請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27666完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李允中 | |
| dc.contributor.author | Yi-Kai Tang | en |
| dc.contributor.author | 唐翊凱 | zh_TW |
| dc.date.accessioned | 2021-06-12T18:14:35Z | - |
| dc.date.available | 2008-09-03 | |
| dc.date.copyright | 2007-09-03 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-08-30 | |
| dc.identifier.citation | 1. 王小川。2004。語音訊號處理。初版,5-14 – 7-24。台北:全華。
2. 葉柏涼。2006。敲擊回音法之時間:頻率域分析與影像法。博士論文。台北:台灣大學應用力學硏究所。 3. Abbott, J. A., G.. S. Bachman, and N. F. Childers. 1968. Sonic techniques for measuring texture of fruits and vegetables. Food Technology 22(5):101-112 4. Abbott, J. A., D. R. Massie, and B. L. Upchurch. 1995. Nondestructive sonic firmness measurement of apples. Transactions of the ASAE 38(5):1467-1476. 5. Armstrong, P. R., M. L. Stone, and G. H. Brusewitz. 1997. Nondestructive acoustic and compression measurements of watermelon for internal damage detection. Applied Engineer in Agriculture13(5):641-645. 6. Armstrong, P. R., M. L. Stone, and G. H. Brusewitz. 1997. Peach firmness determination using two different nondestructive vibrational sensing instruments. Transactions of the ASAE 40(3):699-703. 7. Belie, N. D., S. Schotte, P. Coucke, and J. D. Baerdemaeker. 2000a. Development of an automated monitoring device to quantify changes of firmness of apples during storage. Postharvest Biology and Technology18(1):1-8. 8. Belie, N. D., S. Schotte, J. Lammertyn, B. Nicolai, and J. D. Baerdemaeker. 2000b. Firmness changes of pear fruit before and after harvest with the acoustic impulse response technique. Journal of Agricultural Engineering Research77(2):183-191. 9. Chen, H., and J. D. Baerdemaeker. 1993. Effect of apple shape on acoustic measurements of firmness. Journal of agricultural engineering research56:253-266. 10. Chen, P., and Z. Sun. 1991. A Review of Non-destructive Methods for Quality Evaluation and Sorting of Agricultural Products. Journal of Agricultural Engineering Research. 49(2):85-98. 11. Childers, D. G. 1999. Speech Processing and Synthesis Toolboxes. 1st ed., 8-50. New York:John Wiley & Sons. 12. Cho, S. I. and G. W. Krutz. 1989. Fruit ripeness detection by using NMR. ASAE Paper No. 89-6620. St. Joseph, MI:ASAE. 13. Dieneer, R. G., J. P. Mitchell, and M. L. Rhoten. 1970. Using a X-ray image scan to sort bruised apple. Agricultural Engineering51(6):356-361. 14. Dintwa, E., M. Van Zeebroeck, E. Tijskens and H. Ramon. 2005. Determination of parameters of a tangential contact force model for viscoelastic spheroids (fruits) using a rheometer device. Biosystem Engineering 91(3): 321-327. 15. Felföldi, J. and A. Fekete. 2003. Detection of small scale mechanical changes by acoustic measuring system. ASAE Paper No. 036097. St. Joseph, MI:ASAE. 16. Finney, E. E., and J. A. Abbott. 1978. Methods for testing the dynamic mechanical response of solid foods. Journal of Food Science.2:55-74. 17. Galili, N., I. Shmulevich, and N. Benichou. 1998. Acoustic testing of avocado for fruit ripeness evaluation. Transactions of the ASAE41(2):399-407. 18. Hamann, D. D., and D. E. Carroll. 1971. Ripeness sorting of Muscadine grapes by use of low-frequency vibrational energy. Journal of Food Science.36:1049-1051. 19. Hamann, D. D., L. J. Kushman, and W. E. Ballinger. 1973. Sorting blueberries for quality by vibration. Journal of American Society of Horticultural Science. 98(6):572-576. 20. Hoki, M. and K. Tomita. 1975. Mechanical properties of soybeans by means of ultrasonic measurements. Bulletin of Agriculture49:295-300. 21. Iglesias, B. D., C. Valero, F. J. Ramos, and M. R. Altisent. 2006. Monitoring of firmness evolution of peaches during storage by combining acoustic and impact methods. Journal of Food Engineering. Journal of Food Engineering77(4):926-935. 22. Iglesias, B. D., M. R. Altisent, and B. Orihuel. 2003. Acoustic impulse response for detecting hollow heart in seedless watermelon. International Society for Horticultural Science.599:249-256. 23. Iglesias, B. D., M. R. Altisent, and P. Barreiro. 2004. Detection of internal quality in seedless watermelon by acoustic impulse response. Biosystems Engineering88(2):221-230. 24. Ketelaere, B. D. and J. D. Baerdemaeker. 2001. Advances in Spectral Analysis of Vibrations for Non-destructive Determination of Tomato Firmness. Journal of Agricultural Engineering Research78(2):177-185. 25. Marchant, J. A. 1988. Computer vision in agricultural engineering. Agricultural Engineering43(2):40-42. 26. Martinez, V. Y., A. B. Nieto, P. E. Viollaz and S. M. Alzamora. 2005. Viscoelastic behavior of melon tissue as influenced by blanching and osmotic dehydration. Journal of Food Science 70 (1): E12-E18. 27. Mohsenin, N. 1986. Physical Properties of Plant and Animal Materials . 2nd ed., New York : Gordon and Breach Science Publishers. 28. Muramatsu, N., N. Sakurai, R. Yamamoto, D. J. Nevins, T. Takahara, and T. Ogata. 1997. Comparison of a non-destructive acoustic method with an intrusive method for firmness measurement of kiwifruit. Postharvest Biology and Technology12(3):221-228. 29. Nahir, D., Z. Schmilovitch, and B. Ronen. 1986. Tomato grading by impact force response. ASAE Paper No. 86-3028. St. Joseph, MI:ASAE. 30. Nelson, S. O. 1973. Electrical properties of agricultural products - a critical review. Transactions of the ASAE 16(2):384-400. 31. Norris, K. H. and J. R. Hart. 1965. Direct spectrophotometric determination of moisture content of grain and seeds. Proceedings 1963 International Symposium on Humidity and Moisture4:19-25. 32. Ozer, N., B. A. Engel and J. E. Simon. 1998. Transactions of the ASAE 41(3):871-876. 33. Peleg, K. 1993. Comparison of non-destructive and destructive measurement of apple firmness. Journal of Agricultural Engineering Research55:227-238. 34. Peleg, K. 1999. Development of a commercial fruit firmness sorter. Journal of Agricultural Engineering Research72(3):231-238. 35. Pitt, R.E. 1992. Viscoelastic properties of fruit and vegetables. In: Rao MA, Steffe JF, editors. Viscoelastic properties of foods. Amsterdam: Elsevier Science. p 3-47. 36. Stone, M. L., P. R. Armstrong, and X. Zhang. 1996. Watermelon maturity determination in the field using acoustic impulse impedance techniques. Transactions of the ASAE 39(6):2325-2330. 37. Sugiyama, J., K. Otobe, and S. Hayashi. 1994. Firmness measurement of muskmelons by acoustic impulse transmission. Transactions of the ASAE 37(4):1235-1241. 38. Sugiyama, J., T. Katsural, and J. Hong. 1998. Melon ripeness monitoring by a portable firmness tester. Transactions of the ASAE 41(1):121-127. 39. Thomas, F. Q. 2002. Discrete-time speech signal processing principles and practice. 1st ed. Prentice Hall PTR. 40. Wang, Jun. 2006. Acoustic impulse response for measuring the firmness of mandarin during storage. Journal of Food Quality 29(2006):392-404. 41. Yamamoto, H., M. Iwamoto, and S. Haginuma. 1980. Acoustic impulse response method for measuring natural frequency of intact fruits and preliminary applications to internal quality evaluation of apples and watermelons. Journal of Texture studies11:117-136. 42. Yamamoto, H., M. Iwamoto, and S. Haginuma. 1981. Nondestructive acoustic impulse response method for measuring internal quality of apples and watermelons. Journal of Japan Society of Horticultural Science.50(2):247-261. 43. Yen, M. H. and Y. N. Wan. 2002. Digital signal analysis of guava impact inspection. ASAE Paper No. 026070. St. Joseph, MI:ASAE. 44. Yen, M. and Y. Wan. 2003. Determination of textural indices of guava fruit using discriminate analysis by impact force. Transactions of the ASAE46(4):1161-1166. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27666 | - |
| dc.description.abstract | 農產品非破壞性品質檢測方法中,利用敲擊農產品取得自然頻率藉此判斷品質,是文獻中常使用之方式。此法是利用不同型式的鐘擺敲擊農產品,記錄其聲音或振動響應,再利用快速傅利葉轉換得到自然頻率。雖然實際上生物材料大都為黏彈性體,但在水果敲擊的理論研究中,都假設水果為彈性體。此論文嘗試使用時頻域方法分析洋香瓜的敲擊響應,同時記錄洋香瓜的敲音與振動訊號,再對訊號作短時間傅利葉轉換並畫出聲譜圖。聲譜圖可隨著時間軸呈現出自然頻率與能量的關係。利用此改進方法作分析,可在洋香瓜的儲存期間,輕易看出整體主頻的頻率降低行為,並且辨識出不同主頻的能量大小。論文中對於敲音與振動響應都有個別之討論,在聲譜圖中可以得到每ㄧ個自然頻率與時間的關係,且洋香瓜敲擊響應所得之聲譜圖中,低頻能量緩慢消減的現象與Maxwell model 的應力鬆弛現象相似。因此建議可將時頻域分析方法作為研究水果黏彈性現象的新工具。 | zh_TW |
| dc.description.abstract | Acoustic impulse response method for measuring natural frequency of an impacted fruit is a nondestructive textural quality evaluation method extensively studied in the literature. The method used various types of pendulum to hit the studied object and to record the acoustic or vibrating responses. The recorded data were then processed by means of digital Fourier transform to obtain the natural frequency of the object. The main theory behind is assuming fruit to be an elastic object that response to the impaction, although fruit fresh is viscoelastic in reality. The objective of this thesis was to use time-frequency method to analysis impulse response for a melon in an impaction test. Both acoustic and vibrating responses were recorded and processed with a short time Fourier transform program developed in this study to give spectrographs for each impulse response data obtained in experiment. The spectrograph gave a better resolution for the natural frequencies also with the time history of the power spectrum. By this improved analysis tool the changes of mechanical properties of melon during short storage were easily depicted in decreasing of major nature frequencies and variations of power in different wave bands. Those were two main parameters separately discussed in the literature. Abstracting information from the spectrograph, the time history of each natural frequency was obtained. Skew curves were observed for low frequency signal, the graphics were similar to those in stress relaxation curves for the viscoelastic materials. Along with other evidences that suggested time-frequency method might be a new tool for studying viscoelastic properties of fruit. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-12T18:14:35Z (GMT). No. of bitstreams: 1 ntu-96-R94631038-1.pdf: 1985286 bytes, checksum: b9e9180c5a012ffb1c6eda53c059a5fa (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii ABSTRACT iii 目錄 v 圖目錄 vii 表目錄 x 符號說明 xi 第一章 前言與研究目的 1 1.1 前言 1 1.2 研究目的 2 第二章 文獻探討 3 2.1 農產品非破壞性檢測 3 2.2 振動特性應用於農產品檢測 4 2.2.1 連續振動檢測 5 2.2.2 敲擊檢測的頻域主頻率分析 5 2.2.3 敲擊檢測的頻域主頻帶分析 8 2.3 訊號處理 10 第三章 訊號處理 12 3.1 頻譜圖轉換 12 3.2 短時間傅利葉轉換 14 3.3 聲譜圖繪製 16 3.4 聲譜圖程式參數設計說明 19 第四章 實驗設備與方法 20 4.1 洋香瓜的物理性質 20 4.1.1 平均重量量測方法 20 4.1.2 體積量測方法 20 4.1.3 密度計算方式 20 4.2 實驗材料 22 4.3 敲擊實驗設備 23 4.3.1 音頻訊號的擷取 23 4.3.2 振動訊號的感測 24 4.3.3 音頻訊號的分析 25 4.3.4 以LabVIEW程式發展的訊號擷取與分析系統 27 4.3.5 以MATLAB程式發展的聲頻譜圖 31 4.4 實驗方法 32 4.4.1 敲音訊號記錄 32 4.4.2 振動訊號記錄 32 第五章 結果與討論 34 5.1 時域訊號分析 34 5.1.1 振動訊號時間差比較 34 5.1.2 振動訊號相位差比較 36 5.2 振動訊號的頻譜圖成分 40 5.3 聲音訊號與振動訊號之聲譜圖比較 43 5.4 聲譜圖隨不同天數之改變 48 5.4.1 網紋洋香瓜不同天數聲譜圖 48 5.4.2 光皮洋香瓜不同天數聲譜圖 50 5.5 洋香瓜的黏彈性現象 52 第六章 結論 55 參考文獻 56 附錄一 在同一視窗中畫出敲音與振動聲譜圖程式 61 附錄二 讀取聲譜圖中特定頻帶資料並畫出時間-能量強度關係圖程式 63 | |
| dc.language.iso | zh-TW | |
| dc.subject | 敲擊檢測法 | zh_TW |
| dc.subject | 聲譜圖 | zh_TW |
| dc.subject | 時頻域分析 | zh_TW |
| dc.subject | 水果 | zh_TW |
| dc.subject | fruit | en |
| dc.subject | Time-Frequency Analysis | en |
| dc.subject | spectrogram | en |
| dc.subject | acoustic impulse response | en |
| dc.title | 時頻域方法應用於洋香瓜敲擊響應之分析 | zh_TW |
| dc.title | Application of Time-Frequency Analysis for
Impulse Response of Melons | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 盧福明,江昭皚 | |
| dc.subject.keyword | 時頻域分析,聲譜圖,水果,敲擊檢測法, | zh_TW |
| dc.subject.keyword | Time-Frequency Analysis,spectrogram,fruit,acoustic impulse response, | en |
| dc.relation.page | 64 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-08-31 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物產業機電工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物機電工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 1.94 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
