請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27697完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 許輝吉 | |
| dc.contributor.author | Hiu-Sang Yip | en |
| dc.contributor.author | 葉曉生 | zh_TW |
| dc.date.accessioned | 2021-06-12T18:16:02Z | - |
| dc.date.available | 2012-09-12 | |
| dc.date.copyright | 2007-09-12 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-08-29 | |
| dc.identifier.citation | Airola, K., Johansson, N., Kariniemi, A. L., Kahari, V. M., and Saarialho-Kere, U. K. (1997). Human collagenase-3 is expressed in malignant squamous epithelium of the skin. J Invest Dermatol 109, 225-231.
al-Khodairy, F., Enoch, T., Hagan, I. M., and Carr, A. M. (1995). The Schizosaccharomyces pombe hus5 gene encodes a ubiquitin conjugating enzyme required for normal mitosis. J Cell Sci 108 ( Pt 2), 475-486. Baba, D., Maita, N., Jee, J. G., Uchimura, Y., Saitoh, H., Sugasawa, K., Hanaoka, F., Tochio, H., Hiroaki, H., and Shirakawa, M. (2005). Crystal structure of thymine DNA glycosylase conjugated to SUMO-1. Nature 435, 979-982. Basset, P., Bellocq, J. P., Wolf, C., Stoll, I., Hutin, P., Limacher, J. M., Podhajcer, O. L., Chenard, M. P., Rio, M. C., and Chambon, P. (1990). A novel metalloproteinase gene specifically expressed in stromal cells of breast carcinomas. Nature 348, 699-704. Basset, P., Wolf, C., and Chambon, P. (1993). Expression of the stromelysin-3 gene in fibroblastic cells of invasive carcinomas of the breast and other human tissues: a review. Breast Cancer Res Treat 24, 185-193. Boire, A., Covic, L., Agarwal, A., Jacques, S., Sherifi, S., and Kuliopulos, A. (2005). PAR1 is a matrix metalloprotease-1 receptor that promotes invasion and tumorigenesis of breast cancer cells. Cell 120, 303-313. Borden, P., Solymar, D., Sucharczuk, A., Lindman, B., Cannon, P., and Heller, R. A. (1996). Cytokine control of interstitial collagenase and collagenase-3 gene expression in human chondrocytes. J Biol Chem 271, 23577-23581. Brandeis, M., Rosewell, I., Carrington, M., Crompton, T., Jacobs, M. A., Kirk, J., Gannon, J., and Hunt, T. (1998). Cyclin B2-null mice develop normally and are fertile whereas cyclin B1-null mice die in utero. Proc Natl Acad Sci U S A 95, 4344-4349. Bruce Alberts, A. J., Julian Lewis, Martin Raff, Keith Roberts, Peter Walter (2002). The cell. 332. Burton, J. L., and Solomon, M. J. (2001). D box and KEN box motifs in budding yeast Hsl1p are required for APC-mediated degradation and direct binding to Cdc20p and Cdh1p. Genes Dev 15, 2381-2395. Cazorla, M., Hernandez, L., Nadal, A., Balbin, M., Lopez, J. M., Vizoso, F., Fernandez, P. L., Iwata, K., Cardesa, A., Lopez-Otin, C., and Campo, E. (1998). Collagenase-3 expression is associated with advanced local invasion in human squamous cell carcinomas of the larynx. J Pathol 186, 144-150. Chenard, M. P., O'Siorain, L., Shering, S., Rouyer, N., Lutz, Y., Wolf, C., Basset, P., Bellocq, J. P., and Duffy, M. J. (1996). High levels of stromelysin-3 correlate with poor prognosis in patients with breast carcinoma. Int J Cancer 69, 448-451. Comoglio, P. M., and Trusolino, L. (2005). Cancer: the matrix is now in control. Nat Med 11, 1156-1159. Delebecq, T. J., Porte, H., Zerimech, F., Copin, M. C., Gouyer, V., Dacquembronne, E., Balduyck, M., Wurtz, A., and Huet, G. (2000). Overexpression level of stromelysin 3 is related to the lymph node involvement in non-small cell lung cancer. Clin Cancer Res 6, 1086-1092. Diffley, J. F. (2004). Regulation of early events in chromosome replication. Curr Biol 14, R778-786. Egeblad, M., and Werb, Z. (2002). New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2, 161-174. El-Serag, H. B. (2002). Hepatocellular carcinoma: an epidemiologic view. J Clin Gastroenterol 35, S72-78. Freije, J. M., Diez-Itza, I., Balbin, M., Sanchez, L. M., Blasco, R., Tolivia, J., and Lopez-Otin, C. (1994). Molecular cloning and expression of collagenase-3, a novel human matrix metalloproteinase produced by breast carcinomas. J Biol Chem 269, 16766-16773. Gill, G. (2004). SUMO and ubiquitin in the nucleus: different functions, similar mechanisms? Genes Dev 18, 2046-2059. Glotzer, M., Murray, A. W., and Kirschner, M. W. (1991). Cyclin is degraded by the ubiquitin pathway. Nature 349, 132-138. Hardeland, U., Steinacher, R., Jiricny, J., and Schar, P. (2002). Modification of the human thymine-DNA glycosylase by ubiquitin-like proteins facilitates enzymatic turnover. Embo J 21, 1456-1464. Harper, J. W., Burton, J. L., and Solomon, M. J. (2002). The anaphase-promoting complex: it's not just for mitosis any more. Genes Dev 16, 2179-2206. Hay, R. T. (2005). SUMO: a history of modification. Mol Cell 18, 1-12. Heix, J., Vente, A., Voit, R., Budde, A., Michaelidis, T. M., and Grummt, I. (1998). Mitotic silencing of human rRNA synthesis: inactivation of the promoter selectivity factor SL1 by cdc2/cyclin B-mediated phosphorylation. Embo J 17, 7373-7381. Hizume, K., Yoshimura, S. H., Kumeta, M., and Takeyasu, K. (2007). Structural organization of dynamic chromatin. Subcell Biochem 41, 3-28. Hsu, H. C., Wu, T. T., Wu, M. Z., Sheu, J. C., Lee, C. S., and Chen, D. S. (1988). Tumor invasiveness and prognosis in resected hepatocellular carcinoma. Clinical and pathogenetic implications. Cancer 61, 2095-2099. Isaac, C., Yang, Y., and Meier, U. T. (1998). Nopp140 functions as a molecular link between the nucleolus and the coiled bodies. J Cell Biol 142, 319-329. Ito, Y., Takeda, T., Sakon, M., Monden, M., Tsujimoto, M., and Matsuura, N. (2000). Expression and prognostic role of cyclin-dependent kinase 1 (cdc2) in hepatocellular carcinoma. Oncology 59, 68-74. Jackman, M., Firth, M., and Pines, J. (1995). Human cyclins B1 and B2 are localized to strikingly different structures: B1 to microtubules, B2 primarily to the Golgi apparatus. Embo J 14, 1646-1654. Johansson, N., Ahonen, M., and Kahari, V. M. (2000). Matrix metalloproteinases in tumor invasion. Cell Mol Life Sci 57, 5-15. Juliano, R. (2003). Movin' on through with Cdc2. Nat Cell Biol 5, 589-590. Kaufmann, W. K. (1995). Cell cycle checkpoints and DNA repair preserve the stability of the human genome. Cancer Metastasis Rev 14, 31-41. Kellogg, D. R., Moritz, M., and Alberts, B. M. (1994). The centrosome and cellular organization. Annu Rev Biochem 63, 639-674. Kraft, C., Vodermaier, H. C., Maurer-Stroh, S., Eisenhaber, F., and Peters, J. M. (2005). The WD40 propeller domain of Cdh1 functions as a destruction box receptor for APC/C substrates. Mol Cell 18, 543-553. Kurland, J. F., and Tansey, W. P. (2004). Crashing waves of destruction: the cell cycle and APC(Cdh1) regulation of SCF(Skp2). Cancer Cell 5, 305-306. Leibeling, D., Laspe, P., and Emmert, S. (2006). Nucleotide excision repair and cancer. J Mol Histol 37, 225-238. Lewin, B. (1997). Gene VI. 893. Liu, S.-H. (2004). Aberrantly genes expressed at chromosome 4q and 11q in hepatocellular carcinoma: special emphasis on annexin A10 at 4q33, ApoA-V at 11q23 and CANP at 11q12. Ludwig, M. G., Basset, P., and Anglard, P. (2000). Multiple regulatory elements in the murine stromelysin-3 promoter. Evidence for direct control by CCAAT/enhancer-binding protein beta and thyroid and retinoid receptors. J Biol Chem 275, 39981-39990. Manes, T., Zheng, D. Q., Tognin, S., Woodard, A. S., Marchisio, P. C., and Languino, L. R. (2003). Alpha(v)beta3 integrin expression up-regulates cdc2, which modulates cell migration. J Cell Biol 161, 817-826. Miau, L. H., Chang, C. J., Tsai, W. H., and Lee, S. C. (1997). Identification and characterization of a nucleolar phosphoprotein, Nopp140, as a transcription factor. Mol Cell Biol 17, 230-239. Minn, A. J., Gupta, G. P., Siegel, P. M., Bos, P. D., Shu, W., Giri, D. D., Viale, A., Olshen, A. B., Gerald, W. L., and Massague, J. (2005). Genes that mediate breast cancer metastasis to lung. Nature 436, 518-524. Muller, D., Wolf, C., Abecassis, J., Millon, R., Engelmann, A., Bronner, G., Rouyer, N., Rio, M. C., Eber, M., Methlin, G., and et al. (1993). Increased stromelysin 3 gene expression is associated with increased local invasiveness in head and neck squamous cell carcinomas. Cancer Res 53, 165-169. Nagase, H., and Woessner, J. F., Jr. (1999). Matrix metalloproteinases. J Biol Chem 274, 21491-21494. Nalpas, B., Driss, F., Pol, S., Hamelin, B., Housset, C., Brechot, C., and Berthelot, P. (1991). Association between HCV and HBV infection in hepatocellular carcinoma and alcoholic liver disease. J Hepatol 12, 70-74. Pan, H. W., Chou, H. Y., Liu, S. H., Peng, S. Y., Liu, C. L., and Hsu, H. C. (2006). Role of L2DTL, cell cycle-regulated nuclear and centrosome protein, in aggressive hepatocellular carcinoma. Cell Cycle 5, 2676-2687. Pan, H. W., Ou, Y. H., Peng, S. Y., Liu, S. H., Lai, P. L., Lee, P. H., Sheu, J. C., Chen, C. L., and Hsu, H. C. (2003). Overexpression of osteopontin is associated with intrahepatic metastasis, early recurrence, and poorer prognosis of surgically resected hepatocellular carcinoma. Cancer 98, 119-127. Pearson, W. R. (2001). Protein sequence comparison and Protein evolution. 1-53. Peters, J. M. (2002). The anaphase-promoting complex: proteolysis in mitosis and beyond. Mol Cell 9, 931-943. Pfleger, C. M., and Kirschner, M. W. (2000). The KEN box: an APC recognition signal distinct from the D box targeted by Cdh1. Genes Dev 14, 655-665. Porte, H., Triboulet, J. P., Kotelevets, L., Carrat, F., Prevot, S., Nordlinger, B., DiGioia, Y., Wurtz, A., Comoglio, P., Gespach, C., and Chastre, E. (1998). Overexpression of stromelysin-3, BM-40/SPARC, and MET genes in human esophageal carcinoma: implications for prognosis. Clin Cancer Res 4, 1375-1382. Przybylo, J. A., and Radisky, D. C. (2007). Matrix metalloproteinase-induced epithelial-mesenchymal transition: Tumor progression at Snail's pace. Int J Biochem Cell Biol 39, 1082-1088. Radisky, D. C., Levy, D. D., Littlepage, L. E., Liu, H., Nelson, C. M., Fata, J. E., Leake, D., Godden, E. L., Albertson, D. G., Nieto, M. A., et al. (2005). Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature 436, 123-127. Saitoh, H., and Hinchey, J. (2000). Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. J Biol Chem 275, 6252-6258. Sclafani, R. A., and Holzen, T. M. (2007). Cell Cycle Regulation of DNA Replication. Annu Rev Genet. Sherman, M. (1995). Hepatocellular carcinoma. Gastroenterologist 3, 55-66. Shima, I., Sasaguri, Y., Kusukawa, J., Yamana, H., Fujita, H., Kakegawa, T., and Morimatsu, M. (1992). Production of matrix metalloproteinase-2 and metalloproteinase-3 related to malignant behavior of esophageal carcinoma. A clinicopathologic study. Cancer 70, 2747-2753. Stefanidakis, M., and Koivunen, E. (2006). Cell-surface association between matrix metalloproteinases and integrins: role of the complexes in leukocyte migration and cancer progression. Blood 108, 1441-1450. Sternlicht, M. D., Lochter, A., Sympson, C. J., Huey, B., Rougier, J. P., Gray, J. W., Pinkel, D., Bissell, M. J., and Werb, Z. (1999). The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis. Cell 98, 137-146. Stier, H., Fahimi, H. D., Van Veldhoven, P. P., Mannaerts, G. P., Volkl, A., and Baumgart, E. (1998). Maturation of peroxisomes in differentiating human hepatoblastoma cells (HepG2): possible involvement of the peroxisome proliferator-activated receptor alpha (PPAR alpha). Differentiation 64, 55-66. Sung, J. L. (1997). Prevention of hepatitis B and C virus infection for prevention of cirrhosis and hepatocellular carcinoma. J Gastroenterol Hepatol 12, S370-376. Tatham, M. H., Jaffray, E., Vaughan, O. A., Desterro, J. M., Botting, C. H., Naismith, J. H., and Hay, R. T. (2001). Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. J Biol Chem 276, 35368-35374. Ubersax, J. A., Woodbury, E. L., Quang, P. N., Paraz, M., Blethrow, J. D., Shah, K., Shokat, K. M., and Morgan, D. O. (2003). Targets of the cyclin-dependent kinase Cdk1. Nature 425, 859-864. Wang, Q. E., Zhu, Q., Wani, G., El-Mahdy, M. A., Li, J., and Wani, A. A. (2005). DNA repair factor XPC is modified by SUMO-1 and ubiquitin following UV irradiation. Nucleic Acids Res 33, 4023-4034. Wayne M. Becker, L. J. K., Jeff Hardin (2003). The world of cell. 545, 749. Weaver, R. F. (2003). Molecular biology. 263. Yang, Y., Isaac, C., Wang, C., Dragon, F., Pogacic, V., and Meier, U. T. (2000). Conserved composition of mammalian box H/ACA and box C/D small nucleolar ribonucleoprotein particles and their interaction with the common factor Nopp140. Mol Biol Cell 11, 567-577. Zachariae, W., and Nasmyth, K. (1999). Whose end is destruction: cell division and the anaphase-promoting complex. Genes Dev 13, 2039-2058. Zhang, H., Saitoh, H., and Matunis, M. J. (2002). Enzymes of the SUMO modification pathway localize to filaments of the nuclear pore complex. Mol Cell Biol 22, 6498-6508. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27697 | - |
| dc.description.abstract | 肝細胞癌 (HCC)是台灣最常見的惡性腫瘤。為了評估基因異常表現對於肝細胞癌影響,我們使用了mRNA基因分析法(Differential display)在肝細胞癌組織中辨認到一個異常表現,而且功能不明的新穎基因,它是位於染色體11q12.2。在我們過往的研究中,展示出它的基因產物會落在細胞核,並把它命名為Cancer Associated Nuclear Protein (CANP)。
在本次的研究裡,我們首先對比人類CANP蛋白與其他物種的親源性關係。在利用電腦軟體的蛋白序列分析中,可以找到CANP蛋白上在多個與細胞週期有關的磷酸化的位置。而且,CANP蛋白序列上也被發現帶有KEN-box和D-box,這發現提供了CANP蛋白也許是APC-cdh-1或APC-cdc20的受質,並經由ubiquintin-proteasome路經所分解的可能性。另一方面,我們也從CANP蛋白序列上找到四個可以被sumoylation位置,不過,以免疫沈澱(Immunoprecipitation,IP)及西方點墨法 (Western blot)進行的實驗裡,並無法證明CANP蛋白有被sumoylation。再者,我們證明了CANP擁有一個比較短,缺乏編碼順序三 (Exon 3)的選擇性剪裁變體 (Alternative splicing variant)。 利用HeLa細胞株的細胞週期進行,我們展示了CANP的mRNA和蛋白量會在G0/G1期開始上升,直到S期達到最高峰,然後開始下降到M/G1期的最低點。而CANP在細胞週期進行時,它會表現出一個獨特的分佈模式。當細胞處於細胞分裂時期,CANP會擴散至細胞質,並且形成一個環狀排列,包圍染色體,稍後就會集中至中央體 (Centrosome)。當細胞進入分裂期間 (Interphase),CANP形成大夥粒狀,變得集中在核仁位置。 為了說明CANP蛋白在腫瘤細胞生長時的功能,我們利用RNAi oligos去調降 (Knockdown) CANP mRNA的表現量。結果發現CANP與細胞在半固體瓊脂培養基的非貼附性生長能力及利用MTT測量細胞增生速率的實驗中並無明顯功能。然而,在CANP被RNAi oligos調降的細胞株內 (HeLa, HA22T, HCC36, HBL435及Au565)顯現出極大的侵犯能力(Invasion capacity)下降。而且也發現有好幾種金屬蛋白分解脢 (Matrix metalloproteinase, MMP)的mRNA量在CANP被低度調控後,而有所下降。另外我們也發現在CANP mRNA的調降後,兩種與細膩移動有關的細胞週期蛋白:cyclin B2 及cdc2的蛋白量也有被抑制的現象。這個結果或許暗示了各細胞移動能力和株侵犯能力的下降是與金屬蛋白分解脢的mRNA量和cyclin B2及cdc20的蛋白量下降有關。 數種參與細胞週期有關的重要蛋白,例如週期素 (Cyclin A1, Cyclin B1),在細胞的CANP被低度調控之後都有累積的情況。這表示CANP也許有細胞週期中扮演著某個角色。另外,我們觀察當細胞曝露於紫外線之後三十分鐘,CANP的mRNA量有被減少的情形,但是在兩個小時以後,CANP的mRNA量又會有反彈的現象,這個結果意謂著CANP對於紫外線引致的DNA損壞有反應,並且可能參與損壞DNA的修補。 | zh_TW |
| dc.description.abstract | Hepatocellular carcinoma (HCC) is the most common fatal malignancy in Taiwan. To elucidate the aberrant genes expression in HCC, we used mRNA differential display and identified a novel gene with unknown functions which was frequently over-expressed in HCC, which is located at chromosome 11q12.2. Our previous study showed that the gene product was located to the nuclei, and named as Cancer Associated Nuclear Protein (CANP).
In this study, we first compared the human CANP protein with homologues of other species. The peptide sequence analysis predicted several putative phosphorylation sites, including some are cell cycle related. Moreover, CANP protein contains KEN box and D-box motifs which suggests that CANP maybe a novel substrate of APC-cdh-1 or/and APC-cdc20 and degradated through the ubiquitin-proteasome pathway. There were also four possible sumoylation sites, which, however, could not be verified by immunoprecipitation (IP) and western blot using sumoylation assay. Besides, we showed that CANP had a shorter alternative splicing variant, which lacked the exon-3. Using the standard cell cycle progression of HeLa cells, we showed the mRNA level and protein levels of CANP increased dramatically from the G1/S phase transition and reached the peak in the S phase, and then decreased to the lowest level when cells in the M/G1 phase. Further, CANP exhibited a unique distribution pattern throughout the cell cycle, during the mitosis, CANP protein became dispersed in the cytoplasm, with weak ring-shape concentration around the chromatin, and marked concentration in the centrosomes. While in the interphase nuclei, CANP became condensed as large granules corresponding to the nucleoli. To elucidate the function(s) of CANP on the tumor cell growth, we used RNAi oligos to knockdown the expression of CANP. There was no significant difference on the anchorage independent growth in soft agar assay and cell proliferation on MTT assay. However, the CANP RNAi oligos knockdown cells (HeLa, HA22T, HCC36, HBL435 and Au565) exhibited greatly reduced invasion capacity on the in vitro invasion assay. And there were several Mmps which were down-regulated after the CANP silencing. Moreover, we found that the protein level of two cell cycle related protein: cyclin B2 and cdc20 was depressed which were related to the cell migration after the CANP knockdown. It suggested that the reduction of cell migration and invasion capacity maybe caused by the depression of Mmps and the protein level of cyclin B2 and cdc20. Several important cell cycle related proteins, including cyclin A1 and cyclin B1. They accumulated after the suppression of CANP. These findings suggest that CANP plays a role in cell cycle. Notably, we also observed that the mRNA level of CANP was suppressed in 30 minutes after the UV exposure, but became rebound two hours later. These results implicate that CANP is sensitive to UV triggered DNA damage and probably involved in the damage repair. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-12T18:16:02Z (GMT). No. of bitstreams: 1 ntu-96-R94444005-1.pdf: 10685729 bytes, checksum: 1914a38df0784896f56f8b23f5b2fed4 (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | Contents
Page 口試委員會審定書 Ⅰ 誌謝 Ⅱ 中文摘要 Ⅲ Abstract Ⅴ Contents Ⅶ 1. Introduction 1 1.1 Hepatocelluar carcinoma 2 1.2 The clone of CANP 2 1.3 The expression of CANP mRNA in tissues and cell lines 3 1.4 The expression of CANP in HCC and other cancers: correlation with clinical features 3 1.5 The subcellular localization and expression level of CANP protein during cell cycle progression 4 1.6 Purposes of study 5 2. Materials and Methods 6 2.1 Reveres Transcription-Polymerase Chain Reaction (RT-PCR) 7 2.2 RNAi knockdown of CANP 8 2.3 Cell lines and cell culture 8 2.4 Vectors construction 8 2.5 The predictions of CANP protein by using the bioinfromation tools 9 2.6 Generateion of anti-CANP antibodies 9 2.7 Antibodies 10 2.8 Immunofluorescence staining 10 2.9 The degradation of CANP 11 2.10 Anchorage-independent growth in soft agar 11 2.11 Cell proliferation assay by MTT 11 2.12 In vitro scratch wound healing assay 11 2.13 In vitro invasion assay 12 2.14 Cell differentiation by long term culture 12 2.15 Dephosphorylation of CANP 13 2.16 Immunoprecipitation 13 2.17 Western Blot Analysis 13 2.18 Cell synchronization 14 2.19 UV irradiation treatment 14 2.20 In vitro invasion assay 14 3. Results 15 3.1 Evolution, homology and modification of CANP 16 3.2 The expression of CANP during the cell cycle progression 17 3.3 Subcellular localization of CANP and cell cycle: The unique centrosomal and nucleolar localization 18 3.4 The deregulation pathway of CANP protein 19 3.5 UV-induced injury and CANP expression 20 3.6 CANP expression during differentiation of HepG2 20 3.7 The sumoylation status of CANP 21 3.8 The phosphoryation status of two CANP protein isoforms 21 3.9 The CANP isoforms are splicing variants 22 3.10 CANP silencing by RNAi oligos and cell proliferation 22 3.11 CANP silencing reduces the migration ability of tumor cells 23 3.12 CANP silencing decreases tumor cell migration and invasiveness 23 3.13 The mRNA of metallproteinases (Mmps) were down- regulated after the CANP silencing 24 3.14 Multiples cell cycle related proteins were regulated after the knockdown of CANP 24 4. Discussion 25 4.1 The evolutionary timeline of CANP 26 4.2 CANP expression and degradation in cell cycle progression 26 4.3 Subsellular localization and centrosomal targeting of CANP protein 28 4.4 CANP silencing results in dramatic suppression of migration and invasiveness of cancer cell lines 29 4.5 Down-regulation of matrix metalloproteinases and reduction of invasion capacity 31 4.5.1 Mmp 1 & CANP 32 4.5.2 Mmp 3 & CANP 33 4.5.3 Mmp 11 & CANP 33 4.5.4 Mmp 13 & CANP 34 4.6 CANP, sumoylation and UV trigger DNA damage repair 34 5. Tables and Figures 36 Table 1A. The alignment of human CANP protein (1-254 a.a.) with the homologues of other species. 36 Table 1B. The alignment of human CANP protein (255-703 a.a.) with the homologues of other species. 36 Table 1C. The alignment of human CANP protein (704-734 a.a.) with the homologues of other species. 38 Table 2. The human CANP protein homologues in other species and their relative scores 38 Figure 1. The cladogram of CANP 39 Figure 2. The bio-information analytic result of CANP. 40 Figure 3. The specificity of anti-CANP antibody. 41 Figure 4. CANP mRNA and protein expression level during the cell cycle progression. 42 Figure 5. The subcellular localization of CANP during cell cycle progression. 43 Figure 6. The unique distribution of CANP during the M phase and S phase. 43 Figure 7. The degradation of CANP by APC-cdh-1. 44 Figure 8. CANP sensitivity to UV treatment. 45 Figure 9. CANP protein has two variants. 46 Figure 10. The variation of CANP proteins in differentiation of HepG2 cells. 46 Figure 11. The in vitro sumoylation assay for CANP shows a ladder bands after the overexpression of EGFP-CANP. 47 Figure 12. Immunoprepcipitation of CANP after in vitro sumoylation. 48 Figure 13. The dephosphorylation of CANP by alkaline phosphatase or calf intestine phosphates showing no phosphorylation on CANP protein. 49 Figure 14. The identification of CANP mRNA isoforms. 50 Figure 15. The predicted exons and the coding regions of the full-length and shorter variant of CANP mRNA species. 50 Figure 16. The efficiency of RNAi oligo knockdown of CANP in mRNA level. 51 Figure 17. The knockdown of CANP protein expression by RNAi oligos. 51 Figure 18. The MTT assay. 52 Figure 19. Serum starvation and MTT assay on HeLa cells. 53 Figure 20. Serum starvation and MTT assay on Au565 cells. 54 Figure 21. The anchorage independent growth soft-agar assay. 55 Figure 22. In vitro scratch wound healing assay 56 Figure 23. Transwell assay with matrixgel coating (in vitro invasion assay). 57 Figure 24. Multiple metalloproteinases are down- regulated after the CANP knockdown. 58 Figure 25. Cyclin B2 and cdk1 are down-regulated after the CANP suppression. 58 Figure 26. Cyclin A1 and cyclin B1 accumulate after the CANP repressed. 58 6. References 59 End 65 | |
| dc.language.iso | en | |
| dc.subject | 金屬蛋白分解脢 | zh_TW |
| dc.subject | CANP | zh_TW |
| dc.subject | 細胞移動 | zh_TW |
| dc.subject | 細胞侵犯 | zh_TW |
| dc.subject | cyclin B2 | zh_TW |
| dc.subject | cdc2 | zh_TW |
| dc.subject | cyclin B2 | en |
| dc.subject | Matrix metalloproteinase | en |
| dc.subject | cdc2 | en |
| dc.subject | CANP | en |
| dc.subject | Cell migration | en |
| dc.subject | Cell invasion | en |
| dc.title | 細胞週期核蛋白CANP在癌症細胞之角色 | zh_TW |
| dc.title | The role of a cell cycle related nuclear protein CANP in cancer cell | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 唐堂,康照洲,許金玉,呂勝春 | |
| dc.subject.keyword | CANP,細胞移動,細胞侵犯,cyclin B2,cdc2,金屬蛋白分解脢, | zh_TW |
| dc.subject.keyword | CANP,Cell migration,Cell invasion,cyclin B2,cdc2,Matrix metalloproteinase, | en |
| dc.relation.page | 65 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-08-30 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 病理學研究所 | zh_TW |
| 顯示於系所單位: | 病理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 10.44 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
