oct 25 1993;333(1-2):169-174. 62. Clemons KV, McCusker JH, Davis RW, Stevens DA. Comparative pathogenesis of clinical and nonclinical isolates of Saccharomyces cerevisiae. J Infect Dis. Apr 1994;169(4):859-867. 1. van Mil SWC. Genetics of familial intrahepatic cholestasis syndromes. Journal of Medical Genetics. 2005;42(6):449-463. 2. Shneider BL. Intestinal bile acid transport: biology, physiology, and pathophysiology. J Pediatr Gastroenterol Nutr. Apr 2001;32(4):407-417. 3. Alissa FT, Jaffe R, Shneider BL. Update on progressive familial intrahepatic cholestasis. J Pediatr Gastroenterol Nutr. Mar 2008;46(3):241-252. 4. Whitington PF, Freese DK, Alonso EM, Schwarzenberg SJ, Sharp HL. Clinical and biochemical findings in progressive familial intrahepatic cholestasis. J Pediatr Gastroenterol Nutr. Feb 1994;18(2):134-141. 5. Jansen PLM. The molecular genetics of familial intrahepatic cholestasis. Gut. 2000;47(1):1-5. 6. Clayton RJ, Iber FL, Ruebner BH, McKusick VA. Byler disease. Fatal familial intrahepatic cholestasis in an Amish kindred. Am J Dis Child. Jan 1969;117(1):112-124. 7. Davit-Spraul A, Gonzales E, Baussan C, Jacquemin E. Progressive familial intrahepatic cholestasis. Orphanet Journal of Rare Diseases. 2009;4(1):1. 8. Chen H, Liu Y, Su Y, et al. Diagnosis of BSEP/ABCB11 Mutations in Asian Patients with Cholestasis Using Denaturing High Performance Liquid Chromatography. The Journal of Pediatrics. 2008;153(6):825-832.e822. 9. Chen H. FIC1 and BSEP defects in Taiwanese patients with chronic intrahepatic cholestasis with low γ-glutamyltranspeptidase levels. The Journal of Pediatrics. 2002;140(1):119-124. 10. de Vree JM, Jacquemin E, Sturm E, et al. Mutations in the MDR3 gene cause progressive familial intrahepatic cholestasis. Proc Natl Acad Sci U S A. Jan 6 1998;95(1):282-287. 11. Deleuze JF, Jacquemin E, Dubuisson C, et al. Defect of multidrug-resistance 3 gene expression in a subtype of progressive familial intrahepatic cholestasis. Hepatology. Apr 1996;23(4):904-908. 12. Ruetz S, Gros P. Phosphatidylcholine translocase: a physiological role for the mdr2 gene. Cell. Jul 1 1994;77(7):1071-1081. 13. Davit-Spraul A, Gonzales E, Baussan C, Jacquemin E. The Spectrum of Liver Diseases Related toABCB4Gene Mutations: Pathophysiology and Clinical Aspects. Seminars in Liver Disease. 2010;30(02):134-146. 14. Gonzales E, Davit-Spraul A, Baussan C, Buffet C, Maurice M, Jacquemin E. Liver diseases related to MDR3 (ABCB4) gene deficiency. Front Biosci. 2009;14:4242-4256. 15. Jacquemin E, Devree J, Cresteil D, et al. The wide spectrum of multidrug resistance 3 deficiency: From neonatal cholestasis to cirrhosis of adulthood. Gastroenterology. 2001;120(6):1448-1458. 16. Smit JJ, Schinkel AH, Oude Elferink RP, et al. Homozygous disruption of the murine mdr2 P-glycoprotein gene leads to a complete absence of phospholipid from bile and to liver disease. Cell. Nov 5 1993;75(3):451-462. 17. Smith AJ, de Vree JM, Ottenhoff R, Oude Elferink RP, Schinkel AH, Borst P. Hepatocyte-specific expression of the human MDR3 P-glycoprotein gene restores the biliary phosphatidylcholine excretion absent in Mdr2 (-/-) mice. Hepatology. Aug 1998;28(2):530-536. 18. Shapiro R, Anikster Y, Yardeni T, et al. DHPLC screening for mutations in progressive familial intrahepatic cholestasis patients. J Hum Genet. May 2010;55(5):308-313. 19. Chen HL, Chang PS, Hsu HC, et al. Progressive familial intrahepatic cholestasis with high gamma-glutamyltranspeptidase levels in Taiwanese infants: role of MDR3 gene defect? Pediatr Res. Jul 2001;50(1):50-55. 20. Allikmets R, Gerrard B, Hutchinson A, Dean M. Characterization of the human ABC superfamily: isolation and mapping of 21 new genes using the expressed sequence tags database. Hum Mol Genet. Oct 1996;5(10):1649-1655. 21. Smit JJ, Schinkel AH, Mol CA, et al. Tissue distribution of the human MDR3 P-glycoprotein. Lab Invest. Nov 1994;71(5):638-649. 22. Morita S-y, Kobayashi A, Takanezawa Y, et al. Bile salt–dependent efflux of cellular phospholipids mediated by ATP binding cassette protein B4. Hepatology. 2007;46(1):188-199. 23. Elferink RP, Tytgat GN, Groen AK. Hepatic canalicular membrane 1: The role of mdr2 P-glycoprotein in hepatobiliary lipid transport. FASEB J. Jan 1997;11(1):19-28. 24. Jacquemin E, Cresteil D, Manouvrier S, Boute O, Hadchouel M. Heterozygous non-sense mutation of the MDR3 gene in familial intrahepatic cholestasis of pregnancy. The Lancet. 1999;353(9148):210-211. 25. Pauli-Magnus C, Lang T, Meier Y, et al. Sequence analysis of bile salt export pump (ABCB11) and multidrug resistance p-glycoprotein 3 (ABCB4, MDR3) in patients with intrahepatic cholestasis of pregnancy. Pharmacogenetics. Feb 2004;14(2):91-102. 26. Mullenbach R, Linton KJ, Wiltshire S, et al. ABCB4 gene sequence variation in women with intrahepatic cholestasis of pregnancy. J Med Genet. May 2003;40(5):e70. 27. Dixon PH, Weerasekera N, Linton KJ, et al. Heterozygous MDR3 missense mutation associated with intrahepatic cholestasis of pregnancy: evidence for a defect in protein trafficking. Hum Mol Genet. May 1 2000;9(8):1209-1217. 28. Rosmorduc O, Hermelin B, Poupon R. MDR3 gene defect in adults with symptomatic intrahepatic and gallbladder cholesterol cholelithiasis. Gastroenterology. 2001;120(6):1459-1467. 29. Rosmorduc O. ABCB4 gene mutation - associated cholelithiasis in adults. Gastroenterology. 2003;125(2):452-459. 30. Mbongo-Kama E, Harnois F, Mennecier D, Leclercq E, Burnat P, Ceppa F. MDR3 mutations associated with intrahepatic and gallbladder cholesterol cholelithiasis: an update. Ann Hepatol. Jul-Sep 2007;6(3):143-149. 31. Lammert F, Marschall HU, Glantz A, Matern S. Intrahepatic cholestasis of pregnancy: molecular pathogenesis, diagnosis and management. J Hepatol. Dec 2000;33(6):1012-1021. 32. Floreani A, Carderi I, Paternoster D, et al. Intrahepatic cholestasis of pregnancy: three novel MDR3 gene mutations. Alimentary Pharmacology and Therapeutics. 2006;23(11):1649-1653. 33. Schneider G, Paus TC, Kullak-Ublick GA, et al. Linkage between a new splicing site mutation in theMDR3 aliasABCB4 gene and intrahepatic cholestasis of pregnancy. Hepatology. 2007;45(1):150-158. 34. Carey MC, Small DM. The physical chemistry of cholesterol solubility in bile. Relationship to gallstone formation and dissolution in man. J Clin Invest. Apr 1978;61(4):998-1026. 35. Oude Elferink RPJ, Paulusma CC. Function and pathophysiological importance of ABCB4 (MDR3 P-glycoprotein). Pflügers Archiv - European Journal of Physiology. 2006;453(5):601-610. 36. Lammert F, Wang DQH, Hillebrandt S, et al. Spontaneous cholecysto- and hepatolithiasis inMdr2?/? mice: A model for low phospholipid-associated cholelithiasis. Hepatology. 2004;39(1):117-128. 37. Denk GU, Bikker H, Lekanne dit Deprez RH, et al. ABCB4 deficiency: A family saga of early onset cholelithiasis, sclerosing cholangitis and cirrhosis and a novel mutation in the ABCB4 gene. Hepatology Research. 2010;40(9):937-941. 38. Lucena J. A multidrug resistance 3 gene mutation causing cholelithiasis, cholestasis of pregnancy, and adulthood biliary cirrhosis. Gastroenterology. 2003;124(4):1037-1042. 39. Delaunay JL, Durand-Schneider AM, Delautier D, et al. A missense mutation in ABCB4 gene involved in progressive familial intrahepatic cholestasis type 3 leads to a folding defect that can be rescued by low temperature. Hepatology. Apr 2009;49(4):1218-1227. 40. Williams N. Yeast genome sequence ferments new research. Science. Apr 26 1996;272(5261):481. 41. Xia CQ, Milton MN, Gan LS. Evaluation of drug-transporter interactions using in vitro and in vivo models. Curr Drug Metab. May 2007;8(4):341-363. 42. Yang H, Murphy AS. Functional expression and characterization of Arabidopsis ABCB, AUX 1 and PIN auxin transporters inSchizosaccharomyces pombe. The Plant Journal. 2009;59(1):179-191. 43. Daly R, Hearn MTW. Expression of heterologous proteins inPichia pastoris: a useful experimental tool in protein engineering and production. Journal of Molecular Recognition. 2005;18(2):119-138. 44. Novick P, Field C, Schekman R. Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell. Aug 1980;21(1):205-215. 45. Walworth NC, Novick PJ. Purification and characterization of constitutive secretory vesicles from yeast. J Cell Biol. Jul 1987;105(1):163-174. 46. Lamping E, Tanabe K, Niimi M, Uehara Y, Monk BC, Cannon RD. Characterization of the Saccharomyces cerevisiae sec6-4 mutation and tools to create S. cerevisiae strains containing the sec6-4 allele. Gene. Nov 21 2005;361:57-66. 47. Potenza M, Bowser R, Muller H, Novick P. SEC6 encodes an 85 kDa soluble protein required for exocytosis in yeast. Yeast. Jul 1992;8(7):549-558. 48. TerBush DR, Maurice T, Roth D, Novick P. The Exocyst is a multiprotein complex required for exocytosis in Saccharomyces cerevisiae. EMBO J. Dec 2 1996;15(23):6483-6494. 49. Terbush DR, Guo W, Dunkelbarger S, Novick P. Purification and characterization of yeast exocyst complex. Methods Enzymol. 2001;329:100-110. 50. Hsu SC, Hazuka CD, Foletti DL, Scheller RH. Targeting vesicles to specific sites on the plasma membrane: the role of the sec6/8 complex. Trends Cell Biol. Apr 1999;9(4):150-153. 51. Nakamoto RK, Rao R, Slayman CW. Expression of the yeast plasma membrane [H+]ATPase in secretory vesicles. A new strategy for directed mutagenesis. J Biol Chem. Apr 25 1991;266(12):7940-7949. 52. Raymond M, Ruetz S, Thomas DY, Gros P. Functional expression of P-glycoprotein in Saccharomyces cerevisiae confers cellular resistance to the immunosuppressive and antifungal agent FK520. Mol Cell Biol. Jan 1994;14(1):277-286. 53. Zhou Y, Meraner P, Kwon HT, et al. STIM1 gates the store-operated calcium channel ORAI1 in vitro. Nature Structural & Molecular Biology. 2009;17(1):112-116. 54. Ruetz S, Gros P. Enhancement of Mdr2-mediated phosphatidylcholine translocation by the bile salt taurocholate. Implications for hepatic bile formation. J Biol Chem. Oct 27 1995;270(43):25388-25395. 55. Sharp PM, Cowe E, Higgins DG, Shields DC, Wolfe KH, Wright F. Codon usage patterns in Escherichia coli, Bacillus subtilis, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Drosophila melanogaster and Homo sapiens; a review of the considerable within-species diversity. Nucleic Acids Res. Sep 12 1988;16(17):8207-8211. 56. Sharp PM, Tuohy TM, Mosurski KR. Codon usage in yeast: cluster analysis clearly differentiates highly and lowly expressed genes. Nucleic Acids Res. Jul 11 1986;14(13):5125-5143. 57. Sharp PM, Bulmer M. Selective differences among translation termination codons. Gene. 1988;63(1):141-145. 58. Sikorski RS, Hieter P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics. May 1989;122(1):19-27. 59. Christianson TW, Sikorski RS, Dante M, Shero JH, Hieter P. Multifunctional yeast high-copy-number shuttle vectors. Gene. Jan 2 1992;110(1):119-122. 60. Mumberg D, Muller R, Funk M. Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene. Apr 14 1995;156(1):119-122. 61. Mumberg D, Muller R, Funk M. Regulatable promoters of Saccharomyces cerevisiae: comparison of transcriptional activity and their use for heterologous expression. Nucleic Acids Res. Dec 25 1994;22(25):5767-5768. 62. Govindan B, Bowser R, Novick P. The role of Myo2, a yeast class V myosin, in vesicular transport. J Cell Biol. Mar 1995;128(6):1055-1068. 63. Rose MD, Broach JR. Cloning genes by complementation in yeast. Methods Enzymol. 1991;194:195-230. 64. Moreau V, Madania A, Martin RP, Winson B. The Saccharomyces cerevisiae actin-related protein Arp2 is involved in the actin cytoskeleton. J Cell Biol. Jul 1996;134(1):117-132. 65. Cirillo VP. Galactose transport in Saccharomyces cerevisiae. I. Nonmetabolized sugars as substrates and inducers of the galactose transport system. J Bacteriol. May 1968;95(5):1727-1731. 66. Douglas HC, Condie F. The genetic control of galactose utilization in Saccharomyces. J Bacteriol. Dec 1954;68(6):662-670. 67. Tschopp JF, Emr SD, Field C, Schekman R. GAL2 codes for a membrane-bound subunit of the galactose permease in Saccharomyces cerevisiae. J Bacteriol. Apr 1986;166(1):313-318. 68. Coury LA, Mathai JC, Prasad GV, Brodsky JL, Agre P, Zeidel ML. Reconstitution of water channel function of aquaporins 1 and 2 by expression in yeast secretory vesicles. Am J Physiol. Jan 1998;274(1 Pt 2):F34-42. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27918 | - |
| dc.description.abstract | 中文摘要 — 第一部分
在微生物感染中生物膜之形成與微生物之致病力及抗藥性息息相關,菌體是否能黏附於物體表面則為生物膜形成之關鍵因素,釀酒酵母菌(Saccharomyces cerevisiae)為伺機性病原,擁有形成生物膜初始型態結構之能力,特稱為mat型態,Flo11p為形成mat之關鍵蛋白,若有Flo11基因缺失,將無法形成mat結構,此外Flo11p亦與S. cerevisiae塑膠表面黏附能力等相關,先前研究指出與Flo11p相關之性狀,會受到Flo11p表現量及FLO11基因串聯重覆序列之長度與排列影響其表現。 本實驗之研究目標為藉由分析台灣S. cerevisiae臨床分離菌株與實驗室菌株,比較其形成mat之能力、FL011基因型及相關型態,以探討臨床菌株之可能致病指標及影響mat生成之原因。分析11株台灣臨床分離菌株之mat表現型,發現其中一株YYC343擁有形成mat之傾向,而塑膠表面黏附能力為菌株形成生物膜之第一步,以11株臨床分離株進行研究結果顯示其中7株其黏附於塑膠表面之能力較實驗室菌株YYC377 (S288c)高,其中包含具形成mat傾向之YYC343;此外一般認為菌體表面疏水性於塑膠表面黏附能力扮演重要角色,而實驗結果顯示11株臨床分離株皆擁有較高之細胞表面疏水性。而分析114株YYC343 segregants之mat表現型,發現其中61株四分孢子無mat表現型、17株有典型mat表現型、36株為非典型mat表現型,因此YYC343 segregants提供了良好材料以進一步分析mat表現型與FL011基因型之關係,因而分別從中挑選6株無mat表現型及6株具典型mat表現型之segregants進行FLO11基因串聯重覆序列PCR,發現6株具典型mat表現型,其FLO11基因串聯重覆序列大小比另6株無mat表現型者短約1 kb,且其中央串聯重覆序列排列組合方式亦不相同,而以12株YYC343 segregants進行研究顯示細胞表面疏水性、塑膠表面黏附能力與mat表現型為正相關,具mat表現型之菌株亦擁有較高之細胞表面疏水性及塑膠表面黏附能力,此外12株YYC343 segregants中具有形成假菌絲生長能力之菌株亦具有mat表現型,顯示影響假菌絲生長之FLO11基因亦會同時影響mat表現型之生成,然而於抗黴菌藥物感受性試驗中顯示,不論具有mat表現型之菌株或已形成mat結構之菌體皆不影響其藥物感受性,因此S. cerevisia菌株之mat表現型與其抗黴菌藥物感受性無關。本實驗結果顯示台灣臨床S. cerevisia菌株多具有塑膠表面黏附能力及高細胞表面疏水性,此外細胞表面疏水性、塑膠表面黏附能力與mat表現型為正相關。 關鍵字:生物膜/FLO11/釀酒酵母菌/九十六孔微量培養盤黏附性/菌株細胞表面疏水性/抗黴菌藥物感受性試驗/假菌絲生長 中文摘要 — 第二部分 進行性家族性肝內膽汁滯留症 (progressive familial intrahepatic cholestasis,簡稱PFIC),為一群由基因缺陷而導致肝細胞膽汁排泄功能異常之遺傳疾病,好發於嬰幼兒時期之罕見疾病,發生原因為基因缺陷使得肝細胞無法正常運送膽汁成分至細胞外,使得膽汁滯留而引起黃疸等相關臨床症狀,亦可能在一、二十歲時引起肝硬化、肝衰竭,而需進行肝移植手術。 進行性家族性肝內膽汁滯留症分為三型,分別由ATP8B1、ABCB11、ABCB4三種不同基因缺陷所引起,其中第三型進行性家族性肝內膽汁滯留症 (PFIC3) 即為ABCB4 (ATP-binding cassette sub-family B member 4)基因缺陷所造成,ABCB4蛋白主要表現在肝細胞小管膜 (canalicular membrane) 上,為一種phosphatidylcholine floppase,負責將phosphatidylcholine從細胞膜雙層膜之內層膜運送至外層膜上, phosphatidylcholine在膽汁中主要功能為降低膽汁酸中的疏水性特性,保護細胞不受膽汁酸之傷害,若膽汁中無phosphatidylcholine存在,將使膽管細胞受到傷害而進一步引起相關病症。 台大醫院小兒科陳慧玲醫師團隊,於五位PFIC3病患身上發現不同之ABCB4基因突變,包含三種基因缺失突變及一個點突變造成停止碼 (stop codon) 提早出現之基因突變,然而這些ABCB4基因突變與PFIC3疾病之關係,仍未經實驗證實。 本研究使用S. cerevisiae之sec6-4突變株做為生物模式,建立系統表現人類ABCB4蛋白,以便未來進行後續功能分析試驗,進一步分析台灣病患其ABCB4基因突變與PFIC3疾病之關係,選用酵母菌之原因為其擁有培養容易、生長快速、便宜、易操作、大量表現蛋白等優點,而sec6-4突變株其有胞吐作用之缺陷,使其於37℃環境下,在細胞質中含有大量分泌囊胞 (secretory vesicles) 累積,以方便獲得大量含有成熟蛋白質之分泌囊胞,以利未來進行後續功能試驗,為使S. cerevisiae表現人類ABCB4蛋白,本實驗將帶有ABCB4基因之pRS416系列質體送入S. cerevisiae,並以西方墨點法及聚丙烯醯胺膠電泳法確認ABCB4蛋白之表現,卻未如預期偵測到ABCB4蛋白之表現,然而以反轉錄聚合酶連鎖反應證實具有ABCB4 mRNA之表現,另一方面本實驗可自S. cerevisiae之sec6-4突變株成功分離出分泌囊胞,總結來說,本研究將帶有ABCB4基因之pRS416系列質體送入S. cerevisiae,且具有mRNA之表現,然而無法偵測到ABCB4蛋白質之表現,若未來能於S. cerevisiae順利表現ABCB4蛋白,則可利用本實驗之方法,純化出分泌囊胞以進行ABCB4蛋白質功能分析。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2021-06-12T18:27:51Z (GMT). No. of bitstreams: 1 ntu-100-R97424010-1.pdf: 7722683 bytes, checksum: 2fc7a3c6d9aa89fee21254588e8b8901 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 總 目 次 — 第 一 部 分
摘要 I 第一章 前言 2 第二章 材料與方法 7 一、實驗菌株與培養基 7 二、寡核苷引子 7 三、試劑 8 1. 酵母菌DNA萃取試劑 8 2. DNA電泳試劑 8 四、實驗步驟 8 1. 菌株培養方式 8 2. 萃取酵母菌DNA 8 3. 聚合酶連鎖反應 (Polymerase Chain Reaction) 9 4. 洋菜膠電泳分析 9 5. PCR產物純化 9 6. TA質體製備 10 7. E. coli轉形作用 10 8. 質體純化 10 9. 基因定序與分析 11 10. 九十六孔微量培養盤黏附性實驗 11 11. 細胞表面疏水性之測定(Microbial Ahesion To Hydrocarbon) 12 12. 抗黴菌藥物感受性試驗 12 13. 假菌絲生長試驗 14 第三章 結果 15 一、台灣臨床菌株mat表現型 15 二、九十六孔微量培養盤黏附能力測試 16 三、S. cerevisiae菌株細胞表面疏水性測定 17 四、以PCR分析FLO11基因串聯重覆序列之長度 19 五、分析FLO11基因串聯重覆序列 20 六、YYC343 segregants九十六孔微量培養盤黏附能力測試 21 七、YYC343 segregants菌株細胞表面疏水性測定 22 八、YYC343 segregants抗黴菌藥物感受性試驗 24 九、YYC343 segregants菌株假菌絲生長試驗 25 第四章 討論 27 第五章 附圖 35 第六章 附表 46 第七章 參考文獻 54 總 目 次 — 第 二 部 分 摘要 VI 第一章 前言 60 第二章 材料與方法 65 一、實驗菌株與培養基 65 二、寡核苷引子與質體 66 三、試劑 66 1. DNA電泳試劑 66 四、實驗步驟 66 1. 菌株培養方式 66 2. 聚合酶連鎖反應 (Polymerase Chain Reaction) 66 3. 洋菜膠電泳分析 67 4. PCR產物純化 67 5. 質體純化 67 6. ABCB4質體之製備 68 7. E. coli轉形作用 68 8. 限制酵素裁切 68 9. 基因定序與分析 69 10. SacI限制酵素裁切 69 11. 質體pBYC133及pBYC134之製備 69 12. 酵母菌轉形作用 69 13. 細胞溶解物製備 70 14. SDS 聚丙烯醯胺膠電泳法分析(SDS-PAGE) 70 15. 蛋白質轉印 71 16. 西方墨點法 71 17. 分泌囊泡之分離 72 18. 人類ABCB4蛋白與小鼠ABCB4蛋白之胺基酸序列比對 73 19. RNA萃取 73 20. RNA反轉錄作用 74 第三章 結果與討論 75 一、人類肝臟ABCB4 基因cDNA之製備 75 二、含人類肝臟ABCB4 基因cDNA之酵母菌質體製備 75 三、人類肝臟ABCB4 基因cDNA之酵母菌轉形作用 76 四、以西方墨點法(western blot)確認ABCB4蛋白之表現 77 五、以反轉錄聚合酶連鎖反應 (Reverse transcription-polymerase chain reaction,RT-PCR) 方法確認ABCB4 mRNA之表現 78 六、於釀酒酵母菌(S. cerevisiae)萃取分泌囊胞(secretory vesicles) 78 七、討論 79 第四章 附圖 82 第五章 附表 91 第六章 參考文獻 99 | |
| dc.language.iso | zh-TW | |
| dc.subject | ABCB4 蛋白 | zh_TW |
| dc.subject | 生物膜 | zh_TW |
| dc.subject | FLO11 | zh_TW |
| dc.subject | 釀酒酵母菌 | zh_TW |
| dc.subject | 九十六孔微量培養盤黏附性 | zh_TW |
| dc.subject | 菌株細胞表面疏 | zh_TW |
| dc.subject | 進行性家族性肝內膽汁滯留症 | zh_TW |
| dc.subject | ABCB4 基因突變 | zh_TW |
| dc.subject | 釀酒酵母菌 | zh_TW |
| dc.title | 臺灣釀酒酵母菌臨床分離菌株之FLO11基因對其mat表現型及其他相關性狀探討
以釀酒酵母菌為模式生物建立研究人類ABCB4蛋白質功能分析之系統 | zh_TW |
| dc.title | Investigating the Roles of FLO11 on Mat Formation and Other Related Phenotypes in Taiwan Clinical Isolates of Saccharomyces cerevisiae
Functional Analysis of Human ABCB4 Protein in Saccharomyces cerevisiae | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳慧玲,廖淑貞,鄧麗珍 | |
| dc.subject.keyword | 生物膜,FLO11,釀酒酵母菌,九十六孔微量培養盤黏附性,菌株細胞表面疏,進行性家族性肝內膽汁滯留症,ABCB4 基因突變,釀酒酵母菌,ABCB4 蛋白, | zh_TW |
| dc.subject.keyword | mat,FLO11,Saccharomyces cerevisiae,plastic adherence,cell surfacehydrophobicity,antifungal susceptibility,pseudohyphal growth,Progressive familial intrahepatic cholestasis,ABCB4 mutation,Saccharomyces cerevisiae,functional assay, | en |
| dc.relation.page | 104 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-08 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
| 顯示於系所單位: | 醫學檢驗暨生物技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 7.54 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
