Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27771
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor江簡富(Jean-Fu Kiang)
dc.contributor.authorPing-Yuan Dengen
dc.contributor.author鄧平援zh_TW
dc.date.accessioned2021-06-12T18:19:43Z-
dc.date.available2008-08-28
dc.date.copyright2007-08-28
dc.date.issued2007
dc.date.submitted2007-08-27
dc.identifier.citation[1] Gonzalez, Microwave Transistor Amplifiers Analysis and Design, Prentice Hall, 1996.
[2] A. Ghazinour, P. Wennekers, J. Schmidt, Y. Yi, R. Reuter, and J. Teplik, “A fullymonolithic
SiGe-Bicmos transceiver chip for 24 GHz applications,” Proc. BCTM, pp.
181-184, Sept. 2003.
[3] I. Gresham, A. Jenkins, R. Egri, and C. Eswarappa, “Ultra-wideband radar sensors for
short-range vehicular applications,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 9,
pp. 2105-2122, Sept. 2004.
[4] K. W. Yu, Y. L. Lu, D. C. Chang, V. Liang, and M. F. Chang, “K-band low-noise
amplifiers using 0.18 μm CMOS technology,” IEEE Microw. Wireless Comp. Lett., vol.
14, no. 3, pp. 106-108, Mar. 2004.
[5] S. C. Shin et al., “A 24-GHz 3.9-dB NF low-noise amplifier using 0.18 μm CMOS
technology, IEEE Microw. Wireless Comp. Lett., vol. 15, no. 7, pp. 448-450, July 2005.
[6] X. Guan and A. Hajimiri, “A 24-GHz CMOS front end,” IEEE J. Solid-State Circuits,
vol. 39, no. 2, pp. 368-373, Feb. 2004.
[7] D. K. Shaeffer and T. H. Lee, “A 1.5-V, 1.5-GHz CMOS low noise amplifier,” IEEE J.
Solid-State Circuits, vol. 32, no. 5, pp. 745-759, May 1997.
[8] R. E. Lehmann and D. D. Heston, “X-Band monolithic series feedback LNA,” IEEE
Trans. Microw. Theory Tech., vol. 33, no. 12, pp. 1560-1566, Dec. 1982.
[9] H. W. Chiu, S. S. Lu, and Y. S. Lin, “A 2.17-dB NF 5-GHz band monolithic CMOS
LNA with 10-mW DC power consumption,” IEEE Trans. Microw. Theory Tech., vol.
53, no. 3, pp. 813-824, Mar. 2005.
[10] H. Yano et al., “Performance of Ku-band on-chip matched Si monolithic amplifiers using
0.18 μm gatelength MOSFETs,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 6, pp.
1086-1093, June 2001.
[11] Momentum Software, ADS users manual, Agilent Technologies, 2004.
[12] TSMC 0.18μm mixed signal 1P6M salicide 1.8V/3.3V RF spice models, 2004.
[13] S. Ko et al., “K- and Q-bands CMOS frequency sources with X-band quadrature VCO,”
IEEE Trans. Microw. Theory Tech., vol. 53, no. 9, pp. 2789-2800, Sept. 2005.
[14] H. H. Hsieh and L. H. Lu, “A low-phase-noise K-band CMOS VCO,” IEEE Microw.
Wireless Comp. Lett., vol. 16, no. 10, pp. 552-554, Oct. 2006.
[15] M. Bao, Y. Li, and H. Jacobsson, “A 21.5/43 GHz dual-frequency balanced Colpitts
VCO in SiGe technology,” IEEE J. Solid-State Circuits, vol. 39, no. 8, pp. 1352-1355,
Aug. 2004.
[16] A. W. L. Ng, G. C. T. Leung, K. C. Kwok, L. L. K. Leung, and H. C. Luong, “A 1-V
24-GHz 17.5-mW phase-locked loop in a 0.18 μm CMOS process,” IEEE J. Solid-State
Circuits, vol. 41, no. 6, pp. 1236-1244, June 2006.
[17] J. G. Kim, D. H. Baek, S. Jeon, J. W. Park, and S. Hong, “A K-band InGaP/GaAs
HBT balanced MMIC VCO,” IEEE Microw. Wireless Comp. Lett., vol. 13, no. 11, pp.
478-480, Nov. 2003.
[18] D. B. Leeson, “A simple model of feedback oscillator noise spectrum,” Proc. IEEE, vol.
54, no. 2, pp. 329-330, Feb. 1966.
[19] J. J. Rael and A. A. Abidi, “Physical processes of phase noise in differential LC oscillators,”
Proc. IEEE Custom Integ. Circuits Conf., pp. 569-572, May 2000.
[20] E. Hegazi, H. Sjoland, and A. A. Abidi, “A filtering technique to lower LC oscillator
phase noise,” IEEE J. Solid-State Circuits, vol. 36, no. 12, pp. 1921-1930, Dec. 2001.
[21] K. Kwok and H. C. Luong, “Ultra-low-voltage high-performance CMOS VCOs using
transformer feedback,” IEEE J. Solid-State Circuits, vol. 40, no. 3, pp. 652-660, Mar.
2005.
[22] M. Danesh et al., “A Q-factor enhancement technique for MMIC inductors,” Proc. IEEE
Radio Frequency Integ. Circuit Symp., pp. 217-220, Apr. 1998.
[23] P. Andreani and S. Mattisson, “On the use of MOS varactors in RF VCOs,” IEEE J.
Solid-State Circuits, vol. 35, no. 6, pp. 905-910, June 2000.
[24] G. D. Astis, D. Cordeau, J. M. Paillot, and L. Dascalescu, “A 5-GHz fully integrated
full PMOS low-phase-noise LC VCO,” IEEE J. Solid-State Circuits, vol. 40, no. 10 pp.
2087-2091, Oct. 2005.
[25] M. C. Yeh et al., “Design and analysis for a miniature CMOS SPDT switch using bodyfloating
technique to improve power performance,” IEEE Trans. Microw. Theory Tech.,
vol. 54, no. 1, pp. 31-39, Jan. 2006.
[26] Z. Li, H. Yoon, F. J. Huang, and K. K. O, “5.8-GHz CMOS T/R switches with high and
low substrate resistances in a 0.18-μm CMOS process,” IEEE Microw. Wireless Comp.
Lett., vol. 13, no. 1, pp. 1-3, Jan. 2003.
[27] Rui Xu, Y. Jin, and C. Nguyen, “Power-efficient switching-based CMOS UWB transmitters
for UWB communications and Radar systems,” IEEE Trans. Microw. Theory
Tech., vol. 54, no. 8, pp. 3271-3277, Aug. 2006.
[28] Z. Li and K. K. O “15-GHz fully integrated nMOS switches in a 0.13-μm CMOS process,”
IEEE J. Solid-State Circuits, vol. 40, no. 11, pp. 2323-2328, Nov. 2005.
[29] Qiang Li and Y. P. Zhang, “CMOS T/R switch design: Towards ultra-wideband and
higher frequency,” IEEE J. Solid-State Circuits, vol. 42, no. 3, pp. 563-570, Mar. 2007.
[30] F. J. Huang and K. O, “A 0.5-μm CMOS T/R switch for 900-MHz wireless applications,”
IEEE J. Solid-State Circuits, vol. 36, no. 3, pp. 486-492, Mar. 2001.
[31] F. J. Huang and K. K. O, “Single-pole double-throw CMOS switches for 900-MHz and
2.4-GHz applications on p-silicon substrates,” IEEE J. Solid-State Circuits, vol. 39, no.
1, pp. 35-41, Jan. 2004.
[32] N. A. Talwalkar, C. P. Yue, H. Gan, and S. S. Wong, “Integrated CMOS transmitreceive
switch using LC-tuned substrate bias for 2.4-GHz and 5.2-GHz applications,”
IEEE J. Solid-State Circuits, vol. 39, no. 6, pp. 863-870, Jun. 2004.
[33] J. A. Torres and J. C. Freire, “Monolithic transistors SPST switch for L-band,” IEEE
Trans. Microw. Theory Tech., vol. 50, no. 1, pp. 51-56, Jan. 2002.
[34] N. Imai, A. Minakawa, and H. Okazaki, “Novel high-isolation FET switches,” IEEE
Trans. Microw. Theory Tech., vol. 44, no. 5, pp. 685-691, May 1996.
[35] S. F. Tin, A. A. Osman, K. Mayaram, and C. Hu, “A simple subcircuit extension of
BSIM3v3 model for CMOS RF design,” IEEE J. Solid-State Circuits, vol. 35, no. 4, pp.
612-624, Apr. 2000.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27771-
dc.description.abstract在本篇論文中,我們利用標準TSMC 0.18 μm CMOS製程設計24 GHz的低雜訊放大器(LNA)、壓控振盪器(VCO)以及單刀單擲(SPST)切換開關。
在LNA的設計方法中,我們透過使用較小的電晶體尺寸與偏壓電流來得到最佳雜訊的輸入電阻(Ropt)及Zin* = Zopt ,並使其接近50歐姆。當操作頻率為24 GHz時,這個LNA晶片可以達到峰值增益13.5 dB與雜訊指數4.7dB,供應電源及偏壓電流分別是1 V與8.3 mA,輸入及輸出的返回損失均可達10 dB以上,輸入功率1 dB壓縮點
為-7 dBm,晶片面積為0.64 mm × 0.48 mm。
在VCO的設計中,我們透過變壓器回授來增強振盪振幅並降低相位雜訊;透過變壓器可不需要額外的跨壓,因此可降低消耗功率。這個VCO晶片的相位雜訊在頻率偏移1 MHz時,可達到-104.38 dBc/Hz,並透過NMOS變容器調整輸出振盪頻率達400 MHz。在供應電源為1 V下所消耗的功率為6 mW,晶片面積為0.52 mm × 0.34
mm。
在SPST切換開關的設計中,我們透過LC共振器電路來降低開關打開時的介入損失以及提高開關關閉時的隔離度。在操作頻率為24 GHz時,這個開關的介入損失與隔離度分別為0.7 dB與25 dB,輸入功率1 dB壓縮點為16 dBm,有效使用的晶片面積僅0.17 mm × 0.23 mm。
zh_TW
dc.description.abstractIn this thesis, a 24 GHz LNA, VCO, and SPST switch have been designed and fabricated in a standard TSMC 0.18 μm 1P6M CMOS technology.
A design method of CMOS LNA is used to render the optimum source resistance (Ropt) close to 50 Ohm and Zin* = Zopt by using small devices and small bias currents. This LNA chip achieves a peak gain of 13.5 dB and a noise figure of 4.7 dB at 24 GHz. The supply voltage and supply current are 1 V and 8.3 mA, respectively. The input and output return loss are lower than −10 dB. The input referred 1-dB compression (P1dB) is −7 dBm. The chip size is 0.64 mm × 0.48 mm.
The oscillation amplitude is enhanced by transformer-feedback to lower the phase noise. The supply voltage can be reduced since no extra voltage headroom is required by the transformer, thus the power consumption can be reduced. The VCO chip exhibits phase noise of −104.38 dBc/Hz at 1 MHz offset and an output tuning range of 400 MHz using NMOS varactor. The VCO consumes a dc power of 6 mW with a supply voltage of 1 V. The chip area is 0.52 mm × 0.34 mm.
The on-resistance can be decreased by increasing the width of transistor, but capacitive coupling to the substrate will become significant. An LC resonant technique is proposed to decrease the insertion loss in the on-state and increase the isolation in the off-state. The switch achieves insertion loss and isolation of 0.7 dB and 25 dB, respectively. The input P1dB of the switch is 16 dBm. The effective chip size is only 0.17 mm × 0.23 mm.
en
dc.description.provenanceMade available in DSpace on 2021-06-12T18:19:43Z (GMT). No. of bitstreams: 1
ntu-96-R94942061-1.pdf: 2952999 bytes, checksum: be7ac6a5bb69138026b194e2da396de3 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontentsAbstract ii
Table of Contents v
List of Figures ix
List of Tables x
Acknowledgment xii
1 Introduction 1
2 A K-Band CMOS Low-Noise Amplifier with Low DC Power Consumption 3
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Circuit Design and Implementation . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.1 General Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.2 Noise Matching with Power Matching . . . . . . . . . . . . . . . . . . 5
2.2.3 Input Matching Network . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.4 Design of 24 GHz LNA . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.5 Stability Concern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.6 Layout Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3 A K-Band CMOS High-Performance Voltage-Controlled Oscillator 21
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Circuit Design and Implementation . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.1 VCOs with Conventional LC Tank . . . . . . . . . . . . . . . . . . . 21
3.2.2 VCO with Transformer Feedback . . . . . . . . . . . . . . . . . . . . 24
3.2.3 Planar Transformer Design . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.4 Design of 24 GHz VCO . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4 A K-Band CMOS Low Insertion Loss SPST Switch Using LC Resonator 37
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Circuit Design and Implementation . . . . . . . . . . . . . . . . . . . . . . . 38
4.2.1 Conventional Series-Shunt Switch . . . . . . . . . . . . . . . . . . . . 38
4.2.2 LC Resonator Technique of Switch . . . . . . . . . . . . . . . . . . . 39
4.2.3 Design of 24 GHz SPST Switch . . . . . . . . . . . . . . . . . . . . . 45
4.3 Simulated Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5 Conclusion 53
dc.language.isoen
dc.title24 秭赫互補式金氧半低雜訊放大器、壓控振盪器及開關之研製zh_TW
dc.titleDesign of CMOS Low-Noise Amplifier, Voltage-Controlled
Oscillator, and Switch at 24 GHz
en
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee劉深淵(Shen-Iuan Liu),黃天偉(Tian-Wei Huang),呂良鴻(Liang-Hung Lu)
dc.subject.keyword低雜訊放大器,壓控振盪器,開關,zh_TW
dc.subject.keywordLow-Noise Amplifier,Voltage-Controlled Oscillator,Switch,en
dc.relation.page58
dc.rights.note有償授權
dc.date.accepted2007-08-27
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  目前未授權公開取用
2.88 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved