請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27828
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李慶德 | |
dc.contributor.author | Gwo-Hong Suen | en |
dc.contributor.author | 孫國洪 | zh_TW |
dc.date.accessioned | 2021-06-12T18:22:48Z | - |
dc.date.available | 2007-08-28 | |
dc.date.copyright | 2007-08-28 | |
dc.date.issued | 2007 | |
dc.date.submitted | 2007-08-18 | |
dc.identifier.citation | [1]C. M. Bender, Jun-Hua Chen, Kimball, Milton, J.Phys.A39, 1657 (2006)
[2]C. M. Bender, H. F. Jones, R. J. Rivers, Phys.Lett.B625, 333 (2005) [3]C. M. Bender, Dorje C. Brody, Jones, Phys.Rev.Lett.89, 270401 (2002) [4]C. M. Bender, Stefan Boettcher, J.Math.Phys.40, 2201 (1999) [5]B. P. Mandal, Mod.Phys.Lett.A20, 655 (2005) [6]G. Levai, A. Sinha, P. Roy, J.Phys.A:Math.Gen.36, 7611 (2003) [7]Ali Mostafazadeh, Phys.Lett.A357, 177 (2006) [8] Ali Mostafazadeh, J.PhysA.38, 6557(2005) [9] Ali Mostafazadeh, Ahmet Batal, J.PhysA37, 11645 (2004) [10] Ali Mostafazadeh, Phys.Lett.A320, 375 (2004) [11] Ali Mostafazadeh, J.Math.Phys.45, 932 (2004) [12] Ali Mostafazadeh, J.Math.Phys.44, 974 (2003) [12] Ali Mostafazadeh, J.Math.Phys.43, 3994 (2002) [13] Ali Mostafazadeh, J.Math.Phys.43, 205 (2002) [14] Ali Mostafazadeh, J.Math.Phys.43, 2814 (2002) [15] Ali Mostafazadeh, J.Phys.A.38, 3213 (2005) [16]E. I. Rashba, Phy.Rev.B68, 241315 (2003) [17]C. T. Li, G. H. Suen, Abraham Klein, Phys. Rev. A, 63, 052110 (2001) [18] Ali Mostafazadeh, Annals Phys.309, 1-48 (2004) [19] Z. Ahmed, Physics Letters A.294, 278 (2002) [20] N. Hatano and Nelson, Physical Review B, 58(13) 8384 (1998) [21] A. Sinha and P. Roy, Mod. Phys. Lett. A, Vol. 20 No.31, 2377 (2005) [22] C. M. Bender, Phys. Lett. B625, 333 (2005) [23] Ali Mostafazadeh, Annals Phys.A36, 7081 (2003) [24] B. P. Mandal, quant-ph/0605233 [25] Ali Mostafazadeh, J.Math.Phys. Vol.43, 205 (2002) [26] C. M. Bender, Phys. Rev. D71, 065010 (2005) [27] C. M. Bender, Phys. Rev. D70, 025001 (2004) [28] Ali Mostafazadeh, J.Math.Phys. Vol.39, No.9, 4499 (1998) [29] Ali Mostafazadeh, Class. Quantum Grav. 20, 155 (2003) [30] Ali Mostafazadeh, J.Phys. A37 10193 (2004) [31] Y. Habara, Int.J.Mod.Phys.A19 5561 (2004) [32] R. Kretschmer, Phys. Lett. A 325 112 (2004) | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27828 | - |
dc.description.abstract | In recent years there has been much interest in non-Hermitian Hamiltonians with real eigenvalues. In particular, PT-symmetric Hamiltonians H, i.e., , where P is the parity operator and T is the time reversal operator, have been conjectured to have a real spectrum except when the symmetry is spontaneously broken. It is also known that PT symmetry is not a necessary condition for the occurrence of real eigenvalues. Then, -pseudo-Hermiticity, i.e., , was introduced to establish the mathematical relation with PT symmetry and explored the basic structure responsible for the reality of the spectrum of non-Hermitian Hamiltonians. Because of intrinsic interest and their applications in condensed matter, quantum optics and others, we study the pseudo-Hermitian interactions in both non-relativistic and relativistic quantum mechanics by considering several examples about delocalization transition in superconductors and spin-orbit coupling in semiconductors. In addition, the pseudo-supersymmetry and boson sea are studied. Finally, the PT-symmetric quantum field theory, Klein-Gordon-type field and quantum cosmology are discussed, too.
Keywords: Pseudo unitarity; Pseudo-Hyper-virial theorem; Pseudo-probability current density; Pseudo-supersymmetry; Boson sea; Abnormal pseudo-Hermitian fermion; PT-symmetric quantum field theory; Klein-Gordon-type field. | en |
dc.description.provenance | Made available in DSpace on 2021-06-12T18:22:48Z (GMT). No. of bitstreams: 1 ntu-96-D87222003-1.pdf: 616890 bytes, checksum: a2504dd8e537c6dc00a103385c8796fe (MD5) Previous issue date: 2007 | en |
dc.description.tableofcontents | 1.Introduction 2
2.Basic properties of pseudo-Hermiticity and PT symmetry 6 3.Generalized Ehrenfest theorem in -pseudo-Hermitian Q.M. 11 4.The application of the pseudo-Hellman-Feynman theorem to the Dirac equation with Rashba interaction term 13 5.The application of the pseudo-Hyper-virial theorem 19 6.Positive definite metric operators and quasi-Hermitian operators 22 7.Conservation of probability current density for non-Hermitian systems 29 8.The Equations-of-motion (EOM) methodfor the PT-symmetric Hamiltonian, pseudo-supersymmetry and the boson sea 36 9.The relation between the EOM method and pseudo-Hermitian quantum theory 51 10.The application of the pseudo-Hermiticity to the localization- delocalization transition 55 11.PT-symmetric quantum field theory, Klein-Gordon-type field and quantum cosmology 58 12.Conclusion 66 | |
dc.language.iso | en | |
dc.title | 非赫密PT對稱漢米爾頓及贋赫密性之探討 | zh_TW |
dc.title | The formulation of non-Hermitian PT-symmetric
Hamiltonians and pseudo-Hermiticity | en |
dc.type | Thesis | |
dc.date.schoolyear | 95-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 胡崇德,黃克寧,李大興,張明哲 | |
dc.subject.keyword | 非赫密PT對稱漢米爾頓及贋,赫密性之探討, | zh_TW |
dc.subject.keyword | The formulation of non-Hermitian PT-symmetric, | en |
dc.relation.page | 82 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2007-08-20 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 物理研究所 | zh_TW |
顯示於系所單位: | 物理學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-96-1.pdf 目前未授權公開取用 | 602.43 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。