Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 海洋研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27836
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor戴昌鳳
dc.contributor.authorCheng-Tze Hoen
dc.contributor.author何政擇zh_TW
dc.date.accessioned2021-06-12T18:23:15Z-
dc.date.available2009-08-28
dc.date.copyright2007-08-28
dc.date.issued2007
dc.date.submitted2007-08-17
dc.identifier.citation沈世傑 (1984) 台灣近海魚類圖鑑。440頁。
邱建勇 (1986) 台灣北部龜吼地區太平洋真雀鯛的日行性活動及領域性之研究。國立台灣大學碩士論文。138頁。
林維玲 (1992) 臺灣北海岸變色雀鯛之產卵生態研究。國立台灣大學碩士論文。52頁。
邵廣昭 (2007) 珊瑚礁魚類的新新聞。台灣珊瑚礁永續經營研討會論文集。 40-50頁。
郭世榮 (1989) 墾丁國家公園海域產雀鯛科魚類攝食生態學之研究。國立台灣大學碩士論文。141頁。
陳玟雅 (1992) 台灣北海岸變色雀鯛之生殖生態研究。國立台灣大學碩士論文。60頁。
陳筱華、張恆文 (2000) 海域箱網養殖與水質環境分析模擬 – 以小琉球地區為例 (上)。海下技術月刊。10: 31-43。
陳筱華、張恆文 (2001) 海域箱網養殖與水質環境分析模擬 – 以小琉球地區為例 (下)。海下技術月刊。11: 17-24。
溫國彰 (2002) 台灣南北部潮池魚類類聚攝食同功群與食性成長變化之研究。國立海洋大學碩士論文。115頁。
鄒燦陽 (1983) 南灣魚類攝食生態的研究。國立台灣大學碩士論文。85頁。
Abbott IA and Hollenberg GJ (1976) Marine algae of California. Stanford University Press. 827 p.
Aburto-Oropeza O, Sala E and Sanchez-Ortiz C (2000) Feeding behavior, habitat use, and abundance of the angelfish Holacanthus passer (Pomacanthidae) in the southern Sea of Cortes. Environ Biol Fish 57: 432-442.
Al-Hussaini AH (1947) The feeding habits and the morphology of the alimentary tract of some teleost living in the neighborhood of Marine Biological Station, Ghardaqa, Red Sea. Publ Mar Biol Sta Ghardaqa (Red Sea) 5: 1-61.
Allen GR and Emery AR (1985) A review of the pomacentrid fishes of the genus Stegastes from the Indo-Pacific with the description of two new species. Indo-Paci Fish 3: 1-32.
Angell DL, Eden N, Breitstein S, Yurman A, Katz T and Spanier E (2002) In situ biofiltration: a means to limit the dispersal of effluents from marine finfish cage aquaculture. Hydrobiologia 469: 1-10.
Baba O and Sano M (1987) Diel feeding patterns of the Congiopodid fish Hypodytes rubripinnis in Aburatsubo Bay, Japan. Jap J of Ichthy 34: 209-214.
Bellwood DR and Choat JH (1990) A functional analysis of grazing in parrotfishes (family Scaridae): the ecological implications. Environ Biol Fish 28: 189-214.
Berges JA (1997) Algal nitrate reductases. Eur J Phycol 32: 3-8.
Beveridge MCM (1996) Cage aquaculture. 2nd ed. Fishing News Books, Oxford. 346 p.
Beveridge M, Ross LG and Kelly LA (1994) Aquaculture and biodiversity. Ambio 23: 497-502.
Booth D (1998) Grazing pressure of roving and territorial fishes on patch reefs in One Tree Lagoon. In: Proceedings of Australian Coral Reef Society 75th anniversary conference, Greenwood JG and Hall NJ (eds). Queensland University, Brisbane. pp. 29-41.
Boutton TW (1991) Stable carbon isotope ratios of natural materials: І. Sample preparation and mass spectrometric analysis. In: Carbon Isotope Techniques, Coleman DC and Fry B (Eds). Academic Press, San Diego. pp. 152-171.
Branch GM, Harris JM, Parkins C, Bustamante RH and Eekhout S (1992) Algal ‘gardening’ by grazers: a comparison of the ecological effects of territorial fish and limpets. In: Plant-Animal Interactions in the Marine Benthos, John DM et al. (eds). Clarendon Press, Oxford. pp. 402-423.
Brey T, Rumohr H and Ankar S (1988) Energy content of macrobenthic invertebrates: general conversion factors from weight to energy. J Exp Mar Biol Ecol 117: 271-278.
Brooks KM and Mahnken CVW (2003) Interactions of Atlantic salmon in Pacific northwest environment II. Organic wastes. Fish Res 62: 252-293.
Brooks KM, Stierns AR, Mahnken CVW and Blackburn DB (2003) Chemical and biological remediation of the benthos near Atlantic salmon farms. Aquaculture 219: 352-377.
Cabana G and Rasmussen JB (1996) Comparison of aquatic food chains using nitrogen isotopes. Proc Natl Acad Sci 93: 10845-10847.
Carpenter RC (1990) Mass mortality of Diadema antillarum Ⅱ. Effects on population density and grazing intensity of parrotfishes and surgeonfishes. Mar Biol 104: 79-86.
Ceccarelli DM, Jones GP and McCook LJ (2001) Territorial damselfishes as determinants of the structure of benthic communities on coral reefs. Oceanogr Mar Biol Annu Rev 39: 355–389.
Cembella AD, Quilliam MA and Lewis NI (2002) The toxigenic marine dinoflagellate Alcmndrmm tamwvnse as the probable cause of mortality of caged salmon in Nova Scotia. Harmf Algae 1: 313-325.
Chang KH and Lee SC (1969) Stomach contents analysis some intertidal fishes of Taiwan. Bull Inst Zool, Acad Sini 8: 71-77.
Chang KH and Jan RQ (1983) Ethology of neon damsel fish, Pomacentus coelestis Jordan and Starks, along the northern coast of Taiwan. Bull Inst Zool, Acad Sini 22: 1-12.
Choat JH (1991) The biology of herbivorous fishes on coral reefs. In: The ecology of fishes on coral reefs, Sale PF (ed). Academic Press, San Diego. pp. 120-155.
Cleveland A and Montgomery WL (2003) Gut characteristics and assimilation efficiencies in two species of herbivorous damselfishes (Pomacentridae: Stegastes dorsopunicans and S. planifrons) Mar Biol 142: 35–44.
Cocheret de la Morinière E, Pollux BJA, Nagelkerken I, Hemminga MA, Huiskes AHL and van der Velde G (2003) Ontogenetic dietary changes of coral reef fishes in the mangrove-seagrass-reef continuum: stable isotopes and gut-content analysis. Mar Ecol Prog Ser 246: 279-289.
Cornel GE and Whoriskey FG (1993)The effects of rainbow trout (Oncorhynchus mykiss) cage culture on the water quality, zooplankton, benthos and sediments of Lac du Passage, Quebec. Aquaculture109: 101-127.
DeAngelis DL (1992) Dynamics of nutrient cycling and food webs. Chapman and Hall.
Deb D (1997) Trophic uncertainty vs parsimony in food web organization. Oikos 78: 191-194.
DeNiro MJ and Epstein S (1978) Influence of diet on the distribution of carbon isotope in animals. Geochim Cosmochim Acta 42: 492-506.
DeNiro MJ and Epstein S (1981) Influence of diet on the distribution of nitrogen isotopes in animals. Geochim Cosmochim Acta 45: 341-351.
Deudero S, Pinnegar JK, Polunin NVC, Morey G and Morales-Nin B (2004) Spatial variation and ontogenic shifts in the isotopic composition of Mediterranean littoral fishes. Mar Biol 145: 971–981.
Dolenec T, Lojen S, Kniewald G, Dolenec M and Rogan N (2006) Nitrogen stable isotope composition as a tracer of fish farming in invertebrates Aplysina aerophoba, Balanus perforatus and Anemonia sulcata in central Adriatic. Aquaculture 262: 237-249.
Doucett RR, Booth RK, Power G and McKinley RS (1999) Effects of the spawning migration on the nutritional status of anadromous Atlantic salmon (Salmo salar): insights from stable-isotope analysis. Can J Fish Aquat Sci 56: 2174-2180.
Draud M, Itzkowitz DE and Itzkowitz M (1990) Co-defense of territory space by two species of coral reef fishes. Bull Mar Sci 47: 721-724.
Elliott JP and Bellwood DR (2003) Alimentary tract morphology and diet in three coral reef fish families. J Fish Biol 63: 1598-1609.
Emery AR (1973) Comparative ecology and functional ostecology of fourteen species of damselfish (Pisces: Pomacentridae) at Alligator reef, Florida Keys. Bull Mar Sci 23: 649-770.
Fernandez-Jover D, Lopez-Jimenez JA, Sanchez-Jerez P, Bayle-Sempere J, Gimenez-Casalduero F, Martinez-Lopez FJ and Dempster T (2007) Changes in body condition and fatty acid composition of wild Mediterranean horse mackerel (Trachurus mediterraneus Steindachner, 1868) associated to sea-cage fish farms. Mar Environ Res 63: 1-18.
Ferreira CEL, Gonçalves JEA, Coutinho R and Peret AC (1998) Herbivory by the Dusky Damselfish Stegastes fuscus (Cuvier, 1830) in a tropical rocky shore: effects on the benthic community. J Exp Mar Bio Ecol 229: 241-264.
Findlay RH and Watling L (1997) Prediction of benthic impact for salmon net-pens based on the balance of benthic oxygen supply and demand. Mar Ecol Prog Ser 155: 147-157.
Fishelson L, Popper D and Avidor A (1974) Biosociology and ecology of Pomacentrid fish around the Sinai Peninsula (northern Red Sea). J Fish Biol 6: 119-113.
Fricke HW (1977) Community structure, social organization and ecological requirements of coral reef fish (Pomacentridae) Helgolander wiss Meeresunters 30: 414-426.
Fry B and Sherr EB (1984) δ13C measurements as indivators of carbon flow on marine and freshwater ecosystems. Contrib Mar Sci 27: 13-47.
Fry B and Wainright SC (1991) Diatom sources of C-13-rich carbon in marine food webs. Mar Ecol Prog Ser 76: 149-157.
Galetto MJ and Bellwood DR (1994) Digestion of algae by Stegastes nigricans and Amphiprion akindynos (Pisces: Pomacentridae), with an evaluation of methods used in digestibility studies. J. Fish Biol 44: 412-428.
Gannes LZ, O’Brien DM and Martinez Del Rio C (1997) Stable isotopes in animal ecology: assumptions, caveats, and a call for more laboratory experiments. Ecology 78:1271-1276.
Gaye-Siessegger J, Focken U, Muetzel S, Abel H and Becker K (2004) Feeding level and individual metabolic rate affect δ13C and δ15N values in carp: implications for food web studies. Oecologia 138: 172-183.
Gaston TF, Kostoglidis A and Suthers IM (2004). The 13C, 15N, and 34S signatures of a rocky reef planktivorous fish indicate different coastal discharge of sewerage. Mar Freshwater Res 55: 689-699.
Gaston TF and Suthers LM (2004) Spatial variation in δ13C and δ15N of liver, muscle and bone in a rocky reef planktivorous fish: the relative contribution of sewage. J Exp Mar Biol Ecol 304: 17-33.
Gerking SD (1994) Feeding ecology of fish. Academic Press, San Diego.
Gluckmann I and Vandewalle P (1998) Morphofunctional analysis of the feeding apparatus in four Pomacentridae species: Dascyllus aruanus, Chromis retrofasciata, Chrysiptera biocellata and C. unimaculata. Ital J Zool 65: 421-424.
Gochfeld DJ (2004) Predation-induced morphological and behavioral defenses in a hard coral: implications for foraging behavior of coral-feeding butterflyfishes. Mar Ecol Prog Ser 267: 142-158.
Harmelin-Vivien ML (2002) Energetics and fish diversity on coral reefs. In: Coral Reef Fishes, Sale PF (ed). Academic Press, San Diego. pp. 262-274.
Hata H and Kato M (2003) Demise of monocultural algal farms by exclusion of territorial damselfish. Mar Ecol Prog Ser 263: 159-167.
Hata H and Kato M (2004) Monoculture and mixed-species algal farms on a coral reef are maintained through intensive and extensive management by damselfishes. J Exp Mar Biol Ecol 313: 282-296.
Hatcher BG (1981) The interaction between grazing organisms and the epilithic algal community of a coral reef: a quantitative assessment. Proc 4th Int Coral Reef Symp, Manila 2: 512-524.
Hatcher BG (1983) The role of detritus in the metabolism and secondary production of coral reef ecosystem. In: Inaugral Great Barrier Reef Conference, Baker JT et al. (Eds). James Cook University, Townsville. pp. 317-325.
Heaton THE (1986) Isotopic studies of nitrogen pollution in the hydrosphere and atmosphere: a review. Chem Geol 59: 87-102.
Hebert CE, Shutt JL, Hobson KA and Weseloh DVC (1999) Spatial and temporal differences in the diet of Great Lakes herring gulls (Larus argentatus): evidence from stable isotope analysis. Can J Fish Aquat Sci 56: 323-338.
Hecky RE and Hesslein RH (1995) Contributions of benthic algae to lake food webs as revealed by stable isotope analysis. J North Am Benthol Soc 14: 631-653.
Heikoop JM, Risk MJ, Lazier AV, Edinger EN, Jompa J, Limmon GV, Dunn JJ, Browen DR and Schwarcz HP (2000) Nitrogen-15 signals of anthropogenic nutrient loading in reef corals. Mar Pollut Bull 40: 628-436.
Herzka SZ and Holt GJ (2000) Changes in isotopic composition of red drum (Sciaenops ocellatus) larvae in response to dietary shifts: potential applications to settlement studies. Can J Fish Aquat Sci 57: 137-147.
Hesslein RH, Hallard KA and Ramal P (1993) Replacement of sulphur, carbon and nitrogen of growing broad whitefish (Coregonus nasus) in response to a change in diet traced by δ13C, δ15N and δ34S. Can J Fish Aquat Sci 50: 2071-2076.
Hiatt RW and Strasbury DW (1960) Ecological relationships of the fish fauna on coral reefs of the Marshall Islands. Ecol Monogr 30: 62-127.
de la Higuera M, Akharbach H, Hidalgo MC, Peragon J, Lupianez JA and Garcia-Gallego M (1999) Liver and white muscle protein turnover rates in the European ell (Anguilla anguilla): effects of dietary protein quality. Aquaculture 179: 203-216.
Hixon MA and Brostoff WN (1983) Damselfish as keystone species in reverse: intermediate disturbance and diversity of reef algae. Science 220: 511-513.
Ho CT, Kao SJ, Dai CF, Hsieh HL, Shiah FK and Jan RQ (2007) Dietary separation between two blennies and the Pacific gregory in northern Taiwan: evidence from stomach content and stable isotope analyses. Mar Biol 151: 729-736.
Hobson ES (1968) Predatory behaviour of some shore fishes in the Gulf of California. US Fish Wildl Serv Res Rep 73: 1-92.
Hobson ES (1974) Feeding relationships of teleostean fishes on coral reefs in Kona, Hawaii. Fish Bull 72: 912-1031.
Hobson KA and Bairlein F (2003) Isotopic fractionation and turnover in captive Garden Warblers (Sylvia borin): implications for delineating dietary and migratory associations in wild passerines. Can J Zool 81: 1630-1635.
Hobson ES and Chess JR (1978) Trophic relationships among fishes and plankton in the lagoon at Enewetak Atoll, Marshall Islands. Fish Bull 76: 133-153.
Hobson KA and Clark RW (1992) Assessing avian diets using stable carbon and nitrogen isotopes I. Turnover of carbon-13. Condor 94: 181-188.
Holmer M (1991) Impacts of aquaculture on surrounding sediments: generation of organic-rich sediments. In: Aquaculture and the Environment, de Pauw N and Joyce J (Eds). Aquaculture Society Special Publication 16: 152-175.
Horn MH (1989) Biology of marine herbivorous fishes. Oceanogr Mar Biol Annu Rev 27: 167-272.
Hsieh HL (1995) Spatial and temporal patterns of polychaete communities in a subtropical mangrove swamp: influences of sediment and microhabitat. Mar Ecol Prog Ser 127: 157-167.
Hyslop EJ (1980) Stomach content analysis-A review of methods and their application. J Fish Biol 17: 411-429.
Islam MS (2005) Nitrogen and phosphorus budget in coastal and marine cage aquaculture and impacts of effluent loading on ecosystem: review and analysis towards model development. Mar Pollut Bull 50: 48-61.
Jan RQ, Dai CF and Chang KH (1994) Monitoring of hard substrate communities. In: Kramer KJM (ed) Biomonitoring of coastal waters and estuaries. CRC, Boca Raton, pp. 282-310.
Jan RQ, Ho CT, Shiah FK (2003) Determinants of territory size of the dusky gregory. J Fish Biol 63: 1589-1597.
Jepsen DB and Winemiller KO (2002) Structure of tropical river food webs revealed by stable isotope ratios. Oikos 96: 46-55.
Johnsen BO and Jensen AJ (1986) Infestations of Atlantic salmon, Salmo solar, by Gyrodactylus salaries in Norwegian waters. J Fish Biol 29: 233-241.
Johnson BM, Martinez PJ and Stockwell JD (2002) Tracking trophic interactions in coldwater reservoirs using naturally occurring stable isotopes. Trans Am Fish Soc 131: 1-13.
Karino K (1995) Effective timing of male courtship displays for female mate choice in a territorial damselfish Stegastes nigricans. Jap J Ichthyol 42: 173-180.
Kelly JF (2000) Stable isotopes of carbon and nitrogen in the study of avian and mammalian trophic ecology. Can J Zool 78: 1-27.
Klumpp DW and Polunin NVC (1989) Partitioning among grazers of food resource within damsel fish territories on a coral reef. J Exp Mar Biol Ecol 125: 142-169.
Kirsch PE, Iverson SJ, Bowen WD, Kerr SR and Ackman RG (1998) Dietary effets on the fatty acid signature of whole Atlantic cod (Gadus morhua). Can J Fish Aqu Sci 55: 1378-1386.
Lassuy DR (1980) Effects of farming behaviour by Eupomacentus lividus and Hemiglyphidodon plagiometopon on algal community structure. Bull Mar Sci 30: 305-312.
Lassuy DR (1984) Diet, intestinal morphology, and nitrogen assimilation efficiency in the damselfish, Stegastes lividus, in Guam. Environ Biol Fish. 10: 183-193.
Larson RJ (1991) Seasonal cycles of reserve in relation to reproduction in seabastes. Environ Biol Fish 30: 57-70.
Lugendo BR, Nagelkerken I, van der Velde G and Mgaya YD (2006) The importance of mangroves, mud and sand flats, and seagrass beds as feeding areas for juvenile fishes in Chwaka Bay, Zanzibra: gut content and stable isotope analyses. J Fish Biol 69: 1639-1661.
Li YF (1999) Relationship between the marine environment and fishery resources in Meizhou Bay. Mar Environ Sci 18: 54-56.
Lobel PS (1980) Herbivory by damselfishes and their role in coral reef community ecology. Bull Mar Sci 30: 273-289.
Lojen S, Spanier E, Tsemel A, Katz T, Eden N and Angel DL (2005) δ15N as a natural tracer of particulate nitrogen effluents released from marine aquaculture. Mar Biol 148: 87-96.
Low RM (1971) Interspecific territoriality in a pomacentrid reef fish, Pomacentrus flavicauda Whitley. Ecology 52: 648-654.
Letourneur Y, Galzin R and Harmelin VM (1997) Temporal variations in the diet of the damselfish Stegastes nigricans (Lacepède) on a Reunion fringing reef. J Exp Mar Biol Ecol 217: 1-8.
Mac Avoy SE, Macko SA and Garman GC (2001) Isotopic turnover in aquatic predators: quantifying the exploitation of a migratory prey. Can J Fish Aquat Sci 58: 923-932.
Marshall N (1985) Ecological sustainable yield (fisheries potential) of coral reefs, as related to physiographic features of coral reef environments. Proc Int 5th Reef Congr, Tahiti 5: 522-530.
Martin FD (1984) Diet of four sympatric species of Etheostoma (Pisces: Percidae) from southern Indiana: interspecific and intraspecific multiple comparisons. Environ Biol Fish 11: 113-120.
Mazzola A and Sarà G (2001) The effect of fish farming organic waste on food availability for bivalve mollusks (Gaeta Gulf, Central Tyrrhenian, MED) stable carbon isotopic analysis. Aquaculture 192: 361-379.
McClure MM, McIntyre PB and McCune AR (2006) Notes on the natural diet and habitat of eight danionin fishes, including the zebrafish Danio rerio. J Fish Bio l69: 553-570.
McIlwain JL and Jones GP (1997) Prey selection by an obligate coral-feeding wrasse and its response to small-scale disturbance. Mar Ecol Prog Ser 155: 189-198.
McMahon KW, Johnson BJ and Ambrose WG (2005) Diet and movement of the killfish, Fundulus heteroclitus, in a Maine salt marsh assessed using gut contents and stable isotope analyses. Estuaries 28: 966-973.
Michener RH and Schell DM (1994) Stable isotope ratios as tracers in marine aquatic food weds. In: Stable Isotopes in Ecology and Environmental science, Lajtha k and Michener RH (Eds). Blackwell, Oxford. pp. 138-157.
Minagawa M and Wada E (1984) Stepwise enrichment of 15N along food chains: further evidence and the relation between δ15N and animal age. Geochim Cosmochim Acta 48: 1132-1140.
Moncreiff CA and Sullivan MJ (2001) Trophic importance of epiphytic algae in subtropical seagrass beds: evidence from multiple stable isotope analysis. Mar Ecol Prog Ser 215: 93-106.
Montgomery WL and Gerking SD (1980) Marine macroalgae as foods for fishes: an evaluation of potential food quality. Environ Biol Fish 5: 143-153.
Myers RF (1991) Micronesian reef fishes. 2nd. Coral Graphics, Barrigada, Guam. 298 p.
Nakamura Y, Horinouchi M, Nakai T and Sano M (2003) Food habits of fishes in a seagrass bed on a fringing coral reef at Iriomote Island, southern Japan. Ichthyol Res 50: 15-22.
Nursall JR (1977) Territoriality in Redlip blennies (Ophioblennius atlanticus-Pisces: Blenniidae). J Zool Lond 182: 202-223.
Ojeda PF and Munoz AA (1999) Feeding selectivity of the herbivorous fish Scartichthys viridis: effects on macroalgal community structure in a temperate rocky intertidal coastal zone. Mar Ecol Pro Ser 184: 219-229.
Opitz S (1996) Trophic interactions in Caribbean coral reefs. Tech Rep 43, ICLARM, Manila. 341 p.
Overman NC and Parrish DL (2001) Stable isotope composition of walleye: δ15N accumulation with age and area-specific differences in δ13C. Can J Fish Aquat Sci 58: 1253-1260.
Paterson G, Drouillard KG and Haffner GD (2006) Quantifying resource partitioning in centrarchids with stable isotope analysis. Limnol Oceanogr 51: 1038-1044.
Pearson TH and Black KD (2001) The environmental impacts of marine fish cage culture. In: Environmental Impacts of Aquaculture, Black KD (Ed). Sheffield Academic Press, Sheffield. pp. 1-31.
Pearson T and Rosenberg R (1978) Macrobenthic successions in relation to organic enrichment and pollution of the marine environment. Oceanogr Mar Biol Annu Rev 16: 229-311.
Peragon J, Barroso JB, Garcia-Salguero L, de la Higuera M and Lupianez JA (1994) Dietary protein effects on growth and fractional protein synthesis and degradation rates in liver and white fish muscle of rainbow trout (Oncorhynus mykiss). Aquaculture 124: 32-46.
Perga ME and Gerdeaux (2005) ‘Are fish what they eat’ all year round? Oecologia 144: 598-606.
Peterson BJ and Fry B (1987) Stable isotopes in ecosystem studies. Annu Rev Ecol Syst 18: 293-320.
Peterson BJ, Howarth RW and Garritt RH (1985) Multiple stable isotopes used to trace the flow of organic matter in estuarine food webs. Science 227: 1361-1363.
Phillips DL (2001) Mixing models in analyses of diet using multiple stable isotopes: a critique. Oecologia 127: 166-170.
Pinnegar JK and Polunin NVC (1999) Differential fractionation of δ13C and δ15N among fish tissues: implications for the study of trophic interactions. Funct Ecol 13: 222-231.
Polovina JJ (1984) Model of a coral-reef ecosystem I. The ECOPATH model and its application to France Frigate Shoals. Coral Reefs 3: 1-11.
Polunin NVC (1988) Efficient uptake of algal production by a single resident herbivorous fishes on the reef. J Exp Mar Biol Ecol 123: 61-76.
Polunin NVC and Klumpp DW (1992) A trophodynamic model of fish production on a windward reef tract. In: Plant-animal interactions in the marine benthos, John DM et al. (eds). Clarendon press, Oxford. pp. 213-223.
Polunin NVC, Morales-Nin B, Pawsey WE, Cartes JE, Pinnegar JK and Moranta J (2001) Feeding relationships in Mediterranean bathyal assemblages elucidated by stable nitrogen and carbon isotope data. Mar Ecol Pro Ser 220: 13-23.
Polunin NVC and Pinnegar JK (2002) Trophic ecology and the structure of marine food webs. In: Handbook of Fish Biology and Fisheries, Hart PB and Reynolds JD (eds). Blackwell Publishing. pp. 301-320.
Quevedo, M and Olsson J (2006) The effect of small-scale resource origin on trophic position estimates in Eurasian perch. J Fish Biol 69: 141-150.
Randall JE (1967) Sponge-feeding fishes of the West Indies. Mar Biol 1: 216-225.
Randall JE, Allen GR and Steene RC (1990) Fishes of the Great Barrier Reef and Coral Sea. Crawford House press, Bathurst.
Risk MJ and Erdmann MV (2000) Isotopic composition of nitrogen in Stomatopod (Crustacea) tissues as an indicator of human sewage impacts on Indonesian coral reefs. Mar Pollut Bull 40: 50-58.
Risk MJ and Sammacro PW (1982) Bioerosion of corals and the influence of damselfish territoriality: a preliminary study. Oecologyia 52: 376-380.
RenYP and Zen XQ (1998) Biological monitoring of organic pollution induced by marine abalone cage culture. J Ocean Univ Qingdao 28: 410-414.
Roberts CM (1985) Resource sharing in territorial herbivorous reef fishes. Proc Int 5th Reef Congr, Tahiti 4: 17-22.
Roberts CM (1987) Experimental analysis of resource sharing between herbivorous damselfish and blennies on the Great Barrier Reef. J Exp Mar Biol Ecol 111: 61-75.
Post DM (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83: 703-718.
Roth JD and Hobson KA (2000) Stable carbon and nitrogen isotopic fractionation between diet and tissue of captive red fox: implications for dietary reconstruction. Can J Zool 78: 848-852.
Russ GR and St John J (1989) Diets, growth rate and secondary production of herbivorous coral reef fishes. Proc 6th Int Coral Reef Symp, Australia 2: 37-43.
Sale (1971) Extremely limited home range in a coral reef fish Dascyllus aruanus (Pisces: Pomacentridas). Anim Behav 19: 251-256.
Sale PF (1991) The ecology of fishes on coral reefs. Academic Press, San Diego.
Sano M, Shimizu M and Nose Y (1984) Food habits of teleostean reef fishes in Okinawa Island, southern Japan. Univ Mus of Tokyo Bull 25: 1-128.
Sarà G, Scilipoti D, Milazzo M and Modica A (2004) Effects of fish farming waste to sedimentary and particulate organic matter in a southern Mediterranean area (Gulf of Castellammare, Sicily): a multiple stable isotope study (δ13C and δ15N). Aquaculture 234: 119-213.
Sarà G, Scilipoti D, Milazzo M and Modica A (2006) Use of stable isotopes to investigate dispersal of waste from fish farms as a function of hydrodynamics Mar Ecol Prog Ser 313: 261-270.
Schoener TW (1970) Non-synchronous spatial overlap of lizards in patchy habitats. Ecology 51: 408-418.
Sholto-Douglas AD, Field JG, James AG and van der Merwe NJ (1991) 13C/12C and 15N/14N isotope rations in the southern Benguela Ecosystem: indicators of food web relationships among different size-classes of plankton and pelagic fish; differences between fish muscle and bone collage tissues. Mar Ecol Prog Ser 78: 23-31.
Shpigel M (1982) Niche overlap among two species of coral dwelling fishes of the genus Dascyllus (Pomacentridae). Environ Biol Fish 7: 62-68.
Smith MM and Heemstra PC (1986) Smiths’ sea fishes. J L B Smith Inst of Ichthyology, Grahamstown. 1047 pp.
Sorokin YuI (1995) Coral reef ecology. Springer, Berlin.
Stoner AW and Zimmerman RJ (1988) Food pathways associated with penaeid shrimps in a mangrove-fringed estuary. Fish Bull 86: 543-551.
Strömberg H and Kvarnemo C (2005) The effects of territorial damselfish on cryptic bioeroding organisms on dead Acropora formosa. J Exp Mar Biol Ecol 327: 91-102.
Suyehiro Y (1942) A study on the digestive system and feeding habits of fish. Jap J Zool 10: 1-303.
Takama H (1980) Composition and seasonal variation of the phytal animal community in the Zostera belt. Bull Kanagawa Pref Ish Exp St 1: 73-79.
Tieszen LL, Boutton TW, Tesdahl KG and Slade NA (1983) Fractionation and turnover of stable carbon isotopes in animal tissues: Implications for delta-13C analysis of diet. Oecologia 57: 34-37.
Tewfik A, Rasmussen JB and McCann KS (2005) Anthropogenic enrichment alters a marine benthic food web. Ecology 86: 2726-2736.
Townsend KA and Tibbetts IR (2000) Biomass and distribution of herbivorous blennies in the southern Great Barrier Reef. J Fish Biol 56: 775-791.
Townsend KA and Tibbetts IR (2004) The ecological significance of the combtoothed blenny in a coral reef ecosystem. J Fish Biol 65: 77-90.
Thresher RE (1976) Field analysis of the territoriality of the threespot damselfish, Eupomacentrus planifrons (Pomacentridae). Copeia (1): 266-276.
Tsemel A, Spanier E, Angel DL (2006) Benthic communities of artificial structures: Effects of mariculture in the Gulf of Aqaba (Eilat) on development and bioaccumulation. Bull Mar Sci 78: 103-113.
Umezawa Y, Miyajima T, Yamamuro M, Kayanne H and Koike I (2002) Finescale mapping of land-derived nitrogen in coral reefs by δ15N in macroalgae. Limnol Oceanogr 47: 1402-1416.
Vanni MJ and DeRuiter PC (1996) Detritus and nutrients in food webs. In: Food webs: integration of patterns and dynamics, Polis GA and Winemiller WO (eds). Chapman and Hall. pp. 22-29.
Vivien ML (1973) Contribution a la connaissance de lethaogie alimentaire de lichthyofune du platier intern des recifs corallines de Tulear (Madagascar). Tethys Suppl 5: 211-308.
Vizzini S and Mazzola A (2004) Stable isotope evidence for the environmental impact of a land-based fish farm in the western Mediterranean. Mar Pollut Bull 49: 61-67.
Vizzini S, Savona B, Chi TD and Mazzola A (2005) Spatial variability of stable carbon and nitrogen isotope ratios in a Mediterranean coastal lagoon. Hydrobiologia 550: 73-82.
Wada E, Mizutani H and Minagawa M (1991) The use of stable isotopes for food web analysis. Crit Rev Food Sci Nutr 30: 361-371.
Walker DI (1984) Algal lawns in the Gulf of Aqaba, Red Sea. Ph D Thesis, University of York, U.K. 188 pp.
Weaver MJ, Magnuson JJ and Clayton KM (1997) Distribution of littoral fishes in structurally complex macrophytes. Can J Fish Aquat Sci 54: 2277-2289.
Werner EE, Hall DJ, Laughlin DR, Wagner DJ, Wilsmann LA, and Funk FC (1977) Habitat partitioning in a freshwater fish community. J Fish Res Board Can 34: 360-370.
Williams AH (1980) The threespot damselfish: a non-carnivorous keystone species. Am Nat 116: 138-142.
Wilson SK (2000) Trophic status and feeding selectivity of blennies (Blenniidae: Salariini). Mar Biol 136: 431-437.
Wilson SK (2004) Growth, mortality and turnover rates of a small detritivorous fish. Mar Ecol Pro Ser 284: 253-259.
Wilson SK and Bellwood DR (1997) Cryptic dietary components of territorial damselfish (Pomacentridae, Labroidei). Mar Ecol Pro Ser 153: 299-310.
Wilson SK, Bellwood DR, Choat JH and Furnas MJ (2003) Detritus in the epilithic algal matrix and its use by coral reef fishes. Oceanogr Mar Biol Annu Rev 41: 279-309.
Wilson RP and Poe WE (1974) Nitrogen metabolism in channel catfish, Ictalurus punctatus. III Relative pool sizes of free amino acids and related compounds in various tissues of the catfish. Comp Biochem and Physiol 48B: 542-556.
Yamamuro M, Kayanne H and Minagawa M (1995) Carbon and nitrogen stable isotopes of primary producers in coral-reef ecosystems. Limnol Oceanogr 40: 617-621.
Zeller DC (1988) Short term effects of territoriality of a tropical damselfish and experimental exclusion of large fishes on invertebrates in algal turfs. Mar Ecol Prog Ser 44: 82-93.
Zohary T, Erez J, Gophen M, Berman-Frank I and Stiller M (1994) Seasonality of stable carbon isotopes within the pelagic food web of Lake Kinneret. Limnol Oceanogr 39: 1030-1043.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27836-
dc.description.abstract魚類在珊瑚礁生態系統中數量眾多,是重要的消費者。魚類食性的研究可以闡釋礁區生物種間複雜掠食關係,增進對海洋生態系能量傳遞鍵結的瞭解,因此是生態學研究的一個重要課題。雀鯛科魚類 (Damselfishes; Pomacentridae) 是棲息於熱帶珊瑚礁及亞熱帶礁區海域的重要魚類之一,以往雀鯛科魚類的食性資料,都是藉由分析魚類個體的胃內含物而獲得。胃內含物分析 (Stomach content analysis) 所顯示的是生物個體被捕獲前一刻的攝食情況,但對於碎屑或是細小生物類的食物,並無法進一步定性與定量。在另外一方面,由於攝食者身上組織的穩定同位素13C/12C及15N/14N值會分別比其食物項的為高,因此可以應用在攝食生態的研究上。本論文以雀鯛科魚類做為研究的材料,利用胃內含物與穩定性同位素兩種分析方法,重新檢視這些魚類的食性以及食物資源在體內的吸收利用。文中所探討的課題包括:變色雀鯛食性的時序性變動、真雀鯛間的食性比較、太平洋真雀鯛與鳚科魚類間的攝食互動以及人為營養源對雀鯛食性的影響。所收集到的資料經過分析,獲得如下結果:變色雀鯛個體的肝臟有高於白肉組織的同位素替換速率,能快速反映出環境中食物源同位素的改變,而白肉組織的同位素值則較為穩定,屬長期累積的結果。另外,草食性的領域性真雀鯛可能是以棲身在領域內藻床上的多毛類動物為食,其藻耕行為則是為了培養多毛類食物,而太平洋真雀鯛與鳚科魚類之間領域的重疊則可能是一種互利的現象。此外,小琉球箱網養殖所產生的殘餌,會直接被雀鯛所攝食或由浮游生物攝食後再傳送到雀鯛魚類,而不是經由基礎生產者往高階的消費者的這一途徑傳送。由於這些新的發現,我們得以對珊瑚礁生態系中的食物網及魚類的攝食關係提出一些新的觀點,並建議重新檢定珊瑚礁區草食性魚類的營養源,以進一步瞭解魚類的攝食生態。zh_TW
dc.description.abstractA sheer number of fishes inhabit coral reefs, where they are also major consumers. Complex feeding interactions occur between fishes and their preys. Since these interactions involve fluxes of nutrients and energy, there is a need to learn their feeding relationships to elucidate the thermodynamics on coral reefs. Damselfishes (Pomacentridae) are common inhabitants on both coral reefs and sandstone reefs. Previously the dietary data of damselfishes was mostly based on conventional stomach content analysis. However, stomach content analysis reflects short-term diets of fishes, and food items that are digested quickly, such as detritus and invertebrates, are generally difficult to identify and enumerate. Because the stable isotopes in tissues of consumers are typically enriched relative to those of their prey, stable isotope analysis was used to study feeding ecology of fishes here. In this study, damselfishes were used as materials. Their dietary components and potential foods were examined by both stomach content and stable isotope analyses. Issues dealt with included temporal dietary changes of neon damsel, dietary comparisons between Stegastes spp., feeding interactions between a territorial damselfish and blennies, and the effect of anthropogenic enrichment on diets of damselfishes. Results revealed that in the neon damsel, the liver bore a higher isotope turnover rate compared with the white muscle, thus might reflect rapidly changes of δ13C and δ15N from the food source. In contrast, isotopic signature of the white muscle was steadier, reflecting a sign of long-term accumulation. The major organic source for algal-farming Stegastes damselfishes was likely to be the polychaetes hidden in the algal lawn. The algae farmed by the fish were possibly to secure polychaetes rather than to use as food source. Moreover, the widespread territory overlap between Pacific gregory and blennies was possibly a sign of mutualism. Fish feeds released by cage fish farms in Siaoliouciou Island were taken by resident damselfishes either by direct ingestion or by way of uptake by zooplankton. Thus the retention of nutrient enrichment had gotten through in a food chain not involving primary producers such as algae. These findings have unraveled insights into food webs on coral reefs and feeding relationships between reef fishes. Overall, it is suggested that the nutrient source of herbivorous fishes on coral reefs be re-examined for a better understanding of the feeding ecology of fishes.en
dc.description.provenanceMade available in DSpace on 2021-06-12T18:23:15Z (GMT). No. of bitstreams: 1
ntu-96-D91241004-1.pdf: 8161539 bytes, checksum: 40f8c7d2f66428c6d0b7474f2f856f72 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents口試委員會審定書•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• Ⅰ
誌謝••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• Ⅱ
中文摘要•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• Ⅲ
英文摘要•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• Ⅳ
目錄•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• Ⅴ
第一章 緒論•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 1
第二章 變色雀鯛穩定性同位素的時序性變動•••••••••••••••••••••••••••••• 7
2.1 前言•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 7
2.2 材料與方法••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 8
2.3 結果••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 11
2.4 討論••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 14
2.5 表••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 18
2.6 圖••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 20
第三章 領域性雀鯛食性的再評估•••••••••••••••••••••••••••••••••••••••••••••••••••• 32
3.1 前言•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 32
3.2 材料與方法••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 33
3.3 結果••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 37
3.4 討論••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 41
3.5 表••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 46
3.6 圖••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 48
第四章 鳚科魚類與太平洋真雀鯛之間的食性分析•••••••••••••••••••••••••••• 58
4.1 前言••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 58
4.2 材料與方法•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 59
4.3 結果•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 61
4.4 討論•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 65
4.5 表•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 68
4.6 圖•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 70
第五章 箱網養殖對海域內雀鯛科魚類食物鏈的影響••••••••••••••••••••••••••• 80
5.1 前言•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 80
5.2 材料與方法••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 81
5.3 結果••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 84
5.4 討論••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 89
5.5 表••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 93
5.6 圖••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 100
第六章 結論•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 113
參考文獻•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 115
附錄••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 130
dc.language.isozh-TW
dc.title雀鯛科魚類攝食關係再評估zh_TW
dc.titleA re-appraisal of feeding relationships of damselfishesen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree博士
dc.contributor.coadvisor詹榮桂
dc.contributor.oralexamcommittee陳仲吉,高樹基,陳正平,陳正虔
dc.subject.keyword雀鯛,珊瑚礁,草食動物,領域性,穩定同位素,zh_TW
dc.subject.keyworddamselfish,coral reef,herbivore,territoriality,stable isotope,en
dc.relation.page196
dc.rights.note有償授權
dc.date.accepted2007-08-17
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept海洋研究所zh_TW
顯示於系所單位:海洋研究所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  目前未授權公開取用
7.97 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved