請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27832完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鍾孫霖(Sun-Lin Chung) | |
| dc.contributor.author | Da-Ren Wen | en |
| dc.contributor.author | 溫大任 | zh_TW |
| dc.date.accessioned | 2021-06-12T18:23:02Z | - |
| dc.date.available | 2008-08-28 | |
| dc.date.copyright | 2007-08-28 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-08-19 | |
| dc.identifier.citation | Aitchison, J.C., Davis, A.M., Ali, J.R. et al., 2004. Stratigraphic and sedimentary constraints on the age and tectonic evolution of the Neotethyan ophiolites along the Yarlung Tsangpo suture zone, Tibet. In: Dilek, Y., Robinson, P. T. (eds.) Ophiolites in Earth History. Geological Society, London, Special Publications 218, 147-164.
Allègre, C.J., Courillot, V., Tapponnier, P., Hirn, A., Mattauer, M., Coulon, C., Jaeger, J.J., Achache, J., Schärer, U., Marcoux, J., Burg, J.P., Girardeau, J., Armijo, R., Gariépy, C., Göpel, C., Li, T., Xiao, X., Chang, C., Li, G., Lin, B., Teng, J., Wang, N., Chen, G., Han, T., Wang, X., Den, W., Sheng, H., Cao, Y., Zhou, J., Qiu, H., Bao, P., Wang, S., Wang, B., Zhou, Y., Xu, R., 1984. Structure and evolution of the Himalaya-Tibet orogenic belt. Nature 307, 17-22. Anderson, J.L., 1996. Status of thermobarometry in granitic batholiths. Trans. Roy. Soc. Edinburgh Earth Sci., 87, 125-138. Arndt, N.T., Goldstein, S.L., 1987. Use and abuse of crust-formation ages. Geology 15, 893-895. Atherton, M.P., Petford, N., 1993. Generation of sodium-rich magmas from newly underplated basaltic crust. Nature 362, 144-146. Barth, A.P., 1990. Mid-crustal emplacement of Mesozoic plutons, San Gabriel Mountains, California, and implications for the geologic history of the San Gabriel terrane. In Anderson, J.L. (ed) The nature and origin of Cordilleran magmatism. Geological Society of America Memoir 174, 33-45. Belousova, E.A., Griffin, W.L., O’Reilly, S.Y., Fisher, N.I., 2002. Igneous zircons: Trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology 143, 602-622. Black, L.P. Kamo, S.L., Allen, C.M., Davis, D.W., Aleinikoff, J.N., Valley, J.W., Mundil, R., Campbell, I.H., Korsch, R.J., Williams, I.S., Foudoulis, C., 2004. Improved 206Pb/238U microprobe geochronology by monitoring of a trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards. Chemical Geology 205, 115-140. Booker, J.R., Favetto, A., Pomposlello, M.C., 2004. Low electrical resistivity associated with plunging of the Nazca flat slab beneath Argentina. Nature 429, 399-403. Booth, A.L., Zeitler, P.K., Kidd, W.S.F., 2004. U-Pb zircon constraints on the tectonic evolution of southeastern Tibet, Namche Barwa area. American Journal of Science 304, 889-929. Bradon, A.D., Creaser, R.A., Chacko, T., 1996. Constraints on rates of granitic magma transport from epidote dissolution kinetics. Science 271, 1845-1848. Burg, J.-P., Nievergelt, P., Oberli, F. Seward, D., Davy, P., Maurin, J.C., Diao, Z., Meier, M., 1998. The Nambshe- Barwa syntaxis: Evidence for exhumation related to compressional crustal folding. Journal of Asian Earth Sciences 16, 239-252. Butler, R., 1995. When did India hit Asia? Nature 373, 20-21. Chang, C., Cheng, H., 1973. Tectonic features of the Mount. Jolmo Lungma region in southern Tibet, China. Sci. Sinica 16, 257-265. Chappell, B.W., White, A.J.R., 1974. Two contrasting granite types. Pacific Geology 8, 173-174. Chemenda, A.I., Burg, J.-P., Mattauer, M., 2000. Evolutionary model of the Himalaya-Tibet system: geopoem based on new modeling, geological and geophysical data. Earth and Planetary Science Letters 174, 397-409. Chu, M.-F., 2006. Application of ICP-MS to the study of Trans-Himalayan petrogenesis. Unpubl. PhD thesis, National Taiwan University. Chu, M.-F., Chung, S.-L., Song, B., Liu, D., O’Reilly, S.Y., Pearson, N.J., JI, J., Wen, D.-J., 2006. Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet. Geology 34, 745-748. Chung, S.-L., Liu, D., Ji, J., Chu, M.-F., Lee, H.-Y., Wen, D.-J., Lo, C.-H., Lee, T.-Y., Qian, Q., Zhang, Q., 2003. Adakite from continental collision zones: Melting of thickened lower crust beneath southern Tibet. Geology 31, 1021-1024. Chung, S.-L., Chu, M.-F., Zhang, Y., Xie, Y., Lo, C.-H., Lee, T.-Y., Lan, C.-Y., Li, X., Zhang, Q., Wang, Y., 2005. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth-Science Reviews 68, 173-196. Collins, W.J., 2002. Hot orogens, tectonic switching, and creation of continental crust. Geology 30, 535-538. Copeland, P., Harrison, T.M., Pan, Y., Kidd, W.S.F., Roden, M., Zhang, M., 1995. Thermal evolution of the Gangdese batholith, southern Tibet: A history of episodic unroofing. Tectonics 14, 223-236. Coulon, C., Maluski, H., Bollinger, C., Wang, S., 1986. Mesozoic and Cenozoic volcanic rocks from central and southern Tibet: 40Ar/39Ar dating, petrological characteristics and geodynamic implications. Earth and Planetary Science Letters 79, 281-302. Davies, J.H., von Blanckenburg, F., 1995. Slab breakoff: A model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens. Earth and Planetary Science Letters 129, 85-102. Debon, F., Sonet, J., Liu, G.H., Jin, C.W., Xu, R.-H., 1982. Major chemical-mineralogical characters and Rb-Sr dating of the three plutonic belts in southern Tibet. CR Acad. Sci. II 295, 213-218. Debon, F., Le Fort, P., Sheppard, S.M.F., Sonet, J., 1986. The four plutonic belts of the Transhimalaya-Himalaya: A chemical, mineralogical, isotopic and chronological synthesis along a Tibet-Nepal section. Journal of Petrology 27, 219-250. Defant, M.J., Drummond, M.S., 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347, 662-665. Ding, L., Lai, C., 2003. Geologic evidence for preexisting crustal thickening and uplift in the Lhasa terrane before the Indo-Asian collision. Science in China 48, 836-842. Ding, L., Zhong, D., Yin, A. Ding, L., Zhong, D., Yin, A., Kapp, P., Harrison, T.M., 2001. Cenozoic structural and metamorphic evolution of the eastern Himalayan syntaxis (Namche Barwa). Earth and Planetary Science Letters 192, 423-438. Dong, G., Mo, X.X., Zhao, Z., Wang, L. Zhou, S., 2005. A new understanding of the stratigraphic successions of the Linzizong volcanic rocks in the Linzhou basin, northern of Lhasa, Tibet. Geological Bulletin China 24, 549-557. Dubois-Cote, V., Hebert, R., Dupuis, C., Wang, C.S., Li, Y.L., Dostal, J., 2005. Petrologic and geochemical evidence for the origin of the Yarlung Zhanbo ophiolites, southern Tibet. Chemical Geology 214, 265-286. Ducea, M.N., 2001. The California arc: Thick granitic batholiths, eclogitic residues, lithosphere-scale thrusting, and magmatic flare-ups. GSA Today 11, 4-10. Dupuis, C. Hébert, R., Dubois-Côté, V., Wang, C.S., Li, Y.L., Li, Z.J., 2005. Petrology and geochemistry of mafic rocks from mélange and flysch units adjacent to the Yarlung Zangbo suture zone, southern Tibet. Chemical Geology 214, 287-308. England, P.C., Searle, M.P., 1986. The Cretaceous-Tertiary deformation of the Lhasa block and its implications for crustal thickening in Tibet. Tectonics 5, 1-14. Foden, J., Song, S.H., Turner, S., Elburg, M., Smith, P.B., Van der Steldt, B., Van Penglis, D., 2002. Geochemical evolution of lithospheric mantle beneath S.E. South Australia. Chemical Geology, 182, 663-695. Fujimaki, H., Tatsumoto, M., Aoki, K., 1984. Partition coefficients of Hf, Zr and REE between phenocrysts and groundmass. Journal of Geophysical Research 89, 662-672. Gehrels, G.E., DeCelles, P.G., Martin, A., Ojha, T.P., Pinhassi, G., 2003. Initiation of the Himalayan orogen as an Early Paleozoic thin-skinned thrust belt. GSA Today 13, no. 9, 4-9. Geng, Q., Pan, G., Zheng, L. Chen, Z., Fisher, R.D., Sun, Z., Ou, C., Dong, H., Wang, X., Li, S., Lou, X., Fu, H., 2006. The Eastern Himalayan syntaxis: Major tectonic domains, ophiolitic mélanges and geologic evolution. Journal of Asian Earth Sciences 27, 265-285. Gütscher, M-A., Spakman, W., Bijwaard, H., Engdahl, E.R., 2000. Geodynamics of flat subduction: Seismicity and tomographic constraints from the Andean margin. Tectonics 19, 814-833. Guynn, J.H., Kapp, P., Pullen, A., Heizler, M., Gehrels, G., Ding, L., 2006. Tibetan basement rocks near Amdo reveal “missing” Mesozoic tectonism along the Bangong suture, central Tibet. Geology 34, 505-508. Harris, N.B.W., Xu, R.-H., Lewis, C.L., Jin, C., 1988a. Plutonic rocks of the 1985 Tibet Geotraverse: Lhasa to Golmud. Philos. Trans. R. Soc. London, A327, 145-168. Harris, N.B.W., Xu, R.H., Lewis, C.L., Hawkesworth, C.J., Zhang, Y., 1988b. Isotope geochemistry of the 1985 Tibet transverse: Lhasa to Golmud. Philos. Trans. R. Soc. London, A327, 263-285. Harris, N.B.W., Inger, S., Xu, R.H., 1990. Cretaceous plutonism in central Tibet: An example of post-collision magmatism? Journal of Volcanology and Geothermal Research, 44, 21-32. Harrison, T.M., Yin, A., Grove, M., Lovera, O.M., Ryerson, F.J., Zhou, X., 2000. The Zedong Window: A record of superposed Tertiary convergence in southeastern Tibet. Journal of Geophysical Research 105, 19221-19230. Haschke, M., Siebel, W., Günther, A., Scheuber, E., 2002a. Repeated crustal thickening and recycling during the Andean orogeny in the north Chile (21˚-26˚S). Journal of Geophysical Research 107, 101029-101046. Haschke, M., Scheuber, E., Günther, A., Reutter, K.-J., 2002b. Evolutionary cycles during the Andean orogeny: repeated slab breakoff and flat subduction? Terra Nova 14, 49-56. Hensel, H.-D., McCulloch, M.T., Chappell, B.W., 1985. The New England Batholith: constraints on its derivation from Nd and Sr isotopic studies of granitoids and country rocks. Geochim. Cosmochim. Acta 49, 369-384. Hodges, K.V., 2000. Tectonics of the Himalaya and southern Tibet from two perspectives. Geological Society of America Bulletin 112, 324-350. Hoskin, P.W.O., Schaltegger, U., 2003. The composition of zircon and igneous and metamorphic petrogenesis. In: J.M. Manchar, P.W.O. Hoskin (eds.) Zircon. Reviews of Mineralogy and Geochemistry 53, 27-62. Hu, D., Wu, Z., Ye, P., Jiang, W., 2003. SHRIMP U-Pb ages of zircons from dioritic gneiss in the Nyainqentanglha mountain, Tibet. Geological Bulletin China 22, 936-940. (in Chinese). Hyndman, R.D., Currie, C.A., Mazzotti, S.P., 2005. Subduction zone backarcs, mobile belts, and orogenic heat. GSA Today 15, no. 2, 4-10, doi: 10:1130/1052-5173. Irving, A.J., Frey, F.A., 1978. Distribution of trace elements between garnet megacrysts and host volcanic liquids of kimberlitic to rhyolitic composition. Geochim. Cosmochim. Acta 42, 771-787. Jahn, B.M., 2004. The Central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic. In: Malpas, J., Fletcher, C.J.N., Aitchison, J.C. (eds.) Aspects of the tectonic evolution China. Geological Society, London, Special Publications 226, 73-100. Jiang, W., Mo, X.X., Zhao, C., Guo, T. Zhang, S., 1999. Geochemistry of granitoids and mafic microgranular enclaves in the Gangdese belt. Acta Petrologica Sinica 15, 89-97. (in Chinese). Jin, C.W., Xu, R.H., 1984. Les granitoïdes de la partie centrale de l'Himalaya et du Gangdise au Xizang (Tibet) méridional. In: Mercier, J.L., Li, G.C. (eds.) Mission Franco-Chinoise au Tibet 1980, Paris. Cent. Natl. Rech. Sci., 289-308. Kapp, J.L.D., Harrison, T.M., Kapp, P., Grove, M., Lovera, O. M., Lin, D., 2005a. Nyainqentanglha Shan: A window into the tectonic, thermal, and geochemical evolution of the Lhasa block, southern Tibet. Journal of Geophysical Research 110, B08413, doi:10.1029/2004JB003330. Kapp, P., Yin, A., Harrison, T.M., Ding, L., 2005b. Cretaceous-Tertiary shortening, basin development, and volcanism in central Tibet. Geological Society of America Bulletin 117, 865-878. Kay, R.W., Kay, S.M., 1993. Delamination and delamination magmatism. Tectonophysics 217, 177-189. Kay, S.M., Mpodozis, C., 2001. Central Andean ore deposit linked to evolving shallow subduction systems and thickening crust. GSA Today 11, no. 3, 4-9. Kay, R.W., Kay, S.M., 2002. Andean adakites: Three ways to make them. Acta Petrologica Sinica 18, 303-311. Kay, S.M., Mpodozis, C., 2002. Magmatism as a probe to the Neogene shallowing of the Nazca plate beneath the Chilean flat-slab. Journal of South American Earth Sciences 15, 39-57. Keay, S.M., Collins, W.J., McCulloch, M.T., 1997. A three-component mixing model for granitoids genesis: Lachlan Fold Belt, eastern Australia. Geology, 25, 307-310. Kidder, S., Ducea, M., Gehrels, G., Patchett, P.J., Vervoort, J., 2003. Tectonic and magmatic development of the Salinian Coast Range Belt, California. Tectonics 22, 1058. doi:10.1029/2002TC001409. Lee, C.-T.A., Cheng, X., Horodyskyj, U., 2006. The development and refinement of continental arcs by primary basaltic magmatism, garnet pyroxenite accumulation, basaltic recharge and delamination: insights from the Sierra Nevada, California. Contributions to Mineralogy and Petrology 151, 222-242. Lee, C.Y., Tsai, J.H., Ho, H.H., Yang, T.F., Chung, S.L., Chen, C.H., 1997. Quantitative analysis in rock samples by an X-ray fluorescence spectrometer (I) major elements. Program with Abstracts of 1997 Annual Meeting of Geological Society of China, Taipei, pp. 418– 420. in Chinese. Lee, H.-Y., 2007. The Linzizong Volcanic Successions, southern Tibet: Ages, geochemical characteristics and petrogenesis. PhD thesis, National Taiwan University. Lee, H.-Y., Chung, S.-L., Wang, Y.-B., Zhu, D.-C., Yang, J.-H., Song, B., Liu, D., Wu, F.-Y., 2007. Zircon U-Pb and Hf isotopic constraints from the Linzhou basin on the onset timing and petrogenesis of the Linzizong Volcanic Successions, southern Tibet. Acta Petrologica Sinica, in press. Lee, T.-Y., Lawver, L.A., 1995. Cenozoic plate reconstruction of Southeast Asia. Tectonophysics 251, 85-138. Leier, A.L., DeCelles, P.G., Kapp, P., Ding, L., 2007. The Takena Formation of the Lhasa terrane, southern Tibet: The Record of a Late Cretaceous retroarc foreland basin. Geological Society of America Bulletin 119, 31-48. Liang, Y.-H., Chung, S.-L., Liu, D., O’Reilly, S. Y., Chu, M.-F., Ji, J., Song, B., Pearson, N. J., 2004. Detrital zircon study along the Tsangpo River, SE Tibet, Eos Trans. AGU, 85(47), Fall Meeting Abstract T53A-0466. Liang, Y.-H., Chung, S.-L., Liu, D. et al., 2006. Detrital zircon evidence from Burma for reorganization of the eastern Himalayan river system. American Journal of Science, submitted. Liu, D., Jian, P., Kröner, A., Xu, S., 2006. Dating of prograde metamorphic events deciphered from episodic zircon growth in rocks of the Dabie-Sulu UHP complex, China. Earth and Planetary Science Letters 250, 650-666. Liu, Y.-S., Yang, H.-J., Shau, Y.-H., Meng, F., Zhang, J., Yang, J., Xu, Z., Yu, S.-C., 2007. Compositions of high Fe-Ti eclogites from the Sulu UHP metamorphic terrane, China: HFSE decoupling and protolith characteristics. Chemical Geology 239, 64-82. Maluski, H., Proust, F., Xiao, X.C., 1982. 39Ar/40Ar dating of the trans-Himalayan calc-alkaline magmatism of southern Tibet. Nature 298, 152-154. Maruyama, S., 1997. Pacific-type orogeny revisited: Miyashiro-type orogeny proposed. Island Arc 6, 121-142. Martin, H., 1999. Adakitic magmas: Modern analogues of Archean granitoids. Lithos 46, 411-429. McDermid, I.R.C., Aitchison, J.C., Davis, A.M., Harrison, T.M., Grove, M., 2002. The Zedong terrane: A Late Jurassic intra-ocenaic magmatic arc within the Yarlung-Tsangpo suture zone, southeastern Tibet. Chemical Geology 187, 267-277. Meert, J.G., 2003. A synopsis of events related to the assembly of eastern Gondwana. Tectonophysics 362, 1-40. Miller, C., Schuster, R., Klötzli, U., Frank, W., Purtscheller, F., 1999. Post-collisional potassic and ultrapotassic magmatism in SW Tibet: Geochemical and Sr-Nd-Pb-O isotopic constraints for mantle source characteristics and petrogenesis. Journal of Petrology 40, 1399-1424. Mo, X., Dong, G., Zhao, Z., Zhou, S., Wang, L., Qiu, R., Zhang, F., 2005. Spatial and temporal distribution and characteristics of granitoids in the Gangdese, Tibet and implication for crustal growth and evolution. Geological Journal of Chinese University 11, 281-190 (in Chinese with English abstract). Mo, X., Hou, Z., Niu, Y., Dong, G., Qu, X., Zhao, Z., Yang, Z., 2007. Mantle contributions to crustal thickening during continental collision: Evidence from Cenozoic igneous rocks in southern Tibet. Lithos 96, 225-242. Mossonne, H.J., Schreyer, W., 1987. Phengite geobarometry based on the limiting assemblage with K-feldspar, phlogopite, and quartz. Contributions to Mineralogy and Petrology 96, 212-234. Murphy, M.A., Yin, A., Harrison, T.M., Dürr, S.B., Chen, Z., Ryerson, F.J., Kidd, W.S.F., Wang, X., Zhou, X., 1997. Did the Indo-Asian collision alone create the Tibetan plateau? Geology 25, 719-722. Nelson, S.T., Montana, A., 1992. Sieve-textured plagioclase in volcanic rocks produced by rapid decompression. American Mineralogist 77, 1242-1249. Pan, G., Ding, J., Yao, D., Wang, L., compilers, 2004a. Geologic map of the Qinghai-Xizang (Tibet) plateau and adjacent areas, 1: 1,500,000. Chengdu Cartographic Publication House. Pan, G., Ding, J., Yao, D., Wang, L., compilers, 2004b. The Guide Book of 1: 1,500,000 geologic map of the Qinghai-Xizang (Tibet) plateau and adjacent areas. Chengdu Cartographic Publication House, 48 p. Petford, N., Atherton, M., 1996. Na-rich partial melts from newly underplated basaltic crust: The Cordillera Blanca batholith, Peru. J. Petrol. 37, 1491-1521. Pitcher, W.S., 1982. Granite type and tectonic environment. In: Hsü, K.J. (ed.), Mountain Building Processes, Academic Press, London, 19-40. Quidelleur, X., Grove, M., Lovera, O.M., Harrison, T.M., Yin, A., Ryerson, F.J., 1997. Thermal evolution and slip history of the Renbu Zedong Thrust, southern Tibet. Journal of Geophysical Research 102, 2659-2679. Rapp, R.P., Watson, E.B., Miller, C.F., 1991. Partial melting of amphibolite/eclogite and the orgin of Archean trondhjemites and tonalities. Precambrian Research 51, 1-25. Ratajeski, K., Sisson, T.W., Glazner, A.F., 2005. Experimental and geochemical evidence for derivation of the EI Capitain Granite, California, by partial melting of hydrous gabbroic lower crust. Contributions to Mineralogy and Petrology 149, 713-734. Ratschbacher, L., Frisch, W., Chen, C., Pan, G., 1993. Deformation and motion along the southern margin of the Lhasa block (Tibet) prior to and during the India-Asia collision. Journal of Geodynamics 16, 21-54. Richards, A., Parrish, R., Harris, N., Argles, T., Zhang, L., 2006. Corrlation of lithotectonic units across the eastern Himalaya, Bhutan. Geology 34, 341-344. Rudnick, R.L., Gao, S., 2004. Composition of the continental crust. In: Holland, H.D. and Turekian, K.K. (eds.) Treatise on Geochemistry. Elsevier-Pergamon, Oxford 3, 1-64. Saleeby, J., 2003. Segmentation of the Laramide slab – evidence from the southern Sierra Nevada region. Geological Society of America Bulletin 115, 655-668. Schärer, U., Xu, R.H., Allègre, C.J., 1984. U-Pb geochronology of Gangdese (Transhimalaya) plutonism in the Lhasa-Xigaze region, Tibet. Earth and Planetary Science Letters 69, 311-320. Schmidt, M.W., Poli, S., 2004. Magmatic epidote. In: Schmidt, M.W. and Poli, S. (eds.) Reviews of Mineralogy and Geochemistry 56, 399-430. Searle, M.P., Wind ley, B.F., Coward, M.P., Cooper, D.J.W., Rex, A. J., Rex, D., Li, T., Xiao, X., Jan, M. Q., Thakur, V. C., Kumar, S., 1987. The closing of Tethys and the tectonics of the Himalaya. Geological Society of America Bulletin 98, 678-701. Sial, A. N., Toselli, A. J., Saavedra, J., Parada, M. A., Ferreira, V. P., 1999. Emplacement, petrological and magnetic susceptibility characteristics of diverse magmatic epidote-beraring granitoid rocks in Brazil, Argentina and Chile. Lithos 46, 367-392. Sisson, T.W., 1994. Hornblende-melt trace-element partitioning measured by ion microprobe. Chemical Geology 117, 331-344. Sisson, T.W., Grove, T.L., Coleman, D.S., 1996. Hornblende gabbro sill complex at Onion Valley, California, and a mixing origin for the Sierra Nevada batholith. Contributions to Mineralogy and Petrology 126, 81-108. Smithies, R.H., 2000. The Archean tonalite-tronhjemite-granodiorite (TTG) series is not analogue of Cenozoic adakites. Earth and Planetary Science Letters 182, 115-125. Streckeisen, A., Le Maitre, R.W., 1979. A chemical approximation to the modal QAPF classification of the igneous rocks: N. Jb. Miner. Abh.136, 169–206. Sun, S.-S., McDonoud, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In Saunders, A.D. and Norry, M.J. (eds.) Magmatism in the Ocean Basins. Geological Society, London, Special Publications 42, 313-345. van de Zedde, D.M.A., Wortel, M.J.R., 2001. Shallow slab detachment as a transient source of heat at midlithospheric depths. Tectonics 20, 868-882. Watson, E.B., Harrison, T.M., 1983. Zircon saturation revised: Temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters 64, 295-304. Wen, D.-J., Chung, S.-L., Liu, D., Ji, J., Chu, M.-F., Song, B., Lo, C.-H., Lee, T.-Y., 2003. New SHRIMP U-Pb zircon ages from the Gangdese batholith and implications for the Trans-Himalayan magmatic evolution. Geophysical Research Abstracts 5, 494. Wen, D.-J., Song, B., Iizuka, Y. Ji, J., Chung, S.-L., Liu, D., Yang, H.-J., Zhang, Q., 2004. Discovery of Late cretaceous granodiorites with adakitic geochemical signatures from southern Tibet: Petrogenesis and tectonic implications: Eos Trans. AGU 85(47), F1817. Wu, F.Y., Jahn, B.M., Wilde, S.A., Lo, C.H., Yui, T.F., Lin, Q., Ge, W.C., Sun, D.Y., 2003. Highly fractionated I-type granites in NE China (Ⅱ): isotopic geochemistry and implications for crustal growth in the Phanerozoic. Lithos 67, 191-204. XBGMR (Xizang Bureau of Geology and Mineral Resources), 1993. Regional Geology of Xizang (Tibet) Autonomous Region. China. Geologic Publication House, Beijing, 707 pp. (in Chinese with English abstract). Xu, J.-F., Castillo, P.R., 2004. Geochemical and Nd-Pb isotopic characteristics of the Tethyan asthenosphere: Implications for the origin of the Indian Ocean mantle domain. Tectonophysics 393, 9-27. Xu R.H., Schärer, U., Allègre, C.J., 1985. Magmatism and metamorphism in the Lhasa block (Tibet): A geochronological study. Journal of Geology 93, 41-57. Xu, Y.-G., Ma, J.-L., Huang, X.-L., Iizuka, Y., Chung, S.-L., Wang, Y.-B., Wu, X.-Y., 2004. Early Cretaceous gabbroic complex from Yinan, Shandong Province: Petrogenesis and mantle domains beneath the North China Craton. Int. J. Earth Sci. (Geol. Rundsch.) 93, 1025-1041. Yang, J.-H., Chung, S.-L., Wilde, S.A., Wu, F.-Y., Chu, M.-F., Lo, C.-H., Fan, H.-R., 2005. Petrogenesis of post-orogenic syenites in the Sulu Orogenic Belt, East China: Geochronological, geochemical and Nd-Sr isotopic evidence. Chemical Geology 214, 99-125. Yin, A., Harrison, T.M., 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annual Reviews of Earth and Planetary Sciences 28, 211-280. Yin, A., Harrison, T.M., Murphy, M.A., Grove, M., Nie, S., Ryerson, F.J., Wang, X.F., Chen, Z.L., 1999. Tertiary deformation history of southeastern and southwestern Tibet during the Indo-Asian collision, Geological Society of America Bulletin 111, 1644-1664. Yin, J., Xu, J., Lin, C., Huan, L., 1988. The Tibetan Plateau: Regional stratigraphic context and previous work. Phil. Trans. Roy. Soc. Lond., ser. A, 327, 5-52. Yin, J., Grant-Mackie, J.A., 2005. Late Triassic-Jurassic bivalves from volcanic sediments of the Lhasa block, Tibet. New Zealand Journal of Geology and Geophysics 48, 555-576. Zen, E.-a., 1985. Implications of magmatic epidote-bearing plutons on crustal evolution in the accreted terranes of northwestern North America. Geology 13, 266-269. Zen, E.-a., Hammastrom, J.M., 1984. Magmatic epidote and its petrologic significance. Geology 12, 515-518. Zhang, K.J., Xia, B.D., Wang, G.M., Li, Y.-T, Ye, H.-F., 2004. Early Cretaceous stratigraphy, depositional environment, sandstone provenance, and tectonic setting of central Tibet, western China. Geological Society of America Bulletin 116, 1202-1222. Zhang, S.-Q., Mahoney, J.J., Mo, X.X., Ghazi, A.M., Milani, L. Crawford, A.J., Guo, T.-Y., Zhao, Z.-D., 2005. Evidencefor a widespread Tethyan upper mantle with Indian-ocean-type isotopic characteristics. Journal of Petrology 46, 829-858. Zhu, D.C., Pan, G.-T., Chung, S.-L. Liao, Z.L., Wang, L.-Q., Li, G.-M., 2006. SHRIMP zircon age and geochemical constraints on the origin of early Jurassic volcanic rocks from the Yeba Formation, the southern Gangdese in south Tibet. Island Arc, submitted. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27832 | - |
| dc.description.abstract | 廣布於西藏南部拉薩陸塊的岡底斯岩體,過去以來一直被視為安地斯型活動大陸邊緣的重要組成,經由新特提斯洋板塊北向隱沒於亞洲大陸而形成。然而,活動期間跨越了亞洲與印度碰撞事件的岡底斯複式岩體,其年代、組成以及地殼演化始終缺乏詳細的調查。對此陸緣火山弧的瞭解程度,對於進一步探究新特提斯洋隱沒的動力學機制,特別是造山活動對岩漿演化的影響效應,至關重要。本研究結合25件鋯石離子探針年代數據、83筆全岩地球化學,以及65筆鍶–釹同位素分析資料,首次較系統性地報導岡底斯岩體之年代學和地球化學,並探討西藏南部的造山演化及地殼增生。年代學分析結果表明,岩漿活動可分為晚白堊紀(ca. 103-80 Ma)與早第三紀(ca. 65-46 Ma)兩時期,並確認約當八千萬年至六千八百萬年前間,有一岩漿休止期。在岩性組成上,岡底斯岩體包含一系列由輝長岩分異至花崗岩類的深成岩組合,成份的歧異性也相對表現在二氧化矽含量上,從43%分布至79%都有。此一中鉀至高鉀質鈣鹼系列的岩體,具有典型的島弧岩漿地球化學特徵,包括大離子半徑親石元素(銫、銣、鈾、釷、鉀及鋇等)之富集以及高場力元素(鈮、鉭及鈦)之虧損。基性至中性岩體的分異演化主要受控於結晶分異作用,而酸性岩類的成因則歸諸基性輝長岩質下部地殼的部份融熔,或混染部分地殼物質所致。此深成岩體之釹同位素初始值( | zh_TW |
| dc.description.abstract | The Gangdese Batholith, which emplaced extensively in the Lhasa terrane of southern Tibet, is widely regarded as the major constituent of an Andean-type convergent margin resulting from northward subduction of the Neo-Tethyan oceanic lithosphere under Asia. It is the largest Trans-Himalayan plutonic complex. However, the duration, composition and evolution of the Gangdese arc magmatism that spanned the accretion to collision of Asia with India, remain poorly investigated. In fact, knowledge of this continental arc is fundamental for constraining the geodynamics of the northward Neo-Tethyan subduction, particularly its consequential effect on the magmatic evolution. This thesis reports new results of a systematic study, including SHRIMP zircon dating of 25 samples, 83 geochemical and 65 Sr–Nd isotopic analyses. The data are used to delineate the source characteristics and draw implications for the orogenic evolution and crustal growth in southern Tibet. The geochronologic results suggest two distinct stages of plutonism in the Late Cretaceous (ca. 103-80 Ma) and early Paleogene (ca. 65-46 Ma). The results also confirm, if not refine, the notion that a magmatic gap or quiescent period existed between ca. 80 and 68 Ma. With diverse lithologies from gabbros to granites, the plutonic complex shows a large range of SiO2 contents from 43 to 79 wt.%, and typical geochemical characteristics in the medium-K to high-K calc-alkaline series arc magmas, such as enrichment in LILE (e.g., Cs, Rb, U, Th, K, and Ba) and depletion in some HSFE (Nb, Ta, and Ti). The differentiation from mafic to intermediate intrusives is most likely achieved by fractional crystallization, but the felsic granitoids are produced by partial melting of pre-exsiting gabbroic lower crust, or with some crustal contamination. The intrusives are predominantly characterized by depleted mantle sources with | en |
| dc.description.provenance | Made available in DSpace on 2021-06-12T18:23:02Z (GMT). No. of bitstreams: 1 ntu-96-D89224006-1.pdf: 7533177 bytes, checksum: 67b25023af00937ea5c64d31e8c5cf32 (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | Title page………………………………………………………………………...…….i
Committee censorship…………………………………………………………….......ii Acknowledgement (in Chinese)………………………………..………………….…iii Abstract (in Chinese)…………………………………………….……………............v Abstract……………………………………………………………………………..viii Contents……………………………………………………..………………...….…xiii List of Figures…………………………………………...……...…………….…....xvii List of Tables……………………………………………...…………………...…….xx Chapter 1. Introduction …………………….……………….………...……….......….1 1.1. The Tibetan-Himalayan orogen…………….……………….………...……………..….......….1 1.2. The Gangdese Batholith…………….……………….…………….…………...……….......….3 1.3. The research purpose…………….……………….……………….…...………….…….......….4 Chapter 2. Analytical methods………………………………………………….…......7 2.1. SHRIMP U-Pb dating ……………………………………….…. ………….…………...…......7 2.2. Electron microprobe analysis ………………………………..………………………….…......8 2.3. XRF analysis ……………………………………………….………. ………….…………......8 2.4. ICP-MS analysis …………………………………………. ………….…………….…...…......8 2.5. Sr-Nd isotope analysis……………………………………. ………..………………….…......11 Chapter 3. Analytical results……..…………………………………………...…..….16 3.1. The SHRIMP zircon ages.……………………………………….…….……………….…......16 3.1.1. The Coqin – Dajia Co segment.……………………..…………………………….…......17 3.1.2. The Xietongmen – Nanmulin segment.……………………….………………..………...17 3.1.3. The Dazhuka – Nimu segment.…………………………………………………....…......17 3.1.4. The Quxu – Lhasa segment.……………………………….…………….………..….......18 3.1.5. The Sangyi – Zedong segment.…………………………….…………….………..…......19 3.1.6. The Langxian – Bayi segment.………………………………….………….…….…........20 3.2. Spatial distribution of the 4-episode arc magmatism.………………………………….…......28 3.2.1. Cretaceous Gangdese (103-85 Ma) magmas………………………..................................28 3.2.2. Late Cretaceous (ca. 80 Ma) Gangdese adakites……………….…...................................28 3.2.3. Paleocene Gangdese (65-60 Ma) magmas……………….…............................................29 3.2.4. Eocene Gangdese (53-45 Ma) magmas………………......................................................29 3.3. Mineral chemistry.…………………………………………………………..………….…......31 3.3.1. Magmatic epidote…………………………………..…………………..………….…......31 3.3.2. Celadonitic muscovite……………………………...…………………..………….…......32 3.3.3. Feldspar……………………………………………………………...…………….…......32 3.4. Whole rock geochemistry……………………………………………….……..……….…......39 3.4.1. Major elements…………………………………………………………………….…......39 3.4.2. Trace elements……………………………………………………….…………….…......47 3.4.3. Sr–Nd isotopic characteristics…………………………………......….…………….…....51 3.5. Compositional variations of the Gangdese arc magmatism……………………………..…....56 3.5.1. Cretaceous Gangdese (103-85 Ma) magmas……..…………………...…………….…....57 3.5.2. Late Cretaceous (ca. 80 Ma) Gangdese adakites…………………..….…………….…....58 3.5.3. Paleocene Gangdese (65-60 Ma) magmas…………………………..……..……….…....59 3.5.4. Eocene Gangdese (53-45 Ma) magmas…………………….……………………….…....59 Chapter 4. Discussion……..…………………………………………...…………….65 4.1. The Gangdese Magmatic Evolution……………….……………………………..…….…......65 4.2. Petrogenesis: partial melting, fractional crystallization, and magma mixing…….…….…......71 4.3. The Late Cretaceous melting of thickened lower crust……………………………..….…......72 4.3.1. Magma source – Newly underplated, thickened mafic lower crust…………..……….....72 4.3.2. Modeling of magma generation……………………………………..…………….….......73 4.3.3. Deep-seated emplacement followed by rapid exhumation.……………………….….......74 4.3.4. Implications for flat subduction and regional tectonics………………………..….…......75 4.4. Tectonic Interpretations and Implications…….…………………..……...…………….…......80 4.4.1. 100 Ma…….………………………….……………….…………………….………........80 4.4.2. 80 Ma…….……………………………………….……………………….……….…......81 4.4.3. 60 Ma…….………………………………….……………….…………………….…......83 4.4.4. 50-45 Ma…….……………………………….……………….……..…………….…......85 4.5. Slab geodynamics inferred from associated arc magmatism…………..…..…………..…......88 4.6. A juvenile continental arc: the crustal growth in southern Tibet……………..……..…….......92 4.7. Gondwana affinity of the Lhasa terrane…………….…………….…………..…….…...........94 Chapter 5. Conclusions……..…………………………………………...…………...97 References………………………………………….………..…….....……………...99 Appendix 1. Zircon U-Pb age data of the Gangdese Batholith, southern Tibet…....110 Appendix 2. Electron microprobe analyses on epidote and muscovite….…………117 | |
| dc.language.iso | en | |
| dc.subject | 岡底斯岩體 | zh_TW |
| dc.subject | 西藏 | zh_TW |
| dc.subject | 年代學 | zh_TW |
| dc.subject | 地球化學 | zh_TW |
| dc.subject | Tibet Geochronology Geochemistry | en |
| dc.subject | The Gangdese Batholith | en |
| dc.title | 西藏南部岡底斯岩體:年代學、地球化學及岩石成因 | zh_TW |
| dc.title | The Gangdese Batholith, Southern Tibet: Ages, Geochemical Characteristics and Petrogenesis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 江博明(Bor-ming Jahn),陳正宏(Cheng-Hong Chen),羅清華(Ching-Hua Lo),藍晶瑩(Ching-Ying Lan),王國龍(Kuo-Lung Wang) | |
| dc.subject.keyword | 岡底斯岩體,西藏,年代學,地球化學, | zh_TW |
| dc.subject.keyword | The Gangdese Batholith,Tibet Geochronology Geochemistry, | en |
| dc.relation.page | 120 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-08-20 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 地質科學研究所 | zh_TW |
| 顯示於系所單位: | 地質科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 7.36 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
