Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 分子醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27860
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂勝春(Sheng-Chung Lee)
dc.contributor.authorHuei-Yu Sunen
dc.contributor.author孫惠鈺zh_TW
dc.date.accessioned2021-06-12T18:24:32Z-
dc.date.available2012-08-16
dc.date.copyright2007-08-16
dc.date.issued2007
dc.date.submitted2007-08-14
dc.identifier.citationAl-Hakim, A.K., Goransson, O., Deak, M., Toth, R., Campbell, D.G., Morrice, N.A., Prescott, A.R., and Alessi, D.R. (2005). 14-3-3 cooperates with LKB1 to regulate the activity and localization of QSK and SIK. Journal of cell science 118, 5661-5673.
Batta, K., Das, C., Gadad, S., Shandilya, J., and Kundu, T.K. (2007). Reversible acetylation of non histone proteins: role in cellular function and disease. Sub-cellular biochemistry 41, 193-212.
Bouras, T., Fu, M., Sauve, A.A., Wang, F., Quong, A.A., Perkins, N.D., Hay, R.T., Gu, W., and Pestell, R.G. (2005). SIRT1 deacetylation and repression of p300 involves lysine residues 1020/1024 within the cell cycle regulatory domain 1. The Journal of biological chemistry 280, 10264-10276.
Boyault, C., Gilquin, B., Zhang, Y., Rybin, V., Garman, E., Meyer-Klaucke, W., Matthias, P., Muller, C.W., and Khochbin, S. (2006). HDAC6-p97/VCP controlled polyubiquitin chain turnover. The EMBO journal 25, 3357-3366.
Boyes, J., Byfield, P., Nakatani, Y., and Ogryzko, V. (1998). Regulation of activity of the transcription factor GATA-1 by acetylation. Nature 396, 594-598.
Braun, S., Matuschewski, K., Rape, M., Thoms, S., and Jentsch, S. (2002). Role of the ubiquitin-selective CDC48(UFD1/NPL4 )chaperone (segregase) in ERAD of OLE1 and other substrates. The EMBO journal 21, 615-621.
Carling, D. (2004). The AMP-activated protein kinase cascade--a unifying system for energy control. Trends in biochemical sciences 29, 18-24.
Caron, C., Boyault, C., and Khochbin, S. (2005). Regulatory cross-talk between lysine acetylation and ubiquitination: role in the control of protein stability. Bioessays 27, 408-415.
Cohen, H.Y., Lavu, S., Bitterman, K.J., Hekking, B., Imahiyerobo, T.A., Miller, C., Frye, R., Ploegh, H., Kessler, B.M., and Sinclair, D.A. (2004). Acetylation of the C terminus of Ku70 by CBP and PCAF controls Bax-mediated apoptosis. Molecular cell 13, 627-638.
Cohen, T., and Yao, T.P. (2004). AcK-knowledge reversible acetylation. Sci STKE 2004, pe42.
DeLaBarre, B., and Brunger, A.T. (2003). Complete structure of p97/valosin-containing protein reveals communication between nucleotide domains. Nature structural biology 10, 856-863.
DeLaBarre, B., and Brunger, A.T. (2005). Nucleotide dependent motion and mechanism of action of p97/VCP. Journal of molecular biology 347, 437-452.
DeLaBarre, B., Christianson, J.C., Kopito, R.R., and Brunger, A.T. (2006). Central pore residues mediate the p97/VCP activity required for ERAD. Molecular cell 22, 451-462.
Elkabetz, Y., Shapira, I., Rabinovich, E., and Bar-Nun, S. (2004). Distinct steps in dislocation of luminal endoplasmic reticulum-associated degradation substrates: roles of endoplamic reticulum-bound p97/Cdc48p and proteasome. The Journal of biological chemistry 279, 3980-3989.
Fischle, W., Emiliani, S., Hendzel, M.J., Nagase, T., Nomura, N., Voelter, W., and Verdin, E. (1999). A new family of human histone deacetylases related to Saccharomyces cerevisiae HDA1p. The Journal of biological chemistry 274, 11713-11720.
Flierman, D., Ye, Y., Dai, M., Chau, V., and Rapoport, T.A. (2003). Polyubiquitin serves as a recognition signal, rather than a ratcheting molecule, during retrotranslocation of proteins across the endoplasmic reticulum membrane. The Journal of biological chemistry 278, 34774-34782.
Gao, L., Cueto, M.A., Asselbergs, F., and Atadja, P. (2002). Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. The Journal of biological chemistry 277, 25748-25755.
Glozak, M.A., Sengupta, N., Zhang, X., and Seto, E. (2005). Acetylation and deacetylation of non-histone proteins. Gene 363, 15-23.
Gorisch, S.M., Wachsmuth, M., Toth, K.F., Lichter, P., and Rippe, K. (2005). Histone acetylation increases chromatin accessibility. Journal of cell science 118, 5825-5834.
Gregoretti, I.V., Lee, Y.M., and Goodson, H.V. (2004). Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. Journal of molecular biology 338, 17-31.
Gronroos, E., Hellman, U., Heldin, C.H., and Ericsson, J. (2002). Control of Smad7 stability by competition between acetylation and ubiquitination. Molecular cell 10, 483-493.
Grozinger, C.M., Hassig, C.A., and Schreiber, S.L. (1999). Three proteins define a class of human histone deacetylases related to yeast Hda1p. Proceedings of the National Academy of Sciences of the United States of America 96, 4868-4873.
Grunstein, M. (1997). Histone acetylation in chromatin structure and transcription. Nature 389, 349-352.
Gu, W., Luo, J., Brooks, C.L., Nikolaev, A.Y., and Li, M. (2004). Dynamics of the p53 acetylation pathway. Novartis Foundation symposium 259, 197-205; discussion 205-197, 223-195.
Gu, W., and Roeder, R.G. (1997). Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90, 595-606.
Hardie, D.G., and Carling, D. (1997). The AMP-activated protein kinase--fuel gauge of the mammalian cell? European journal of biochemistry / FEBS 246, 259-273.
Hardie, D.G., Carling, D., and Carlson, M. (1998). The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annual review of biochemistry 67, 821-855.
Horike, N., Takemori, H., Katoh, Y., Doi, J., Min, L., Asano, T., Sun, X.J., Yamamoto, H., Kasayama, S., Muraoka, M., et al. (2003). Adipose-specific expression, phosphorylation of Ser794 in insulin receptor substrate-1, and activation in diabetic animals of salt-inducible kinase-2. The Journal of biological chemistry 278, 18440-18447.
Ito, K., and Adcock, I.M. (2002). Histone acetylation and histone deacetylation. Molecular biotechnology 20, 99-106.
Jarosch, E., Taxis, C., Volkwein, C., Bordallo, J., Finley, D., Wolf, D.H., and Sommer, T. (2002). Protein dislocation from the ER requires polyubiquitination and the AAA-ATPase Cdc48. Nature cell biology 4, 134-139.
Kanno, T., Kanno, Y., Siegel, R.M., Jang, M.K., Lenardo, M.J., and Ozato, K. (2004). Selective recognition of acetylated histones by bromodomain proteins visualized in living cells. Molecular cell 13, 33-43.
Katoh, Y., Takemori, H., Doi, J., and Okamoto, M. (2002). Identification of the nuclear localization domain of salt-inducible kinase. Endocrine research 28, 315-318.
Katoh, Y., Takemori, H., Horike, N., Doi, J., Muraoka, M., Min, L., and Okamoto, M. (2004a). Salt-inducible kinase (SIK) isoforms: their involvement in steroidogenesis and adipogenesis. Molecular and cellular endocrinology 217, 109-112.
Katoh, Y., Takemori, H., Min, L., Muraoka, M., Doi, J., Horike, N., and Okamoto, M. (2004b). Salt-inducible kinase-1 represses cAMP response element-binding protein activity both in the nucleus and in the cytoplasm. European journal of biochemistry / FEBS 271, 4307-4319.
Khochbin, S., Verdel, A., Lemercier, C., and Seigneurin-Berny, D. (2001). Functional significance of histone deacetylase diversity. Current opinion in genetics & development 11, 162-166.
Kim, S.C., Sprung, R., Chen, Y., Xu, Y., Ball, H., Pei, J., Cheng, T., Kho, Y., Xiao, H., Xiao, L., et al. (2006). Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Molecular cell 23, 607-618.
Klausner, R.D., Lippincott-Schwartz, J., and Bonifacino, J.S. (1990). The T cell antigen receptor: insights into organelle biology. Annual review of cell biology 6, 403-431.
Kondo, H., Rabouille, C., Newman, R., Levine, T.P., Pappin, D., Freemont, P., and Warren, G. (1997). p47 is a cofactor for p97-mediated membrane fusion. Nature 388, 75-78.
Kouzarides, T. (1999). Histone acetylases and deacetylases in cell proliferation. Current opinion in genetics & development 9, 40-48.
Kouzarides, T. (2000). Acetylation: a regulatory modification to rival phosphorylation? The EMBO journal 19, 1176-1179.
Latterich, M., Frohlich, K.U., and Schekman, R. (1995). Membrane fusion and the cell cycle: Cdc48p participates in the fusion of ER membranes. Cell 82, 885-893.
Lin, X., Takemori, H., Doi, J., Katoh, Y., and Okamoto, M. (2000). SIK (Salt-inducible kinase): regulation of ACTH-mediated steroidogenic gene expression and nuclear/cytosol redistribution. Endocrine research 26, 995-1002.
Lizcano, J.M., Goransson, O., Toth, R., Deak, M., Morrice, N.A., Boudeau, J., Hawley, S.A., Udd, L., Makela, T.P., Hardie, D.G., et al. (2004). LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1. The EMBO journal 23, 833-843.
Madeo, F., Schlauer, J., Zischka, H., Mecke, D., and Frohlich, K.U. (1998). Tyrosine phosphorylation regulates cell cycle-dependent nuclear localization of Cdc48p. Molecular biology of the cell 9, 131-141.
Martinez-Balbas, M.A., Bauer, U.M., Nielsen, S.J., Brehm, A., and Kouzarides, T. (2000). Regulation of E2F1 activity by acetylation. The EMBO journal 19, 662-671.
Maurizi, M.R., and Li, C.C. (2001). AAA proteins: in search of a common molecular basis. International Meeting on Cellular Functions of AAA Proteins. EMBO reports 2, 980-985.
Meyer, H.H., Kondo, H., and Warren, G. (1998). The p47 co-factor regulates the ATPase activity of the membrane fusion protein, p97. FEBS letters 437, 255-257.
Nagahama, M., Suzuki, M., Hamada, Y., Hatsuzawa, K., Tani, K., Yamamoto, A., and Tagaya, M. (2003). SVIP is a novel VCP/p97-interacting protein whose expression causes cell vacuolation. Molecular biology of the cell 14, 262-273.
Ogura, T., and Wilkinson, A.J. (2001). AAA+ superfamily ATPases: common structure--diverse function. Genes Cells 6, 575-597.
Okamoto, M., Takemori, H., and Katoh, Y. (2004). Salt-inducible kinase in steroidogenesis and adipogenesis. Trends in endocrinology and metabolism: TEM 15, 21-26.
Palazzo, A., Ackerman, B., and Gundersen, G.G. (2003). Cell biology: Tubulin acetylation and cell motility. Nature 421, 230.
Patel, S., and Latterich, M. (1998). The AAA team: related ATPases with diverse functions. Trends in cell biology 8, 65-71.
Pleasure, I.T., Black, M.M., and Keen, J.H. (1993). Valosin-containing protein, VCP, is a ubiquitous clathrin-binding protein. Nature 365, 459-462.
Qiao, L.Y., Zhande, R., Jetton, T.L., Zhou, G., and Sun, X.J. (2002). In vivo phosphorylation of insulin receptor substrate 1 at serine 789 by a novel serine kinase in insulin-resistant rodents. The Journal of biological chemistry 277, 26530-26539.
Rabinovich, E., Kerem, A., Frohlich, K.U., Diamant, N., and Bar-Nun, S. (2002). AAA-ATPase p97/Cdc48p, a cytosolic chaperone required for endoplasmic reticulum-associated protein degradation. Molecular and cellular biology 22, 626-634.
Rabouille, C., Levine, T.P., Peters, J.M., and Warren, G. (1995). An NSF-like ATPase, p97, and NSF mediate cisternal regrowth from mitotic Golgi fragments. Cell 82, 905-914.
Santos-Rosa, H., Valls, E., Kouzarides, T., and Martinez-Balbas, M. (2003). Mechanisms of P/CAF auto-acetylation. Nucleic acids research 31, 4285-4292.
Screaton, R.A., Conkright, M.D., Katoh, Y., Best, J.L., Canettieri, G., Jeffries, S., Guzman, E., Niessen, S., Yates, J.R., 3rd, Takemori, H., et al. (2004). The CREB coactivator TORC2 functions as a calcium- and cAMP-sensitive coincidence detector. Cell 119, 61-74.
Seigneurin-Berny, D., Verdel, A., Curtet, S., Lemercier, C., Garin, J., Rousseaux, S., and Khochbin, S. (2001). Identification of components of the murine histone deacetylase 6 complex: link between acetylation and ubiquitination signaling pathways. Mol Cell Biol 21, 8035-8044.
Simonsson, M., Heldin, C.H., Ericsson, J., and Gronroos, E. (2005). The balance between acetylation and deacetylation controls Smad7 stability. The Journal of biological chemistry 280, 21797-21803.
Stephenson, A., Huang, G.Y., Nguyen, N.T., Reuter, S., McBride, J.L., and Ruiz, J.C. (2004). snf1lk encodes a protein kinase that may function in cell cycle regulation. Genomics 83, 1105-1115.
Sterner, D.E., and Berger, S.L. (2000). Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev 64, 435-459.
Sterner, R., Vidali, G., and Allfrey, V.G. (1979). Studies of acetylation and deacetylation in high mobility group proteins. Identification of the sites of acetylation in HMG-1. The Journal of biological chemistry 254, 11577-11583.
Strahl, B.D., and Allis, C.D. (2000). The language of covalent histone modifications. Nature 403, 41-45.
Sun, Y., Jiang, X., Chen, S., Fernandes, N., and Price, B.D. (2005). A role for the Tip60 histone acetyltransferase in the acetylation and activation of ATM. Proceedings of the National Academy of Sciences of the United States of America 102, 13182-13187.
Takemori, H., Katoh, Y., Horike, N., Doi, J., and Okamoto, M. (2002). ACTH-induced nucleocytoplasmic translocation of salt-inducible kinase. Implication in the protein kinase A-activated gene transcription in mouse adrenocortical tumor cells. The Journal of biological chemistry 277, 42334-42343.
Thompson, P.R., Wang, D., Wang, L., Fulco, M., Pediconi, N., Zhang, D., An, W., Ge, Q., Roeder, R.G., Wong, J., et al. (2004). Regulation of the p300 HAT domain via a novel activation loop. Nature structural & molecular biology 11, 308-315.
Tsai, B., Ye, Y., and Rapoport, T.A. (2002). Retro-translocation of proteins from the endoplasmic reticulum into the cytosol. Nature reviews 3, 246-255.
Turner, B.M. (2000). Histone acetylation and an epigenetic code. Bioessays 22, 836-845.
Vale, R.D. (2000). AAA proteins. Lords of the ring. The Journal of cell biology 150, F13-19.
Verdin, E., Dequiedt, F., and Kasler, H.G. (2003). Class II histone deacetylases: versatile regulators. Trends Genet 19, 286-293.
Vidali, G., Gershey, E.L., and Allfrey, V.G. (1968). Chemical studies of histone acetylation. The distribution of epsilon-N-acetyllysine in calf thymus histones. The Journal of biological chemistry 243, 6361-6366.
Wang, Z., Takemori, H., Halder, S.K., Nonaka, Y., and Okamoto, M. (1999). Cloning of a novel kinase (SIK) of the SNF1/AMPK family from high salt diet-treated rat adrenal. FEBS letters 453, 135-139.
Woodman, P.G. (2003). p97, a protein coping with multiple identities. Journal of cell science 116, 4283-4290.
Yang, X.J. (2004). Lysine acetylation and the bromodomain: a new partnership for signaling. Bioessays 26, 1076-1087.
Ye, Y., Meyer, H.H., and Rapoport, T.A. (2001). The AAA ATPase Cdc48/p97 and its partners transport proteins from the ER into the cytosol. Nature 414, 652-656.
Ye, Y., Shibata, Y., Kikkert, M., van Voorden, S., Wiertz, E., and Rapoport, T.A. (2005). Inaugural Article: Recruitment of the p97 ATPase and ubiquitin ligases to the site of retrotranslocation at the endoplasmic reticulum membrane. Proceedings of the National Academy of Sciences of the United States of America 102, 14132-14138.
Ye, Y., Shibata, Y., Yun, C., Ron, D., and Rapoport, T.A. (2004). A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol. Nature 429, 841-847.
Zeng, L., and Zhou, M.M. (2002). Bromodomain: an acetyl-lysine binding domain. FEBS letters 513, 124-128.
Zhang, X., Shaw, A., Bates, P.A., Newman, R.H., Gowen, B., Orlova, E., Gorman, M.A., Kondo, H., Dokurno, P., Lally, J., et al. (2000). Structure of the AAA ATPase p97. Molecular cell 6, 1473-1484.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27860-
dc.description.abstract第二型鹽誘導激酶(SIK2)為一種絲胺酸/蘇胺酸蛋白質激酶(Serine/threonine protein kinase),並屬於單磷酸腺苷蛋白質激酶(AMPK)族系的其中一個成員。過去的研究顯示,此蛋白質在成熟的脂肪細胞中大量表現並且在脂肪細胞分化過程中具有調控早期胰島素傳導的功能。迄今,除了IRS-1和TOC2外,對於SIK2其他生理上的受質仍未非常明暸。第一型胰島素受器受質(IRS-1)在脂肪組織的胰島素傳導中扮演重要的功能,並且被認為在第794位置的絲胺酸上會被SIK2磷酸化。而在CREB傳導途徑中具有調控功能的TORC2,則在第171位置的絲胺酸會被磷酸化。
在本研究中,我們發現了p97/VCP,一種參與在多樣細胞活動的三磷酸腺苷水解酶(AAA-ATPase),和SIK2在物理上和功能上具有交互作用。透過免疫螢光染色和蔗糖濃度梯度分層生化實驗,SIK2和p97/VCP被證明共同分佈在內質網膜(ER membrane)上。並且SIK2和p97/VCP的交互作用可調控p97/VCP所調解的內質網相關之蛋白質降解(ERAD)。座落於SIK2三磷酸腺苷嵌合區位(ATP-binding domain)上第53位置的賴胺酸(K53)可被進行乙醯化作用(Acetylation)。在我們之前的研究中指出K53的乙醯化作用可抑制SIK2的激酶活性,而此激酶活性對於由p97/VCP所調解的ERAD是需要的。本研究更進一步證明了以股氨酸取代第53位置賴胺酸的乙醯化擬態突變型(K53Q)會降低其激酶活性並導致ERAD受質CD3δ的累積增加。另外,我們還找到SIK2 K53的乙醯化作用和去乙醯化作用(Deacetylation)是由p300/CBP和HDAC6所負責調控的。綜合上述,我們的研究結果顯示SIK2的乙醯化作用減弱了其激酶活性並且進而抑制ERAD受質的降解。
zh_TW
dc.description.abstractSalt-inducible kinase 2 (SIK2), a serine/threonine protein kinase, belongs to members of the AMP-activated protein kinase (AMPK) family. It is highly expressed in mature adipocytes and regulates the early phase of insulin-signaling during adipocyte differentiation. So far, the physiological substrates of SIK2 are not well-understood, except for IRS-1 and TORC2. Insulin receptor substrate-1 (IRS-1), which is reported to play important roles in the insulin-signaling in the adipose tissue, is thought to be a potential endogenous substrate of SIK2 at serine 794, whereas TOR2, participating in the regulation of CREB signaling, is phosphorylated at serine 171.
In the present study, we have identified that p97/VCP, an AAA-ATPase involved in a variety of cellular processes, interacts with SIK2 physically and functionally. Moreover, SIK2 and p97/VCP are co-localized to the ER membrane. The interaction between SIK2 and p97/VCP modulates p97/VCP-dependent ER-associated degradation (ERAD). Lysine 53, a site located in the kinase ATP-binding domain of SIK2, is found to be acetylated. We have previously described that lysine 53 acetylation results in the inhibition of the kinase activity of SIK2. The acetylation mimetic mutant K53Q showed accumulation of the ERAD substrate CD3δ. We further identified that p300 /CBP and HDAC6 are responsible for the acetylation and deacetylation of lysine 53 of SIK2. In conclusion, our results demonstrate that acetylation of SIK2 negatively regulates its kinase activity, thus attenuates the degradation of the ERAD substrates.
en
dc.description.provenanceMade available in DSpace on 2021-06-12T18:24:32Z (GMT). No. of bitstreams: 1
ntu-96-R94448002-1.pdf: 1569815 bytes, checksum: 36f38ab73d7c92c6742603414866cb18 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontentsACKNOWLEDGEMENT………………………………………………….........i
ABBREVIATIONS……………………………………………………….........ii
ABSTRACT (CHINESE) ……………………………………………………....iii
ABSTRACT (ENGLISH) ……………………………………………………….iv
INTRODUCTION………………………………………………………………1
MATERIALS AND METHODS………………………………….…………........8
Cell culture and transfection…………………………………………………………....8
Plasmid constructs………………………………………………………………………9
Antibodies……………………………………………………………………………....10
SDS-PAGE and Western blot analysis……………………………………………........11
In vitro pull down assay………………………………………………………………..13
Subcellular fractionation by differential centrifugation……………………………….13
Subcellular fractionation on sucrose gradient………………………………………....15
Immunofluorenscence staining and microscopy………………………………………..16
In vitro deacetylation assay…………………………………………………………….17
Protein acetylation and deacetylation in vivo………………………………………….18
ERAD assay…………………………………………………………………………….19
RESULTS…………………………………………………………………….20
Direct interaction between SIK2 and p97/VCP…...………………...………………… 20
Co-localization of SIK2 and p97/VCP to the ER membrane…………..………………20
Membrane-bound SIK2 is a peripheral membrane protein…………………………….23
The subcellular localization of SIK2 is not dependent on lysine 53 acetylation……….23
Lysine 53 acetylation of SIK2 regulates the stability of the ERAD substrate CD3δ…..25
Acetylation of SIK2 by p300/CBP in vivo……………………………………………....26
Lysine 53 is the predominant acetylation site of p300/CBP………..…….…………….27
SIK2 is deacetylated by HDAC6 in vitro and in vivo………………………………….28
p300/CBP-mediated acetylation of SIK2 inhibits ERAD………………………………29
DISCUSSION…………………………………………………………………31
REFERENCES………………………………………………………………...37
FIGURES……………………………………………………………………. 45
Figure 1. SIK2 interacts with p97 directly…………………………………………….45
Figure 2. Subcellular localization of SIK2 and p97…………………………………...46
Figure 3. SIK2 and p97 are co-localized to the ER membrane………………………..47
Figure 4. Membrane-bound SIK2 is a peripheral membrane protein………………....48
Figure 5. Both of cytosolic and membrane-bound SIK2 are acetylated……………….49
Figure 6. The subcellular localization of SIK2 K53 mutants…………………………..50
Figure 7. K53 acetylation of SIK2 regulates the degradation of ERAD substrat……...51
Figure 8. SIK2 is acetylated by p300/CBP……………………………………………..52
Figure 9. SIK2 K53 is the predominant acetylation site by p300……………………....53
Figure 10. SIK2 K53 is the predominant acetylation site by CBP……………………..54
Figure 11. SIK2 is deacetylated by HDAC6 in vitro…………………………………....55
Figure 12. p300-mediated SIK2 acetylation is deacetylated by HDAC6 in vivo……….56
Figure 13. CBP-mediated SIK2 acetylation is deacetylated by HDAC6 in vivo………. 57
Figure 14. p300/CBP-mediated SIK2 acetylation inhibits the degradation of ERAD substrate CD3δ……………………………………………………………...58
Figure 15. SIK2 K144 is not the specific acetylation site by p300……………………..59
Figure 16. Acetylation of SIK2 regulates its kinase activity and thus inhibits ERAD…..60
dc.language.isoen
dc.subjectERADzh_TW
dc.subjectSIK2zh_TW
dc.subjectp97/VCPzh_TW
dc.subject乙醯化作用zh_TW
dc.subjectp300/CBPzh_TW
dc.subjectHDAC6zh_TW
dc.subjectHDAC6en
dc.subjectERADen
dc.subjectSIK2en
dc.subjectp97/VCPen
dc.subjectAcetylationen
dc.subjectp300/CBPen
dc.title乙醯化作用對SIK2活性的調控zh_TW
dc.titleRegulation of SIK2 Activity by Acetylationen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳瑞華(Ruey-Hwa Chen),周祖述(Tzuu-Shuh Jou),施修明(Hsiu-Ming Shih)
dc.subject.keywordSIK2,p97/VCP,乙醯化作用,p300/CBP,HDAC6,ERAD,zh_TW
dc.subject.keywordSIK2,p97/VCP,Acetylation,p300/CBP,HDAC6,ERAD,en
dc.relation.page60
dc.rights.note有償授權
dc.date.accepted2007-08-14
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept分子醫學研究所zh_TW
顯示於系所單位:分子醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
1.53 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved