Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 流行病學與預防醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27744
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor曾春典(Chuen-Den Tseng),陳秀熙(Tony Hsiu-Hsi Chen)
dc.contributor.authorHuang-Kuang Chenen
dc.contributor.author陳皇光zh_TW
dc.date.accessioned2021-06-12T18:18:22Z-
dc.date.available2007-09-12
dc.date.copyright2007-09-12
dc.date.issued2007
dc.date.submitted2007-08-28
dc.identifier.citation(1) Persson G. Five-year mortality in a 70-year-old urban population in relation to psychiatric diagnosis, personality, sexuality and early parental death. Acta Psychiatrica Scandinavica 64(3):244-53, 1981.
(2) Davey SG, Frankel S, Yarnell J. Sex and death: are they related? Findings from the Caerphilly Cohort Study.[see comment]. BMJ 1997; 315(7123):1641-1644.
(3) Ebrahim S, May M, Ben SY, McCarron P, Frankel S, Yarnell J et al. Sexual intercourse and risk of ischaemic stroke and coronary heart disease: the Caerphilly study. Journal of Epidemiology & Community Health 56(2):99-102, 2002.
(4) Leitzmann MF, Platz EA, Stampfer MJ, Willett WC, Giovannucci E. Ejaculation frequency and subsequent risk of prostate cancer.[see comment]. JAMA 291(13):1578-86, 2004.
(5) Chuen-Den Tseng, Juey-Hsiung Huang, Ti-Kai Lee. A Survey on Sexual Activity of the Eldaerly Aged 65 years and over in Taiwan. Journal of Internal Medicine ROC 5, 217-222. 1994.
(6) Wu TH, Chen TH, Ng S.K., Lee TK. A Study on the Relationship of Sexual Activity to Physical Diseases among the Elderly Aged 65 and over in Taiwan. Chin J Fam Med 1998 1998; 8:72-80.
(7) Ben-Shlomo Y, Smith GD, Shipley M, Marmot MG. Magnitude and causes of mortality differences between married and unmarried men. Journal of Epidemiology & Community Health 47(3):200-5, 1993.
(8) Ebrahim S, Wannamethee G, McCallum A, Walker M, Shaper AG. Marital status, change in marital status, and mortality in middle-aged British men. American Journal of Epidemiology 142(8):834-42, 1995.
(9) Martikainen P, Valkonen T. Mortality after death of spouse in relation to duration of bereavement in Finland
Journal of Epidemiology & Community Health 1996; 50(3):264-268.
(10) Goldwasser P, Feldman J. Association of serum albumin and mortality risk. [Review] [92 refs]. Journal of Clinical Epidemiology 50(6):693-703, 1997.
(11) Klonoff-Cohen H, Barrett-Connor EL, Edelstein SL. Albumin levels as a predictor of mortality in the healthy elderly. Journal of Clinical Epidemiology 45(3):207-12, 1992.
(12) Weijenberg MP, Feskens EJ, Souverijn JH, Kromhout D. Serum albumin, coronary heart disease risk, and mortality in an elderly cohort. Epidemiology 8(1):87-92, 1997.
(13) Hakoda M, Masunari N, Yamada M, Fujiwara S, Suzuki G, Kodama K et al. Serum uric acid concentration as a risk factor for cardiovascular mortality: a longterm cohort study of atomic bomb survivors. Journal of Rheumatology 32(5):906-12, 2005.
(14) Niskanen LK, Laaksonen DE, Nyyssonen K, Alfthan G, Lakka HM, Lakka TA et al. Uric acid level as a risk factor for cardiovascular and all-cause mortality in middle-aged men: a prospective cohort study.[see comment]. Archives of Internal Medicine 164(14):1546-51, 2004.
(15) Madsen TE, Muhlestein JB, Carlquist JF, Horne BD, Bair TL, Jackson JD et al. Serum uric acid independently predicts mortality in patients with significant, angiographically defined coronary disease. American Journal of Nephrology 25(1):45-9, 2005;-Feb.
(16) Hu P, Seeman TE, Harris TB, Reuben DB. Is serum uric acid level associated with all-cause mortality in high-functioning older persons: MacArthur studies of successful aging? Journal of the American Geriatrics Society 49(12):1679-84, 2001.
(17) Wu TH, Lee TK, Yen MF, Tung TH, Chen TH. Long-term mortality assessment using biological measures among elderly people. Ten-year follow-up of 597 healthy elderly subjects in Taiwan. Family Practice 2002; 19(3):272-277.
(18) Mazza A, Zamboni S, Tikhonoff V, Schiavon L, Pessina AC, Casiglia E. Body mass index and mortality in elderly men and women from general population. The experience of Cardiovascular Study in the Elderly (CASTEL). Gerontology 53(1):36-45, 2007.
(19) Romero-Corral A, Montori VM, Somers VK, Korinek J, Thomas RJ, Allison TG et al. Association of bodyweight with total mortality and with cardiovascular events in coronary artery disease: a systematic review of cohort studies.[see comment]. [Review] [74 refs]. Lancet 368(9536):666-78, 2006.
(20) Dolan CM, Kraemer H, Browner W, Ensrud K, Kelsey JL. Associations between body composition, anthropometry, and mortality in women aged 65 years and older. American Journal of Public Health 97(5):913-8, 2007.
(21) Freedman DM, Ron E, Ballard-Barbash R, Doody MM, Linet MS. Body mass index and all-cause mortality in a nationwide US cohort. International Journal of Obesity 30(5):822-9, 2006.
(22) Engeland A, Bjorge T, Selmer RM, Tverdal A. Height and body mass index in relation to total mortality. Epidemiology 2003; 14(3):293-299.
(23) Taylor DH, Jr., Ostbye T. The effect of middle- and old-age body mass index on short-term mortality in older people. Journal of the American Geriatrics Society 2001; 49(10):1319-1326.
(24) Diehr P, Bild DE, Harris TB, Duxbury A, Siscovick D, Rossi M. Body mass index and mortality in nonsmoking older adults: the Cardiovascular Health Study. American Journal of Public Health 1998; 88(4):623-629.
(25) Dorn JM, Schisterman EF, Winkelstein W, Jr., Trevisan M. Body mass index and mortality in a general population sample of men and women. The Buffalo Health Study.
American Journal of Epidemiology 1997; 146(11):919-931.
(26) Dey DK, Rothenberg E, Sundh V, Bosaeus I, Steen B. Body mass index, weight change and mortality in the elderly. A 15 y longitudinal population study of 70 y olds. European Journal of Clinical Nutrition 2001; 55(6):482-492.
(27) Allison DB, Faith MS, Heo M, Kotler DP. Hypothesis concerning the U-shaped relation between body mass index and mortality. American Journal of Epidemiology 1997; 146(4):339-349.
(28) Landi F, Zuccala G, Gambassi G, Incalzi RA, Manigrasso L, Pagano F et al. Body mass index and mortality among older people living in the community. Journal of the American Geriatrics Society 1999; 47(9):1072-1076.
(29) Janssen I, Katzmarzyk PT, Ross R. Body mass index is inversely related to mortality in older people after adjustment for waist circumference. Journal of the American Geriatrics Society 53(12):2112-8, 2005.
(30) Fried LP, Kronmal RA, Newman AB, Bild DE, Mittelmark MB, Polak JF et al. Risk factors for 5-year mortality in older adults: the Cardiovascular Health Study.[see comment]. JAMA 279(8):585-92, 1998.
(31) Nybo H, Petersen HC, Gaist D, Jeune B, Andersen K, McGue M et al. Predictors of mortality in 2,249 nonagenarians--the Danish 1905-Cohort Survey. Journal of the American Geriatrics Society 51(10):1365-73, 2003.
(32) Ramos LR, Simoes EJ, Albert MS. Dependence in activities of daily living and cognitive impairment strongly predicted mortality in older urban residents in Brazil: a 2-year follow-up. Journal of the American Geriatrics Society 49(9):1168-75, 2001.
(33) Hirvensalo M, Rantanen T, Heikkinen E. Mobility difficulties and physical activity as predictors of mortality and loss of independence in the community-living older population. Journal of the American Geriatrics Society 48(5):493-8, 2000.
(34) Scott WK, Macera CA, Cornman CB, Sharpe PA. Functional health status as a predictor of mortality in men and women over 65. Journal of Clinical Epidemiology 1997; 50(3):291-296.
(35) Helmer C, Joly P, Letenneur L, Commenges D, Dartigues JF. Mortality with dementia: results from a French prospective community-based cohort. American Journal of Epidemiology 2001; 154(7):642-648.
(36) Ganguli M, Rodriguez EG. Reporting of dementia on death certificates: a community study. Journal of the American Geriatrics Society 1999; 47(7):842-849.
(37) Wu TH, Lee TK, Yen MF, Tung TH, Chen TH. Long-term mortality assessment using biological measures among elderly people. Ten-year follow-up of 597 healthy elderly subjects in Taiwan. Family Practice 2002; 19(3):272-277.
(38) Davey SG, Frankel S, Yarnell J. Sex and death: are they related? Findings from the Caerphilly Cohort Study.[see comment]BMJ 1997; 315(7123):1641-1644.
(39) Chuen-Den Tseng, Juey-Hsiung Huang, Ti-Kai Lee. A Survey on Sexual Activity of the Eldaerly Aged 65 years and over in Taiwan.Journal of Internal Medicine ROC 5, 217-222. 1994.
(40) Ching-Jiu Chang., Shi-Kai Liu., Shwu-Chong Wu, Hsin-Nan Lin, . Validation of the Revised Hasegawa's Dementia Scale (HDS-R) in Taiwanese Population. Taiwanese J Psychiatry 1998; 12(1):15-26.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27744-
dc.description.abstract研究緣起及目的
目前對於65歲以上老年人缺乏綜合性、方便性及準確的工具適用於預測老人的健康狀況。我們有興趣於了解性別對平均壽命的影響,及兩性是否有顯著危險因子分布的不同;希望藉由評估老人的社會心理方面、生物醫學因子測量、生理疾病方面及功能方面的不同危險因子,分析男女性別間是否存在重要風險因子差異導致最終的預期壽命的不同。基於以上原因,所以我們希望利用中華民國老年醫學會於1989年7月1日至1991年6月30日間對台灣地進行社區65歲以上健康調查資料,描述台灣地區65歲以上老人的健康狀況及危險因子的分布,並比較性別之間的差異,及研究各個因子對老人健康的影響。
研究材料及方法

我們設計了一個前瞻性的世代研究 (prospective cohort study),利用此世代在1989-1991間所收集的四個方向的健康資訊包括: 年齡、性別、性行為、性行為頻率、性慾、寡居狀態、巴氏量表評分、巴氏量表個別項目評分、長谷川氏癡呆量表評分、身體質量指數、及生化指標等。將全死因及特別死因的死亡作為結果。所我們連結了2003年的台灣地區的死亡登記計算追蹤時間。我們追蹤此一研究世代直至2003年12月31日,平均追蹤時間為11年。利用生命表法描繪存活曲線,利用Cox regression model估計各變項的死亡風險比。最後將我們收集到的健康資訊,設計一個含上述四個方面危險因子的死亡預測風險模式,將危險因子的參數代入我們發展的模式中,估算老人的存活時間。
結果

兩性之間有統計差異而且盛行率較高或數值較高的風險因子在女性較高的為: 寡居狀態、BMI、收縮壓、總膽固醇、低密度脂蛋白、三酸甘油酯、糖尿病史。在男性為性活力、長谷川氏痴呆量表評分、尿酸、肌酸酐、血紅素、飲酒習慣、吸菸習慣及中風病史。
我們利用存活函數積分計算出的65歲的平均餘命 (life expectancy)分別為全體:16.17年,女性:17.84年,男性:14.68年。
控制了所有的相關危險因子後我們發現有性行為的男性全死亡風險下降了33% (adjusted hazard ratio, aHR=0.67 (95% CI:0.56-0.80));女性則下降了16% (aHR=0.84 (95% CI:0.65-1.09));不分性別則整體下降了28% (aHR=0.72 (95% CI:0.62-0.84))。所以性行為是影響老年族群全死因及特別死因的獨立危險因子,而且無性別上的差異。高頻率性行為組及中頻率組的存活率皆優於低頻率組,但在高頻率組及中頻率組中間則無明顯統計差異。
有性慾的男性減少19%了死亡風險 (aHR= 0.81 (95% CI: 0.68~0.97),但在女性則無此關聯性。
寡居狀態的個案有較高的死亡風險比 (aHR= 1.43 (95% CI: 1.21~1.68)),這種關係在男女性皆存在 (男性:aHR= 1.66 (95% CI: 1.25~2.19);女性:aHR= 1.33 (95% CI: 1.09~1.62))。
當個案有日常生活功能障礙時,調整干擾因子後其全死因死亡風險比正常個案高出73% ( aHR=1.73 (95%CI: 1.44-2.01)) 。若我們依不同性別作計算,仍然可以得到相似的結果,我們發現有日常生活功能障礙的男性多了70%的死亡風險 (aHR =1.70 (95%CI: 1.32-2.20)) ;女性則多了72% (aHR =1.72 (95%CI: 1.30-2.28)) 。
巴氏量表上任何一個項目異常都會明顯增加其全死因死亡風險,影響最明顯的是上廁所能力障礙 (toilet use) ,其HR=3.31 (95% CI: 2.52~3.72);影響最小的是小便控制能力障礙 (bladder) ,但其死亡風險比仍然很高 (HR=2.17 (95% CI: 1.77-2.66)) 。若我們調整了所有干擾因子,自我修飾功能障礙 (grooming) 有最高的死亡風險比 (aHR= 2.43 (95% CI: 1.46-4.04);最不明顯為穿衣能力障礙 (dressing) ,其aHR=1.57 (95% CI: 1.00-2.45) 。
當個案有心智功能障礙時,調整干擾因子後其全死因死亡風險比正常個案高出33% (aHR =1.33 (95%CI: 1.16-1.52)) 。若我們依不同性別作計算,仍然可以得到相似的結果,我們發現有心智功能障礙的男性多了33%的死亡風險 (aHR=1.33 (95%CI: 1.13-1.57)) ;女性也多了33% (aHR=1.33 (95%CI: 1.06-1.69)) 。
BMI對台灣65歲以上老人的全死因死亡風險的影響在女型呈U形分布,男性呈L形分布。體重過輕在不同性別都具有較高的死亡率。體重過重在兩性都有保護作用,肥胖在女性是危險因子但在男性反而有保護作用。吸煙不會干擾這種關係。另外BMI對死亡率的影響主要在短期,隨追蹤時間愈長,其影響愈不明顯。
血清白蛋白愈高則對老人的健康具有保護的作用。血清白蛋濃度最高組、中高組、中低組對最低組的死亡調整年齡後的全死因死亡風險比分別為:0.86 (95% CI: 0.81-0.92),0.80 (95% CI: 0.74-0.87),0.70 (95% CI:0.60-0.80) 。可見較高的血清白蛋白對健康具有保護作用。在特別死因的分析上,男性並無特殊的差異;但在女性白蛋白最低組死於糖尿病的相對危險性是其他三組的2.02倍 (RR:2.02, 95%CI: 1.12-3.68), 另外死於肝癌的相對危險性是4.10倍(RR: 4.10, 95% CI: 1.59-10.48)。
血清尿酸濃度中高組、中低組、最低組等三組與最高組相比之間的死亡age adjusted hazard ratio,分別為1.14 (95% CI:1.08-1.20), 1.15 (95% CI:1.06-1.25),1.24 (95% CI:1.06-1.46) ,高的尿酸值有較高的死亡率。但尿酸值有性別上的差異,男性的尿酸值在最高及最低的兩個quartiles有較高的死亡率;女性則只有最高的quartiles有較高的死亡率。在死因方面的分析,無論男女性尿酸最高組死於中風的相對危險性高於其他三組 (男性RR:1.72, 95%CI:1.10-2.71;女性 RR=1,91, 95% CI: 1.12-3.27) 。另外女性尿酸最高組有較高的相對風險死於腎臟病 (RR=2.91, 95% CI: 1.27-6.67) 及子宮頸癌 (RR: 4.07, 95%CI: 1.08-15.3)。男性尿酸最低組的死因和其他三組並無差別。
我們參考上述研究結果後,在我們的風險預測模式中放入包含四個方面危險因子的年齡、性別、性行為、寡居狀態、日常功能性障礙、心智障礙、身體質量指數、白蛋白、血紅素、尿酸、肌酸酐、麩氨酸-焦葡萄酸轉胺酶 (Glutamic pyruvic transaminase,GPT)、三酸甘油酯、吸菸習慣、冠狀動脈心臟病史、糖尿病史、中風病史等十七個變項,估計老人的存活時間。
結論
男女性別間的危險因子分布有相當大的不同,但這些危險因子絕大部分對兩性的影響力是類似的;只有在BMI及血清尿酸的作用在兩性並不相同。
女性的風險因子種類普遍少於男性,僅有無性行為、低智能量表評分、較高的平均BMI、高三酸甘油酯,高糖尿病病史及低血紅素等,這是女性較健康的原因。但我們在調整很多慢性病的變因後女性仍然有較低的死亡率,可見性別本身對健康就是一個非常重要的風險因子。
雖然我們已能利用我們的研究結果發展出風險預測模式,但仍需要再加入一些未知的有相關的變項才能更準確地預測個案的未來的死亡機率。
zh_TW
dc.description.abstractIntroduction and aim of research
There are few tools for predicting health condition of people older than 65 years old now, and we have interesting in how gender factor affects lifespan and distribution of risk factors of mortality in elderly people. We hope to realize the relationship by analyzing risk factors about psychosocial aspect, biologic measurement, physical aspect, and functional aspect.
Materials and methods

We designed a prospective cohort study. A total of 2600 subjects enrolled from a nationwide survey on health status of residents age 65 years or older in Taiwan between 1989 and 1991 were followed up until 31 December 2003 for ascertaining cause of death. The average time of follow-up year was 11 years. The health information gathered between 1989 to 1991 included age, gender, sexual activity, frequency of sexual activity, libido, widowhood status, Barthel index score, Hasegawa dementia scale, body mass index, anthropometric measures, life-style factors, preexisting disease, biochemical markers. We computed cumulative survival curve to show the effect of risk factors on all-cause death by life table estimates. Adjusted hazard ratios either by age or by all possible confounding factors were also calculated by Cox proportional hazards regression model. At least, we designed a mortality prediction model including the four aspects of risk factors to predict survival time of the elderly people.
Result
The risk factors that women had higher prevalence or value included widowhood status, body mass index, systolic blood pressure, total cholesterol, low density lipoprotein, triglyceride, diabetes mellitus history; the risk factors that men had higher prevalence and value included sexual activity, Hasegawa dementia scale, serum uric acid, creatinine, hemoglobin, alcohol drinking habit, smoking habit, and stroke history.
The life expectancy calculated by survival function was 16.17 years for all people, 17.84 years for women, and 14.68 years for men.
After controlling for age and relevant confounding factors, sexual activity may reduce mortality by 33% (adjusted hazard ratio (aHR) =0.67 (95%CI: 0.56-0.80)) for men, 16% (aHR=0.84 (95% CI: 0.65-1.09)) for women, and 28% (aHR=0.72 (95% CI: 0.62-0.84)) for both sex combined. Males reported to have libido may lead to a 19% decrease of mortality (aHR=0.81 (95% CI: 0.68-0.97)). The elevated risk for mortality attributed to widowhood status was estimated as 66% (aHR=1.66 (95% CI: 1.25-2.19)) for men, 33% (aHR=1.33 (95% CI: 1.09-1.62)) for women, and 43% (aHR=1.43 (95% CI: 1.21-1.68)) for both sex combined. Sexual activity has been found to reduce 36% (aHR=0.64 (95% CI: 0.41-1.00)) mortality from stroke.
After controlling for age and relevant confounding factors, people with impaired activity of daily life (ADL) function may increase all-cause mortality by 70% (aHR =1.70 (95%CI: 1.32-2.20)) for men, 72% (aHR =1.72 (95%CI: 1.30-2.28)) for women, and 73% ( aHR =1.73 (95%CI: 1.44-2.01)) for both sex combined. Impairment in every item of the Bathel index score will also induce high all-caused mortality. Among all items, we found people with grooming function impairment had the highest adjusted hazard ratio of all-cause mortality (aHR= 2.43 (95% CI: 1.46-4.04)), and had the lowest adjusted hazard ratio (aHR=1.57 (95% CI: 1.00-2.45)) with dressing function impairment.
People with cognitive function impairment may increase all-cause mortality by 33% (aHR=1.33 (95%CI: 1.13-1.57)) in men, 33% (aHR=1.33 (95%CI: 1.06-1.69)) in women, and 33% (aHR =1.33 (95%CI: 1.16-1.52)) for both sex combined.
The relationship between body mass index and all-cause mortality was L-shape in men, but U-shape in women. Underweight men had always highest mortality than other BMI groups, but the relationship was seen only in the third and fifth years in women. Overweight women had the lowest mortality at all stages, but the lowest mortality occurred in overweight or obesity men. Obesity women showed higher mortality than normal range group. We found BMI had no effect on mortality of elderly people if we re-analyzed after removing people died in the first five years. The effect of BMI on mortality of elderly people would reduce gradually when the time of follow-up prolonged. The relationship between body mass index and all-cause mortality on non-smoker is U-shape in women, but changed by time in men. Underweight men still had the highest mortality after the fifth years of follow-up.
Higher serum albumin level had protective effect on elderly people. The age adjusted hazard ratio of all-cause mortality of the first, second, and third quartiles of serum albumin level contrast to the lowest quartile were 0.86 (95% CI: 0.81-0.92), 0.80 (95% CI: 0.74-0.87), and 0.70 (95% CI:0.60-0.80) . The relative risk of women died from diabetes mellitus in the lowest quartile contrast to others was 2.02 (95%CI: 1.12-3.68), and the relative risk of women died from hepatocellular carcinoma was 4.10 (95% CI: 1.59-10.48).
Higher serum uric acid level had higher all-cause mortality on elderly people. The age adjusted hazard ratio of all-cause mortality of the first, second, and third quartiles of serum uric acid level contrast to the lowest quartile were 1.14 (95% CI:1.08-1.20), 1.15 (95% CI:1.06-1.25), 1.24 (95% CI:1.06-1.46) for both sex combined. The similar effect was seen in women, but the effect of serum uric acid level on all-cause mortality was U-shape in men. The highest quartile and the lowest quartile had higher mortality than other two quartiles. People in the highest quartile of serum uric acid level had higher mortality rate died form stroke than others (men: RR: 1.72, 95%CI: 1.10-2.71 ; women: RR=1,91, 95% CI: 1.12-3.27) . Otherwise, women in the highest quartile had higher risk died from kidney disease (RR=2.91, 95% CI: 1.27-6.67) and cervical cancer (RR: 4.07, 95%CI: 1.08-15.3).
According to our studying result, we designed an all-cause mortality prediction model, and the parameters of model included age, gender, sexual behavior, widowhood status, ADL function, cognitive function, body mass index, serum albumin, hemoglobin, serum uric acid, creatinine, GPT (glutamic pyruvic transaminase), triglyceride, smoking habit, coronary heart disease history, diabetes mellitus history, and stoke history.
Conclusion
Distribution of risk factors of mortality between men and women was different, but the effects of these risk factors on mortality were similar in both gender, except body mass index and serum uric acid level.
Except without sexual activity, low Hasegawa dementia scale, high average body mass index, high triglyceride level, high prevalence of diabetes mellitus, and low average hemoglobin, women had fewer risk factors than men. This can explain the reason why women had lower mortality rate than men. After adjusting all confounders, we still found women had lower mortality than men, so female gender is a very important health protection factor.
Although we had developed a mortality prediction model for elderly people, we still need find more unknown risk factors to improve the ability of predicting mortality of our model.
en
dc.description.provenanceMade available in DSpace on 2021-06-12T18:18:22Z (GMT). No. of bitstreams: 1
ntu-96-F88845206-1.pdf: 1255481 bytes, checksum: 49b41a4a249a7ad26f451355d61441de (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents中文摘要 4
英文摘要 9
Chapter 1 Introduction研究緣起及目的 18
一、研究緣起 18
二、研究目的 18
Chapter 2 Literature review文獻探討 20
一、社會心理方面危險因子: 性活力、性慾、寡居狀態對老年死亡率研究的文獻探討 20
二、生化因子測量的風險因子對老年死亡率研究的文獻探討 23
三、生理疾病方面的風險因子對老年死亡率研究的文獻探討 25
四、功能方面:日常生活功能及心智功能障礙對老年死亡率研究的文獻探討 27
Chapter 3 Material and Methods 研究材料及方法 29
一、研究架構 29
二、研究材料 29
三、研究方法 30
A. 研究設計 30
B. 研究假說 31
C. 自變項定義 32
D. 統計方法 33
Chapter 4 Result 研究結果 37
一、研究世代的死亡概況與性別間的危險因子分布 37
二、性行為、性慾與寡居狀態對台灣地區老人死亡率的影響研究 49
三、日常生活功能障礙及心智障礙與台灣地區老人死亡率的影響研究 58
四、身體質量指數對台灣地區老人死亡率的影響研究 71
五、血清白蛋白與尿酸對老年死亡率的影響研究 91
六、利用加速衰敗時間模式 (Accelerated failure time model) 建立風險預測模式 97
Chapter 5 Discussion 討論 105
Chapter 6 Conclusion結論 111
參考文獻 112
Appendix 附錄 116
Articles in press and submitting 已發表及投稿中論文 118

圖目錄
Figure 0-1 Hazard rate among different σ (shape parameter) 36
Figure 1-1 Survival curves by gender with life table estimates 41
Figure 1-2 Survival curves estimated by AFT model 43
Figure 1-3 Hazard function for all people in cohort 44
Figure 1-4 Hazard function for women 45
Figure 1-5 Hazard function for men 45
Figure 2-1 Cumulative survival curve by whether to have sexual activity 55
Figure 2-2 Survival curve between different sexual activity frequency groups 57
Figure 3-1 Survival curves between normal and impaired ADL function 63
groups 63
Figure 3-2 Survival cures among different ADL function (Barthel Index Score) 64
Figure 3-3 Survival curves between normal and impaired cognitive function groups 64
Figure 3-4 Survival curves between different cognitive function (Hasegawa Dementia Scale) 65
Figure 4-1 Survival curves among different BMI groups 75
Figure 4-2 Survival curves among different BMI groups in women 76
Figure 4-3 Survival curves among different BMI groups in men 76
Figure 4-4 Survival curves among different BMI groups of non-smokers 77
Figure 4-5 Survival curves among different BMI groups in women without smoking habit 78
Figure 4-6 Survival curves among different BMI groups in men without smoking habit 78
Figure 4-7 Survival curves among different BMI groups after removing people died in the firth five years. 79
Figure 4-8 Survival curves among different BMI groups in women after removing people died in the firth five years. 80
Figure 4-9 Survival curves among different BMI groups in men after removing people died in the firth five years. 80
Figure 4-10 Fully adjusted hazard ratio in different BMI group at the third-years time point 86
Figure 4-11 Fully adjusted hazard ratios in different BMI group at the fifth-years time point 87
Figure 4-12 Fully adjusted hazard ratios in different BMI group at the tenth-years time point 87
Figure 4-13 Adjusted hazard ratios in different BMI group at the fourteenth-years time point 88
Figure 4-14 Fully adjusted hazard ratios in different BMI group in women among different time points 90
Figure 4-15 Fully adjusted hazard ratios in different group in men at different time points 90
Figure 5-1 Survival curves among different serum albumin levels 92
Figure 5-2 Survival curves among different serum albumin levels in women 92
Figure 5-3 Survival curves among different serum albumin levels in men 93
Figure 5-4 Survival curves among different serum uric acid levels 94
Figure 5-5 Survival curves among different serum uric acid levels in women 96
Figure 5-6 Survival curves among different serum uric acid levels in men 96

表目錄
Table 1-1 Major specific cause of death by gender 38
Table 1-2 Frequency, mean value, and comparison of baseline characteristics by gender 39
Table 1-6 Life expectancy in different risk groups 47
Table 2-1 Frequency, mean value, and comparison of baseline characteristics by gender and sexual activity status 50
Table 2-2 Relationships of all-cause death and sexual activity, libido, and widowhood 52
Table 2-3 Relationships of specific cause of death and sexual activity with and without including of subjects with previous specific disease history 53
Table 2-4 Estimated results of the hazard ratio of death of all causes among subjects with different sexual activity frequency 54
Table 3-1 Frequency, mean value, and comparison of baseline characteristics by ADL function (Barthel Index Score) 59
Table 3-2 Frequency, mean value, and comparison of baseline characteristics by cognitive function (Hasegawa Dementia Scale) 61
Table 3-3 Relationships of all-cause death and ADL function and cognitive function 66
Table 3-4 Relationships of all-cause death and different activity impairment items in the Barthel Index 67
Table 4-1 Frequency, mean value, and comparison of baseline characteristics by different BMI in women 72
Table 4-2 Frequency, mean value, and comparison of baseline characteristics by different BMI in men 73
Table 4-3 Frequency, mean value, and comparison of baseline characteristics by different BMI 74
Table 4-4 Relationships of all-cause death and BMI 82
Table 4-5 Relationships of all-cause death of non-smoker and BMI 84
Table 6-1 Age adjusted and fully adjusted hazard ratio among different risk factors 98
Table 6-2 Age adjusted and fully adjusted hazard ratio among different risk factors in women 99
Table 6-3 Age adjusted and fully adjusted hazard ratio among different risk factors in men 100
Table 6-4 Prediction of individual median survival time for all people by our model 102
Table 6-5 Prediction of individual median survival time for women by our model 103
Table 6-6 Prediction of individual median survival time for men by our model 104
dc.language.isozh-TW
dc.title台灣地區六十五歲以上老年族群健康狀態影響死亡率的性別差異研究zh_TW
dc.titleGender Difference in Health Status Related to Mortality in Elderly People Over 65 Years Old in Taiwanen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree博士
dc.contributor.advisor-orcid,陳秀熙(stony@episerv.cph.ntu.edu.tw)
dc.contributor.oralexamcommittee梁繼權(Kai Kuen Leung),李龍騰(Long Teng Li),李世代(Shyh-Dye Lee),吳淑瓊(Shwu-Chong Wu),張淑惠(Shu-Hui Chang),黃國晉(Kuo-Chin Huang)
dc.subject.keyword老年人,死亡率,平均餘命,加速衰敗時間模式,性行為,日常生活功能,心智功能,身體質量指數,白蛋白,尿酸,zh_TW
dc.subject.keywordElderly,mortality,life expectancy,accelerated failure time model,sexual behavior,activity of daily life,cognitive function,body mass index,albumin,uric acid,en
dc.relation.page118
dc.rights.note有償授權
dc.date.accepted2007-08-28
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept預防醫學研究所zh_TW
顯示於系所單位:流行病學與預防醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
1.23 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved