請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27893完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 嚴仲陽 | |
| dc.contributor.author | Chien-Min Hung | en |
| dc.contributor.author | 洪建民 | zh_TW |
| dc.date.accessioned | 2021-06-12T18:26:24Z | - |
| dc.date.available | 2007-08-16 | |
| dc.date.copyright | 2007-08-16 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-08-10 | |
| dc.identifier.citation | 1. Kerr, J.F., Wyllie, A.H., and Currie, A.R. (1972). Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. British journal of cancer 26, 239-257.
2. Chipuk, J.E., and Green, D.R. (2005). Do inducers of apoptosis trigger caspase-independent cell death? Nature reviews 6, 268-275. 3. Adams, J.M. (2003). Ways of dying: multiple pathways to apoptosis. Genes & development 17, 2481-2495. 4. Jin, Z., and El-Deiry, W.S. (2005). Overview of cell death signaling pathways. Cancer biology & therapy 4, 139-163. 5. Nelson, D.A., and White, E. (2004). Exploiting different ways to die. Genes & development 18, 1223-1226. 6. Shi, Y. (2002). Mechanisms of caspase activation and inhibition during apoptosis. Molecular cell 9, 459-470. 7. Savill, J., and Fadok, V. (2000). Corpse clearance defines the meaning of cell death. Nature 407, 784-788. 8. Plas, D.R., Rathmell, J.C., and Thompson, C.B. (2002). Homeostatic control of lymphocyte survival: potential origins and implications. Nature immunology 3, 515-521. 9. Lotem, J., and Sachs, L. (2002). Cytokine control of developmental programs in normal hematopoiesis and leukemia. Oncogene 21, 3284-3294. 10. Dumon, S., Santos, S.C., Debierre-Grockiego, F., Gouilleux-Gruart, V., Cocault, L., Boucheron, C., Mollat, P., Gisselbrecht, S., and Gouilleux, F. (1999). IL-3 dependent regulation of Bcl-xL gene expression by STAT5 in a bone marrow derived cell line. Oncogene 18, 4191-4199. 11. Gu, H., Maeda, H., Moon, J.J., Lord, J.D., Yoakim, M., Nelson, B.H., and Neel, B.G. (2000). New role for Shc in activation of the phosphatidylinositol 3-kinase/Akt pathway. Molecular and cellular biology 20, 7109-7120. 12. Guthridge, M.A., Stomski, F.C., Barry, E.F., Winnall, W., Woodcock, J.M., McClure, B.J., Dottore, M., Berndt, M.C., and Lopez, A.F. (2000). Site-specific serine phosphorylation of the IL-3 receptor is required for hemopoietic cell survival. Molecular cell 6, 99-108. 13. Johnson, D.E. (1998). Regulation of survival pathways by IL-3 and induction of apoptosis following IL-3 withdrawal. Front Biosci 3, d313-324. 14. Duke, R.C., and Cohen, J.J. (1986). IL-2 addiction: withdrawal of growth factor activates a suicide program in dependent T cells. Lymphokine research 5, 289-299. 15. Han, J.H., Gileadi, C., Rajapaksa, R., Kosek, J., and Greenberg, P.L. (1995). Modulation of apoptosis in human myeloid leukemic cells by GM-CSF. Experimental hematology 23, 265-272. 16. Ishida, Y., Agata, Y., Shibahara, K., and Honjo, T. (1992). Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. The EMBO journal 11, 3887-3895. 17. Sanz, C., Benito, A., Inohara, N., Ekhterae, D., Nunez, G., and Fernandez-Luna, J.L. (2000). Specific and rapid induction of the proapoptotic protein Hrk after growth factor withdrawal in hematopoietic progenitor cells. Blood 95, 2742-2747. 18. Devireddy, L.R., Teodoro, J.G., Richard, F.A., and Green, M.R. (2001). Induction of apoptosis by a secreted lipocalin that is transcriptionally regulated by IL-3 deprivation. Science (New York, N.Y 293, 829-834. 19. Devireddy, L.R., and Green, M.R. (2003). Transcriptional program of apoptosis induction following interleukin 2 deprivation: identification of RC3, a calcium/calmodulin binding protein, as a novel proapoptotic factor. Molecular and cellular biology 23, 4532-4541. 20. Johnston, L.A. (2000). The trouble with tribbles. Curr Biol 10, R502-504. 21. Grosshans, J., and Wieschaus, E. (2000). A genetic link between morphogenesis and cell division during formation of the ventral furrow in Drosophila. Cell 101, 523-531. 22. Seher, T.C., and Leptin, M. (2000). Tribbles, a cell-cycle brake that coordinates proliferation and morphogenesis during Drosophila gastrulation. Curr Biol 10, 623-629. 23. Mata, J., Curado, S., Ephrussi, A., and Rorth, P. (2000). Tribbles coordinates mitosis and morphogenesis in Drosophila by regulating string/CDC25 proteolysis. Cell 101, 511-522. 24. Rorth, P., Szabo, K., and Texido, G. (2000). The level of C/EBP protein is critical for cell migration during Drosophila oogenesis and is tightly controlled by regulated degradation. Molecular cell 6, 23-30. 25. Edgar, B.A., and O'Farrell, P.H. (1989). Genetic control of cell division patterns in the Drosophila embryo. Cell 57, 177-187. 26. Edgar, B.A., and O'Farrell, P.H. (1990). The three postblastoderm cell cycles of Drosophila embryogenesis are regulated in G2 by string. Cell 62, 469-480. 27. Saka, Y., and Smith, J.C. (2004). A Xenopus tribbles orthologue is required for the progression of mitosis and for development of the nervous system. Dev Biol 273, 210-225. 28. Hegedus, Z., Czibula, A., and Kiss-Toth, E. (2006). Tribbles: novel regulators of cell function; evolutionary aspects. Cell Mol Life Sci 63, 1632-1641. 29. Wu, M., Xu, L.G., Zhai, Z., and Shu, H.B. (2003). SINK is a p65-interacting negative regulator of NF-kappaB-dependent transcription. J Biol Chem 278, 27072-27079. 30. Ohoka, N., Yoshii, S., Hattori, T., Onozaki, K., and Hayashi, H. (2005). TRB3, a novel ER stress-inducible gene, is induced via ATF4-CHOP pathway and is involved in cell death. Embo J 24, 1243-1255. 31. Ord, D., and Ord, T. (2005). Characterization of human NIPK (TRB3, SKIP3) gene activation in stressful conditions. Biochem Biophys Res Commun 330, 210-218. 32. Schwarzer, R., Dames, S., Tondera, D., Klippel, A., and Kaufmann, J. (2006). TRB3 is a PI 3-kinase dependent indicator for nutrient starvation. Cell Signal 18, 899-909. 33. Du, K., Herzig, S., Kulkarni, R.N., and Montminy, M. (2003). TRB3: a tribbles homolog that inhibits Akt/PKB activation by insulin in liver. Science 300, 1574-1577. 34. Koo, S.H., Satoh, H., Herzig, S., Lee, C.H., Hedrick, S., Kulkarni, R., Evans, R.M., Olefsky, J., and Montminy, M. (2004). PGC-1 promotes insulin resistance in liver through PPAR-alpha-dependent induction of TRB-3. Nature medicine 10, 530-534. 35. Iynedjian, P.B. (2005). Lack of evidence for a role of TRB3/NIPK as an inhibitor of PKB-mediated insulin signalling in primary hepatocytes. Biochem J 386, 113-118. 36. Prudente, S., Hribal, M.L., Flex, E., Turchi, F., Morini, E., De Cosmo, S., Bacci, S., Tassi, V., Cardellini, M., Lauro, R., et al. (2005). The functional Q84R polymorphism of mammalian Tribbles homolog TRB3 is associated with insulin resistance and related cardiovascular risk in Caucasians from Italy. Diabetes 54, 2807-2811. 37. Kiss-Toth, E., Bagstaff, S.M., Sung, H.Y., Jozsa, V., Dempsey, C., Caunt, J.C., Oxley, K.M., Wyllie, D.H., Polgar, T., Harte, M., et al. (2004). Human tribbles, a protein family controlling mitogen-activated protein kinase cascades. J Biol Chem 279, 42703-42708. 38. Storlazzi, C.T., Fioretos, T., Paulsson, K., Strombeck, B., Lassen, C., Ahlgren, T., Juliusson, G., Mitelman, F., Rocchi, M., and Johansson, B. (2004). Identification of a commonly amplified 4.3 Mb region with overexpression of C8FW, but not MYC in MYC-containing double minutes in myeloid malignancies. Human molecular genetics 13, 1479-1485. 39. Rothlisberger, B., Heizmann, M., Bargetzi, M.J., and Huber, A.R. (2007). TRIB1 overexpression in acute myeloid leukemia. Cancer genetics and cytogenetics 176, 58-60. 40. Jin, G., Yamazaki, Y., Takuwa, M., Takahara, T., Kaneko, K., Kuwata, T., Miyata, S., and Nakamura, T. (2007). Trib1 and Evi1 cooperate with Hoxa and Meis1 in myeloid leukemogenesis. Blood 109, 3998-4005. 41. Keeshan, K., He, Y., Wouters, B.J., Shestova, O., Xu, L., Sai, H., Rodriguez, C.G., Maillard, I., Tobias, J.W., Valk, P., et al. (2006). Tribbles homolog 2 inactivates C/EBPalpha and causes acute myelogenous leukemia. Cancer Cell 10, 401-411. 42. Naiki, T., Saijou, E., Miyaoka, Y., Sekine, K., and Miyajima, A. (2007). TRB2, a mouse tribbles ortholog, suppresses adipocyte differentiation by inhibiting AKT and C/EBPbeta. J Biol Chem (Epub ahead of print). 43. Lin, K.R., Lee, S.F., Hung, C.M., Li, C.L., Yang Yen, H.F., and Yen, J.J. (2007). Survival factor withdrawal-induced apoptosis of TF-1 cells involves a TRB2-Mcl-1- axis-dependent pathway. J Biol Chem (Epub ahead of print). 44. Hegedus, Z., Czibula, A., and Kiss-Toth, E. (2007). Tribbles: a family of kinase-like proteins with potent signalling regulatory function. Cell Signal 19, 238-250. 45. Bowers, A.J., Scully, S., and Boylan, J.F. (2003). SKIP3, a novel Drosophila tribbles ortholog, is overexpressed in human tumors and is regulated by hypoxia. Oncogene 22, 2823-2835. 46. Gill, G. (2004). SUMO and ubiquitin in the nucleus: different functions, similar mechanisms? Genes & development 18, 2046-2059. 47. Wang, X., Flynn, A., Waskiewicz, A.J., Webb, B.L., Vries, R.G., Baines, I.A., Cooper, J.A., and Proud, C.G. (1998). The phosphorylation of eukaryotic initiation factor eIF4E in response to phorbol esters, cell stresses, and cytokines is mediated by distinct MAP kinase pathways. The Journal of biological chemistry 273, 9373-9377. 48. Waskiewicz, A.J., Flynn, A., Proud, C.G., and Cooper, J.A. (1997). Mitogen-activated protein kinases activate the serine/threonine kinases Mnk1 and Mnk2. The EMBO journal 16, 1909-1920. 49. Scheper, G.C., and Proud, C.G. (2002). Does phosphorylation of the cap-binding protein eIF4E play a role in translation initiation? European journal of biochemistry / FEBS 269, 5350-5359. 50. Korenbaum, E., Olski, T.M., and Noegel, A.A. (2001). Genomic organization and expression profile of the parvin family of focal adhesion proteins in mice and humans. Gene 279, 69-79. 51. Yoshimi, R., Yamaji, S., Suzuki, A., Mishima, W., Okamura, M., Obana, T., Matsuda, C., Miwa, Y., Ohno, S., and Ishigatsubo, Y. (2006). The gamma-parvin-integrin-linked kinase complex is critically involved in leukocyte-substrate interaction. J Immunol 176, 3611-3624. 52. Palacios, R., and Steinmetz, M. (1985). Il-3-dependent mouse clones that express B-220 surface antigen, contain Ig genes in germ-line configuration, and generate B lymphocytes in vivo. Cell 41, 727-734. 53. Johnson, E.S. (2004). Protein modification by SUMO. Annual review of biochemistry 73, 355-382. 54. Wilkin, F., Savonet, V., Radulescu, A., Petermans, J., Dumont, J.E., and Maenhaut, C. (1996). Identification and characterization of novel genes modulated in the thyroid of dogs treated with methimazole and propylthiouracil. J Biol Chem 271, 28451-28457. 55. Scheper, G.C., Parra, J.L., Wilson, M., Van Kollenburg, B., Vertegaal, A.C., Han, Z.G., and Proud, C.G. (2003). The N and C termini of the splice variants of the human mitogen-activated protein kinase-interacting kinase Mnk2 determine activity and localization. Molecular and cellular biology 23, 5692-5705. 56. Reiling, J.H., Doepfner, K.T., Hafen, E., and Stocker, H. (2005). Diet-dependent effects of the Drosophila Mnk1/Mnk2 homolog Lk6 on growth via eIF4E. Curr Biol 15, 24-30. 57. Chrestensen, C.A., Shuman, J.K., Eschenroeder, A., Worthington, M., Gram, H., and Sturgill, T.W. (2007). MNK1 and MNK2 regulation in HER2-overexpressing breast cancer lines. The Journal of biological chemistry 282, 4243-4252. 58. Legate, K.R., Montanez, E., Kudlacek, O., and Fassler, R. (2006). ILK, PINCH and parvin: the tIPP of integrin signalling. Nature reviews 7, 20-31. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27893 | - |
| dc.description.abstract | Tribbles-絲胺酸/蘇胺酸蛋白質磷酸酶家族成員-已經被證明在果蠅胚胎發育過程中協調細胞增生、遷移以及形態發生。雖然在演化上Tribbles是被高度保留的,但是哺乳類同源基因的生理功能大多還是未知的。最近我們實驗室已經證明人類Tribbles同源基因2型(TRB2) 參與人類紅白血病TF-1細胞在去除顆粒細胞-巨噬細胞聚落刺激因子(GM-CSF)所引起的細胞凋亡之中。隨著去除GM-CSF,TRB2的訊息核醣核酸會被高度誘導表現,而且過量表現TRB2會促使許多造血系統來源的細胞株進行細胞凋亡。然而過量表達TRB2所引起細胞凋亡中的機制則需要更進一步的研究。為了達到這個目的,我們首先在這裡證實TRB2促進細胞凋亡的功能並不需要其推測的磷酸酶活性,而且其蛋白質的表達量是受到蛋白酶體-依賴性途徑所調控。其次,先前我們利用酵母菌雙雜交篩選實驗找到了數個與TRB2的交互作用蛋白。在這篇論文中,我們進一步在試管內及哺乳類細胞內去驗證其中三個蛋白-MNK2b、γ-Parvin及UBC9-與TRB2之間的交互作用。TRB2與MNK2b或與γ-Parvin之間的交互作用可以在GST pull-down實驗中被證明。利用免疫共同沉澱法和哺乳類雙雜交實驗更加確定了TRB2可以跟γ-Parvin在細胞內結合。相對地,TRB2與UBC9的交互作用則沒有在試管內及細胞內被證實。最後我們探討這些蛋白在細胞凋亡中可能扮演的生理功能,並且發現MNK2b與γ-Parvin會部分地干擾TRB2所促進的細胞凋亡功能。總結來說,我們的研究指出γ-Parvin可能是TRB2生理的結合蛋白,而且可能在TRB2引起的細胞凋亡中扮演角色。 | zh_TW |
| dc.description.abstract | Tribbles, a serine/threoine protein kinase family member, has been shown to coordinate cell proliferation, migration and morphogenesis during the development of Drosophila embryo. Although Tribbles are highly conserved throughout the evolution, the physiological function of mammalian orthologs is largely unknown. Recently, our laboratory has demonstrated that human Tribbles ortholog 2 (TRB2) is involved in GM-CSF withdrawal-induced apoptosis of TF-1 cells, a human erytholeukemia cell line. TRB2 mRNA is highly induced upon removal of GM-CSF, and ectopic expression of TRB2 promotes apoptosis of cells mainly of the hematopoietic origin. However, the underlying mechanism of TRB2-induced apoptosis needs to be further elucidated. For this purpose, we firstly report here that the putative kinase activity is not required for the pro-apoptotic function of TRB2, and its protein level is regulated through the proteasome-
dependent pathway. Second, a yeast two-hybrid screen was previously applied and several candidate genes were identified. In this dissertation, we further characterized the interactions of three of these proteins, MNK2b, γ-Parvin and UBC9, with TRB2 in vitro and in mammalian cells. The interaction of TRB2 with MNK2b or γ-Parvin could be demonstrated in GST pull-down experiments. The co-immunoprecipiation and the mammalian two-hybrid assay were further used to confirm TRB2 associates with γ-Parvin in cells. In contrast, the interaction between TRB2 and UBC9 was not detected both in vitro and in vivo. Last, we explored the biological effect of these interactions on apoptosis and found that MNK2b and γ-Parvin partially interfere with the pro-apoptotic function of TRB2. Taken together, our data suggest that γ-Parvin is likely a physiological binding protein of TRB2 and may play a role in TRB2-induced apoptosis. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-12T18:26:24Z (GMT). No. of bitstreams: 1 ntu-96-R94448009-1.pdf: 1285223 bytes, checksum: 539f81a65007a5b85748c30e2e5c43eb (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | Acknowledgements.................................1
Chinese Abstract.................................2 English Abstract.................................3 Table of Contents.................................5 List of Figures.................................6 List of Tables.................................7 Introduction.................................8 1. Apoptosis...........................................8 2. Cytokine withdrawal-induced apoptosis...............9 3. Tribbles Family...................................10 4. TRB2-interacting proteins........................15 5. Specific aims...................................16 Materials and Methods.................................17 Results.................................21 1. The Putative kinase catalytic site is not required for the pro-apoptotic function of TRB2............................................21 2. The protein level of TRB2 is regulated by the proteosome-dependent pathway..21 3. TRB2 interacts with MNK2b and γ-Parvin in vitro.................22 4. TRB2 interacts with γ-Parvin, but not with MNK2b or UBC9 in vivo.......23 5. MNK2b and γ-Parvin interfere with the pro-apoptotic function of TRB2...........25 Discussion 27 1. Regulation of TRB2 protein level in vivo....................27 2. Characterization of interactions between TRB2 and its interacting proteins................27 3. The role of MNK2b in TRB2-induced apoptosis..............29 4. Functions of the interaction between TRB2 and γ-Parvin in apoptosis and in other cellular processes..............................31 Figures.................................32 Tables.................................48 References.................................49 | |
| dc.language.iso | en | |
| dc.subject | 細胞激素剝奪 | zh_TW |
| dc.subject | γ-Parvin | zh_TW |
| dc.subject | MNK2b | zh_TW |
| dc.subject | UBC9 | zh_TW |
| dc.subject | Tribbles | zh_TW |
| dc.subject | 細胞凋亡 | zh_TW |
| dc.title | TRB2交互作用蛋白之功能研究 | zh_TW |
| dc.title | Functional characterization of TRB2 interacting proteins | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊性芳,李芳仁,阮麗蓉 | |
| dc.subject.keyword | 細胞凋亡,細胞激素剝奪,Tribbles,MNK2b,γ-Parvin,UBC9, | zh_TW |
| dc.subject.keyword | Apoptosis,Cytokine deprivation,Tribbles,MNK2b,γ-Parvin,UBC9, | en |
| dc.relation.page | 52 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-08-10 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 分子醫學研究所 | zh_TW |
| 顯示於系所單位: | 分子醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 1.26 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
