請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27728完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 洪士灝(Shih-Hao Hung) | |
| dc.contributor.author | Chi-Meng Chen | en |
| dc.contributor.author | 陳奇孟 | zh_TW |
| dc.date.accessioned | 2021-06-12T18:17:35Z | - |
| dc.date.available | 2007-09-03 | |
| dc.date.copyright | 2007-09-03 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-08-28 | |
| dc.identifier.citation | [1] C. M. Bishop. Neural Networks for Pattern Recognition.Oxford University Press, Oxford, UK, 1996.
[2] D. W. Hosmer and S. Lemeshow. Applied Logistic Regression.Wiley & Sons, Inc, 2000. [3] Z. Pan and R. Eigenmann. Fast automatic procedure-level performance tuning. In Proceedings of the International Conference on Parallel Architectures and Compilation Techniques, September 2006. [4] Z. Pan and R. Eigenmann. Fast and effective orchestration of compiler optimizations for automatic performance tuning. In Proceedings of the International Symposium on Code Generation and Optimizatin, pages 319–332, 2006. [5] Z. Pan and R. Eigenmann, Rating Compiler Optimizations for Automatic Performance Tuning, Proceedings of the 2004 ACM/IEEE conference on Supercomputing, p.14, November 2004. [6] R. C. Whaley and J. Dongarra. Automatically tuned linear algebra software. In High Performance Networking and Computing, 1998. [7] M. Haneda, P. Knijnenburg, and H. Wijshoff. Generating new general compiler optimization settings. In Proceedings of the 19th ACM International Conference on Supercomputing, pages 161–168, June 2005. [8] Cavazos, J., Fursin, G., Agakov, F., Bonilla, E., O'Boyle, M. F., and Temam, O. Rapidly Selecting Good Compiler Optimizations using Performance Counters. In Proceedings of the international Symposium on Code Generation and Optimization March 2007. [9] F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M. OBoyle, J. Thomson, M. Toussaint, and C. Williams. Using machine learning to focus iterative optimization. In Proceedings of the International Symposium on Code Generation and Optimization, pages 295–305, 2006. [10] J. Cavazos and M. O’Boyle. Method-specific dynamic compilation using logistic regression. In Proceedings of the ACM SIGPLAN ’06 Conference on Object Oriented Programming, Systems, Languages, and Applications, 2006. [11] Stephenson, M., Amarasinghe, S., Martin, M., and O'Reilly, U. Meta optimization: improving compiler heuristics with machine learning. In Proceedings of the ACM SIGPLAN 2003 Conference on Programming Language Design and Implementation, 2003. [12] T. Kisuki, P. M. W. Knijnenburg, and M. F. P. O’Boyle. Combined selection of tile sizes and unroll factors using iterative compilation. In The International Conference on Parallel Architectures and Compilation Techniques, pages 237–248, 2000. [13] E. D. Granston and A. Holler. Automatic recommendation of compiler options. In 4th Workshop on Feedback-Directed and Dynamic Optimization (FDDO-4), December 2001. [14] K. Chow and Y. Wu. Feedback-directed selection and characterization of compiler optimizations. In Second Workshop on Feedback Directed Optimizations, Israel, November 1999. [15] GCC. http://gcc.gnu.org/onlinedocs/. [16] Intel Vtune Performance Analyzer 8.0. http://www.intel.com/cd/software/products/asmo-na/eng/vtune/239144.htm [17] Schmitt, Lothar M, Nehaniv Chrystopher N, Fujii Robert H, Linear analysis of genetic algorithms, Theoretical Computer Science, pages 111-148, 1998. [18] Schmitt, Lothar M, Theory of Genetic Algorithms, Theoretical Computer Science, Volume 259, May 2001. [19] Goldberg, David E, Genetic Algorithms in Search, Optimization and Machine Learning, Kluwer Academic Publishers, Boston, MA. [20] Ian H.Witten and Eibe Frank, Data Mining: Practical Machine Learning Tools and Techniques, Second Edition. Morgan Kaufmann Publishers, 2005. [21] R.S. Michalski, I. Bratko and M. Kubat, Machine Learning and Data Mining, Wiley Publishers,1998. [22] S. Menard, Applied Logistic Regression Analysis, SAGE Publications, 2001. [23] SPEC CPU2000. http://www.spec.org/ [24] MiBench 1.0. http://www.eecs.umich.edu/mibench/ [25] C. Lee, M. Potkonjak, and W. H. Mangione-Smith,. MediaBench: a tool for evaluating and synthesizing multimedia and communicatons systems. In Proceedings of the 30th Annual ACM/IEEE international Symposium on Microarchitecture, December 01 - 03, 1997. [26] Huang-Sen Lin,Shih-Hao Hung. Automatic Selection of Options for Performance Optimization on the Kernel Modules of a Storage Server,2007, NTU,Taiwan. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27728 | - |
| dc.description.abstract | 現代的編譯器,大部分都提供了為數不少的優化選項。在適宜的搭配下,這些選項對於提高程式的執行效能,有著相當程度的助益。但是,如果與程式之間的搭配出了問題,也會產生反效果,對程式的效能造成傷害。因此,該如何正確的使用這些選項便成了相當重要的課題。為了做出正確的選擇,必須對個別優化選項有相當程度的了解,同時,得一併考慮選項之間有可能的交互影響。再來,也得對將進行優化的程式所持有之特性有深刻的認知。在綜合各種因素之後,才有可能做出最適切的選擇。但這動作具有相當的門檻。對大部分的使用者來說,並不是一件容易的事。尤其當選項有相當的數目時,對這工作的複雜度來說,更是爆炸性的增加。有許多的研究專注在如何有系統的挑選優化選項,並將這複雜度降低到人們可以接受的範圍。但複雜度降低在某些情況並不等同於所需時間可被接受。因此,本文利用了機器學習的技巧,將經驗轉化而建立起一模型。透過此模型,將能幫助使用者找出與程式相對應的編譯器優化選項,並大幅縮短整各尋找過程所需要的時間。 | zh_TW |
| dc.description.abstract | For a compiler to find a set of options that result in an optimal program execution is a NP-hard problem, especially when there are a lot of options to choose. For a large program, finding the optimal set of compiler options can take an enormous amount of time. Thus, methods have been proposed to shorten the searching time by reducing the complexity of the problem. This thesis proposes a different approach to solve the problem via machine learning techniques. The goal of this approach is to give an acceptable answer in a short time. Using our approach we achieve a 5% improvement over the -O3 of GCC on a storage system and 7% on the MediaBench II. Moreover, the time our approach costs to get acceptable answer is only 1/100 of the time that CE Algorithm takes on a storage system. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-12T18:17:35Z (GMT). No. of bitstreams: 1 ntu-96-R94944018-1.pdf: 361483 bytes, checksum: 29f0eb694e48bffe6f36de9394a84817 (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iii Table of Contents iv Table of Figures v List of Tables vi List of Tables vi Chapter 1 Introduction 1 1.1 The Problem Description 3 1.2 Overview of Related Work 3 1.3 Motivation of Our Work 5 Chapter 2 Overview of Our Approach 7 2.1 Basics of Machine Learning 7 2.2 Overview of CDModel 9 2.3 A Simple Example 13 Chapter 3 The Decision Function in the CDModel 17 3.1 Solve Classification Problem Based on Logistic Regression 17 3.2 Logistic Regression 18 3.3 Maximum Likelihood 29 3.4 Leave-One-Out Cross Validation 32 Chapter 4 Experimental Results 34 4.1 Experimental Setup 34 4.2 Target Applications 35 4.3 Results 36 Chapter 5 Conclusion and Future Work 39 Bibliography 40 | |
| dc.language.iso | en | |
| dc.subject | 模型 | zh_TW |
| dc.subject | 編譯器 | zh_TW |
| dc.subject | 最佳化 | zh_TW |
| dc.subject | 機器學習 | zh_TW |
| dc.subject | 效能評估 | zh_TW |
| dc.subject | Model | en |
| dc.subject | Compiler | en |
| dc.subject | Optimization | en |
| dc.subject | Machine Learning | en |
| dc.subject | Performance Evaluation | en |
| dc.title | 以機器學習快速的搜尋最佳編譯器選項集合 | zh_TW |
| dc.title | Finding the Best Compiler Optimization Option Set Rapidly via Machine Learning | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王勝德(Sheng-De Wang),郭大維(Tei-Wei Kuo),楊佳玲(Chia-Lin Yang),廖世偉(Shih-wei Liao) | |
| dc.subject.keyword | 編譯器,最佳化,機器學習,效能評估,模型, | zh_TW |
| dc.subject.keyword | Compiler, Optimization, Machine Learning, Performance Evaluation, Model, | en |
| dc.relation.page | 41 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-08-28 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資訊網路與多媒體研究所 | zh_TW |
| 顯示於系所單位: | 資訊網路與多媒體研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 353.01 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
