Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 流行病學與預防醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27649
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor何美鄉(Mei-Shang Ho),金傳春(Chwan-Chuen King)
dc.contributor.authorMei-Liang Huangen
dc.contributor.author黃美椋zh_TW
dc.date.accessioned2021-06-12T18:13:47Z-
dc.date.available2017-08-31
dc.date.copyright2007-09-12
dc.date.issued2007
dc.date.submitted2007-09-01
dc.identifier.citation1. Pan WH, Fann CS, Wu JY, et al. Han Chinese cell and genome bank in Taiwan: purpose, design and ethical considerations. Hum Hered 2006;61:27-30
2. Luster AD, Unkeless JC and Ravetch JV. Gamma-interferon transcriptionally regulates an early-response gene containing homology to platelet proteins. Nature 1985;315:672-6
3. Rossi D, Zlotnik A. The biology of chemokines and their receptors. Annu Rev Immunol 2000;18:217-42
4. Proost P, Schutyser E, Menten P, et al. Amino-terminal truncation of CXCR3 agonists impairs receptor signaling and lymphocyte chemotaxis, while preserving antiangiogenic properties. Blood 2001;98:3554-61
5. Rosenkilde MM, Andersen MB, Nygaard R, Frimurer TM and Schwartz TW. Activation of the CXCR3 chemokine receptor through anchoring of a small molecule chelator ligand between TM-III, -IV, and -VI. Mol Pharmacol 2007;71:930-41
6. Gangur V, Birmingham NP and Thanesvorakul S. Chemokines in health and disease. Vet Immunol Immunopathol 2002;86:127-36
7. Middleton J, Patterson AM, Gardner L, Schmutz C and Ashton BA. Leukocyte extravasation: chemokine transport and presentation by the endothelium. Blood 2002;100:3853-60
8. Soejima K, Rollins BJ. A functional IFN-gamma-inducible protein-10/CXCL10-specific receptor expressed by epithelial and endothelial cells that is neither CXCR3 nor glycosaminoglycan. J Immunol 2001;167:6576-82
9. Lasagni L, Francalanci M, Annunziato F, et al. An alternatively spliced variant of CXCR3 mediates the inhibition of endothelial cell growth induced by IP-10, Mig, and I-TAC, and acts as functional receptor for platelet factor 4. J Exp Med 2003;197:1537-49
10. Farber JM. Mig and IP-10: CXC chemokines that target lymphocytes. J Leukoc Biol 1997;61:246-57
11. Lloyd AR, Oppenheim JJ, Kelvin DJ and Taub DD. Chemokines regulate T cell adherence to recombinant adhesion molecules and extracellular matrix proteins. J Immunol 1996;156:932-8
12. Taub DD, Lloyd AR, Conlon K, et al. Recombinant human interferon-inducible protein 10 is a chemoattractant for human monocytes and T lymphocytes and promotes T cell adhesion to endothelial cells. J Exp Med 1993;177:1809-14
13. Gattass CR, King LB, Luster AD and Ashwell JD. Constitutive expression of interferon gamma-inducible protein 10 in lymphoid organs and inducible expression in T cells and thymocytes. J Exp Med 1994;179:1373-8
14. Loetscher P, Seitz M, Clark-Lewis I, Baggiolini M and Moser B. Activation of NK cells by CC chemokines. Chemotaxis, Ca2+ mobilization, and enzyme release. J Immunol 1996;156:322-7
15. Strieter RM, Polverini PJ, Kunkel SL, et al. The functional role of the ELR motif in CXC chemokine-mediated angiogenesis. J Biol Chem 1995;270:27348-57
16. Wang X, Yue TL, Ohlstein EH, Sung CP and Feuerstein GZ. Interferon-inducible protein-10 involves vascular smooth muscle cell migration, proliferation, and inflammatory response. J Biol Chem 1996;271:24286-93
17. Vanguri P, Farber JM. Identification of CRG-2. An interferon-inducible mRNA predicted to encode a murine monokine. J Biol Chem 1990;265:15049-57
18. Luster AD, Ravetch JV. Genomic characterization of a gamma-interferon-inducible gene (IP-10) and identification of an interferon-inducible hypersensitive site. Mol Cell Biol 1987;7:3723-31
19. Ohmori Y, Hamilton TA. Cooperative interaction between interferon (IFN) stimulus response element and kappa B sequence motifs controls IFN gamma- and lipopolysaccharide-stimulated transcription from the murine IP-10 promoter. J Biol Chem 1993;268:6677-88
20. Majumder S, Zhou LZ, Chaturvedi P, Babcock G, Aras S and Ransohoff RM. p48/STAT-1alpha-containing complexes play a predominant role in induction of IFN-gamma-inducible protein, 10 kDa (IP-10) by IFN-gamma alone or in synergy with TNF-alpha. J Immunol 1998;161:4736-44
21. Buttmann M, Berberich-Siebelt F, Serfling E and Rieckmann P. Interferon-beta is a potent inducer of interferon regulatory factor-1/2-dependent IP-10/CXCL10 expression in primary human endothelial cells. J Vasc Res 2007;44:51-60
22. Shin HS, Drysdale BE, Shin ML, Noble PW, Fisher SN and Paznekas WA. Definition of a lipopolysaccharide-responsive element in the 5'-flanking regions of MuRantes and crg-2. Mol Cell Biol 1994;14:2914-25
23. Kawai T, Takeuchi O, Fujita T, et al. Lipopolysaccharide stimulates the MyD88-independent pathway and results in activation of IFN-regulatory factor 3 and the expression of a subset of lipopolysaccharide-inducible genes. J Immunol 2001;167:5887-94
24. Shen Q, Zhang R and Bhat NR. MAP kinase regulation of IP10/CXCL10 chemokine gene expression in microglial cells. Brain Res 2006;1086:9-16
25. Cheng G, Nazar AS, Shin HS, Vanguri P and Shin ML. IP-10 gene transcription by virus in astrocytes requires cooperation of ISRE with adjacent kappaB site but not IRF-1 or viral transcription. J Interferon Cytokine Res 1998;18:987-97
26. Nazar AS, Cheng G, Shin HS, et al. Induction of IP-10 chemokine promoter by measles virus: comparison with interferon-gamma shows the use of the same response element but with differential DNA-protein binding profiles. J Neuroimmunol 1997;77:116-27
27. Borgland SL, Bowen GP, Wong NC, Libermann TA and Muruve DA. Adenovirus vector-induced expression of the C-X-C chemokine IP-10 is mediated through capsid-dependent activation of NF-kappaB. J Virol 2000;74:3941-7
28. Deng W, Ohmori Y and Hamilton TA. Mechanisms of IL-4-mediated suppression of IP-10 gene expression in murine macrophages. J Immunol 1994;153:2130-6
29. Tebo JM, Kim HS, Gao J, Armstrong DA and Hamilton TA. Interleukin-10 suppresses IP-10 gene transcription by inhibiting the production of class I interferon. Blood 1998;92:4742-9
30. Yang XY, Yao GH, Xu J and Zhong NS. [The possible mechanism of lung injury induced by severe acute respiratory syndrome coronavirus spike glycoprotein]. Zhonghua Jie He He Hu Xi Za Zhi 2006;29:587-90
31. Chien JY, Hsueh PR, Cheng WC, Yu CJ and Yang PC. Temporal changes in cytokine/chemokine profiles and pulmonary involvement in severe acute respiratory syndrome. Respirology 2006;11:715-22
32. Ward SE, Loutfy MR, Blatt LM, et al. Dynamic changes in clinical features and cytokine/chemokine responses in SARS patients treated with interferon alfacon-1 plus corticosteroids. Antivir Ther 2005;10:263-75
33. Ng PC, Lam CW, Li AM, et al. Chemokine response in children with SARS. Arch Dis Child 2005;90:422-3
34. Jiang Y, Xu J, Zhou C, et al. Characterization of cytokine/chemokine profiles of severe acute respiratory syndrome. Am J Respir Crit Care Med 2005;171:850-7
35. Huang KJ, Su IJ, Theron M, et al. An interferon-gamma-related cytokine storm in SARS patients. J Med Virol 2005;75:185-94
36. Wong CK, Lam CW, Wu AK, et al. Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome. Clin Exp Immunol 2004;136:95-103
37. Tang NL, Chan PK, Wong CK, et al. Early enhanced expression of interferon-inducible protein-10 (CXCL-10) and other chemokines predicts adverse outcome in severe acute respiratory syndrome. Clin Chem 2005;51:2333-40
38. Huang SM, Wu CH and Yen GC. Effects of flavonoids on the expression of the pro-inflammatory response in human monocytes induced by ligation of the receptor for AGEs. Mol Nutr Food Res 2006;50:1129-39
39. Spiegel M, Weber F. Inhibition of cytokine gene expression and induction of chemokine genes in non-lymphatic cells infected with SARS coronavirus. Virol J 2006;3:17
40. Ziegler T, Matikainen S, Ronkko E, et al. Severe acute respiratory syndrome coronavirus fails to activate cytokine-mediated innate immune responses in cultured human monocyte-derived dendritic cells. J Virol 2005;79:13800-5
41. Law HK, Cheung CY, Ng HY, et al. Chemokine up-regulation in SARS-coronavirus-infected, monocyte-derived human dendritic cells. Blood 2005;106:2366-74
42. Ng MW, Zhou G, Chong WP, et al. The association of RANTES polymorphism with severe acute respiratory syndrome in Hong Kong and Beijing Chinese. BMC Infect Dis 2007;7:50
43. Bau DT, Mau YC and Shen CY. The role of BRCA1 in non-homologous end-joining. Cancer Lett 2006;240:1-8
44. Fu Y, Frith MC, Haverty PM and Weng Z. MotifViz: an analysis and visualization tool for motif discovery. Nucleic Acids Res 2004;32:W420-3
45. Sandelin A, Alkema W, Engstrom P, Wasserman WW and Lenhard B. JASPAR: an open-access database for eukaryotic transcription factor binding profiles. Nucleic Acids Res 2004;32:D91-4
46. Ho MS, Chen WJ, Chen HY, et al. Neutralizing antibody response and SARS severity. Emerg Infect Dis 2005;11:1730-7
47. Chen WJ, Yang JY, Lin JH, et al. Nasopharyngeal shedding of severe acute respiratory syndrome-associated coronavirus is associated with genetic polymorphisms. Clin Infect Dis 2006;42:1561-9
48. Majumder S, Zhou LZ, Chaturvedi P, Babcock G, Aras S and Ransohoff RM. Regulation of human IP-10 gene expression in astrocytoma cells by inflammatory cytokines. J Neurosci Res 1998;54:169-80
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27649-
dc.description.abstract序言:干擾素-γ誘發蛋白-10(IP-10)/ CXCL10在過去許多研究中顯示為嚴重呼吸道症候群(SARS)的病程指標;在疾病初期時,血漿中含有高量干擾素-γ誘發蛋白-10的嚴重呼吸道症候群病人會有較嚴重的臨床結局。然而對於嚴重呼吸道症候群冠狀病毒感染時誘發干擾素-γ誘發蛋白-10機轉至今仍未被釐清。
方法:我們以基因流行病學的研究方法,確認干擾素-γ誘發蛋白-10基因上可能與嚴重呼吸道症候群的嚴重臨床結局有關的單一核苷酸多型性。以螢火蟲冷光酶分析法(Luciferase assay)以及電泳遷移率改變實驗 (EMSA, electrophoretic mobility shift assay)在體外針對干擾素-γ誘發蛋白-10起動子上單一核苷酸多型性的對偶基因的功能進行分析,並嘗試找出干擾素-γ誘發蛋白-10表現時與此單一核苷酸多型性相關的調控因子。
結果:由108位嚴重呼吸道症候群病人以及242位健康控制組血球中萃取的DNA,5個干擾素-γ誘發蛋白-10基因上的單一核苷酸多型性被正確的分型,其中位於起動子上位置-938的基因型TT在統計上顯著地與嚴重呼吸道症候群病人的疾病嚴重程度相關,尤其是可以在鼻咽喉中偵測到嚴重呼吸道症候群冠狀病毒的病人中,位置-938的基因型TT與嚴重呼吸道症候群病人的疾病嚴重程度的相關更顯著。
把干擾素-γ誘發蛋白-10的DNA片段,自轉錄起始點上游的996鹼基對(base pair),包含位置-938的單一核苷酸多型性的對偶基因型T或是C,以及其他自5’端縮短的DNA片段,插入表現螢火蟲冷光酶的質體(pGL3-basic)內,作為調控螢火蟲冷光酶表現的起動子,進而探討干擾素-γ誘發蛋白-10的起動子。當這些帶有不同長度的干擾素-γ誘發蛋白-10起動子基因的螢火蟲冷光酶表現質體轉殖至A549和HMEC-1細胞,24小時後利用干擾素-γ刺激之後,包含自轉錄起始點上游的704鹼基對以及413鹼基對的起動子DNA片段呈現最高的活性,並且隨著起動子DNA長度增加而減少活性。但若在轉殖24小時之後利用干擾素-γ和腫瘤壞死因子-α共同刺激細胞,顯示這些DNA片段的活性更高,然而起動子的活性隨著DNA片段長度的減少而降低,而413鹼基對的起動子DNA片段仍呈現較高的活性。根據這些結果可以推測,在干擾素-γ誘發蛋白-10起動子位置-996與-412之間可能存在著干擾素-γ相關負調控因子辨識位置和腫瘤壞死因子-α相關正調控因子辨識位置。而干擾素-γ誘發蛋白-10起動子上位置-938的對偶基因型T具有較高的活性,然而在經由干擾素-γ或干擾素-γ以及腫瘤壞死因子-α共同刺激之後增加的幅度卻沒有差異。
我們也利用干擾素-γ刺激厚的THP-1細胞核萃取蛋白,32P標示的干擾素-γ誘發蛋白-10(-928∼-948)探子以及抗轉譯調控因子的抗體,進行電泳遷移率改變實驗。探子包含-938C基因型相較于探子包含-938T可以和較多的細胞核萃取蛋白結合,而加入抗轉譯調控因子-YY1,MZF,Pax6的抗體之後,雖然沒有抗體-轉譯調控因子-探子複合物的電泳帶出現,但是與未加入轉譯調控因子-探子複合物的電泳帶比較電泳帶變淡了,表示這些轉譯調控因子可能會與干擾素-γ誘發蛋白-10(-928∼-948)探子結合。但是位置-938基因型C或是T都可以與這些轉譯調控因子結合。
轉譯調控因子YY-1與MZF對於干擾素-γ誘發蛋白-10起動子的影響再次研究中也藉由螢火蟲冷光酶分析法探討,而結果也顯示,YY-1和MZF都可以活化干擾素-γ誘發蛋白-10起動子,但是活化的程度在996鹼基對(base pair)DNA片段,包含位置-938的單一核苷酸多型性的對偶基因型T或是C位置-938基因型C或是T並沒有差別。
結論:干擾素-γ誘發蛋白-10起動子位置-938的單一核苷酸多型性的基因型TT和嚴重呼吸道症候群的疾病嚴重程度相關,而此位置可能被轉譯調控因子YY1,MZF以及Pax辨識,然而,對於這二個基因型的功能上差異經由本研究卻無法區分。
zh_TW
dc.description.abstractIntroduction - Interferon-γ inducible protein 10 (IP-10)/CXCLl10 was shown to be an indicator of disease progress for severe acute respiratory syndrome (SARS); a high plasma level in the early clinical stage was associated with subsequent adverse outcome. The mechanism that triggers CXCL10 expression in SARS-CoV infection is still unknown.
Method - We conducted a genetic epidemiological study to identify the single nucleotide polymorphism (SNP) of CXCL10 that might be associated with severe SARS clinical outcomes. With luciferase assay and electromobility shift assay (EMSA), we conducted in vitro functional study of the polymorphic alleles of CXCL10 promoter with the attempt to identify the regulatory factors for CXCL10 expression.
Results - Five SNPs of CXCL10 were typed for 108 SARS patients along with 242 healthy control DNAs. A genotype TT at the CXCL10(-938) SNP locus was identified to correlate with severity of SARS-CoV infected patients, especially among SARS patients with a detectably higher nasopharyngeal virus load.
DNA fragment of the 996 bp upstream of the CXCL10 start codon containing either (-938C) or (-938T) SNP was cloned into the luciferase reporter pGL3 vector along with a series of 5’ end truncated CXCL10 promoter DNA fragments. With IFN-γ stimulation in A549 cell and HMEC-1 cells, the shortest two fragments (-704, and -413) showed a high luciferase activity, which dropped with each increment of the 5’ end DNA length; stimulation with IFN-γ and TNF-α in combination induced a higher luciferase activity, but the drop of activity was reversed with the fragment of -704 and -996, suggesting possibly IFN-γ associated negative regulation factors and TNF-α associated positive regulation factors could bind to this region. The difference of luciferase activity between the two alleles of CXCL10(-996C) and CXCL10(-996T) could not be consistently demonstrated, however.
We used nuclear extracts from IFN-γ induced THP-1 cells and the 32P-labeled probes of CXCL10(-928~-948) promoter sequence containing (-938C) or (-938T) and antibodies against a number of TFs antibodies to perform EMSA. The (-938C) probe consistently binds to more nuclear proteins than the (-938T) probe, and three putative binding proteins, YY-1, MZF and Pax-6, of CXCL10 (-938) were found to reduce the shifted band in EMSA and supershift assay. The activation functions of YY-1 and MZF on CXCL10 expression were demonstrated by luciferase assay and the results showed YY-1 and MZF could trigger the activation of CXCL10, however, YY-1 and MZF induced activity were not different between the two alleles.
Conclusion - The genotype TT of CXCL10 (-938) SNP was associated with adverse outcome of SARS patient. The DNA sequence flanking the CXCL10 (-938) SNP locus possibly contain binding motifs of YY-1, MZF and Pax-6. However, the functional difference between these two alleles of CXCL10 (-938) could not be demonstrated in vitro by luciferase assay and EMSA in the study.
en
dc.description.provenanceMade available in DSpace on 2021-06-12T18:13:47Z (GMT). No. of bitstreams: 1
ntu-96-D87842002-1.pdf: 1597041 bytes, checksum: 476c212f35741e8211451fba985b7606 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontentsContent
English Abstract…………………………………………………………………..1
Chapter 1 Literature Review
1.1 The characteristics of CXCL10
1.1.1 IP-10/CXCL10 and the chemokine receptors…………………..3
1.1.2 Receptors of IP-10/CXCL1………………………………………..3
1.2 The function of IP-10/CXCL10
1.2.1 Chemotaxis and Migration of leukocyte…………………………5
1.2.2 Modulator of T cell development and function………………….6
1.3 The regulation of IP-10/CXCL10 expression
1.3.1 The gene of CXCL10……………………………………………...7
1.3.2 The regulation of CXCL10 in promoter……………………….....7
1.4 The association of IP-10/CXCL10 and SARS
1.4.1 CXCL10 expression in SARS patients…………………………..9
1.4.2 CXCL10 expression in ex-vivo infection of SARS-CoV………..10
Chapter 2 Material & methods
2.1 Cell culture and cytokines…………………………………………….12
2.2 Luciferase Assay
2.2.1 Promoter-reporter plasmid construction and mutagenesis
(A) pGL3-IP10clones…………………………………………………13
(B) Mutagenesis………………………………………………………14
(C) PGL3-IP10 (-928 to -948) repeats clones……………………..14
2.2.2 Transient transfection and co-transfection………………………15
2.3 Electrophoretic Mobility Shift Assay (EMSA)
2.3.1 Preparation of 32P-labeled primer pairs
(A) Labeling probes with 32P by PCR……………………………….16
(B) 5’ end labeling of probes…………………………………………16
2.3.2 Nuclear proteins preparation
(A) Nuclear extract preparation……………………………………..17
(B) In-vitro transcription/translation…………………………………18
2.3.3 Binding Reaction…………………………………………………..18
2.3.4 Competition & supershift of EMSA……………………………....19
2.4 Enzyme-link immunosorbent assay(ELISA) ………………………19
2.5 Prediction of transcriptional factors binding motifs in DNA……20
2.6 Isolation of transcriptional factors
2.6.1 Design of DNA bait…………………………………………………21
2.6.2 Nuclear Extract preparation……………………………………….22
2.6.3 Isolation of transcriptional factors…………………………………22
2.6.4 Two-dimensional electrophoresis…………………………..…….23
2.6.5 Preparation proteins for MALDI-TOF/MS………………………..24
2.7 Genotyping……………………………………………………………….25
Chapter 3 Results
3.1 SNPs on IP-10/CXCL10 promoter associated with clinical severity of SARS……………………………………………………………………27
3.2 CXCL10 level in the culture medium of EBV transformed B cell after IFN-γ or IFN-γ/TNF-α stimulation……………………………....30
3.3 Prediction of transcription factor-binding motifs…………………31
3.4 Functional analysis of CXCL10 promoter………………………….32
3.5 CXCL10 (-928~-948) containing transcriptional protein binding
Site……………………………………………………………………….36
3.6 Identification of transcription factor
3.6.1 Characterization of the DNA-protein complex………………......38
3.6.2 Identification of TFs………………………………………………...39
Chapter 4 Discussion
4.1 Genotype of CXCL10 (C-938T) and the phenotype of CXCL10
Level……………………………………………………………………..41
4.2 The IP-10 Expression level and CXCL10 (C-938T)………………..43
4.3 The putative transcriptional factor of CXCL10 (-938)…………….45
4.4 Conclusion and Future…………………………………………………45
Chapter 5 Future direction
5.1 Short-term goal………………………………………………………….47
5.2 Long-term goal………………………………………………………….47
References…………………………………………………………………..…49
Tables
Figures
Appendix

Table content
Table 1. Distribution of allele frequency of CXCL10 SNPs in SARS patients.57
Table 2. Distribution of genotypes of the CXCL10(-938) polymorphic locus in SARS patients by clinical severity and0.2 healthy Taiwanese reference group………………………………………………………..…58
Table 3. Genotypes of the CXCL10(-938) polymorphic locus in SARS patients grouped by clinical severity and nasopharyngeal virus load….……..59
Table 4. Analysis of the 21 base pairs of oligonucleotides flanking the CXCL10(C-938T) SNP locus by five programs………………….……60
Table 5. Selected nuclear proteinsa captured by the CXCL10(-938C)- or CXCL10(-938T) probeB as predicted by peptide mass
fingerprinting………………………………………………………….…...61
Table 6. Distribution of genotypes of the CXCL10(-938) polymorphic locus in SARS patients by clinical severity and healthy Taiwanese reference group (II)…………………………………………………………….….….62
Figure Content
Fig 1. The known SNPs of CXCL10 gene and the selected SNPs…………...63
Fig 2. The known functional domains in human CXCL10 promoter…………..64
Fig 3. Construction of pGL3-IP10 clones………………………………………...65
Fig 4. Standardization of probe preparation for EMSA…………………………66
Fig 5. Plasma CXCL10 level of SARS patients during acute phase, by ELISA and grouped by clinical severity…………………………………………..67
Fig6. CXCL10 level in culture medium of EBV Transformed B cells (n=11) after IFN-γ stimulation……………………………………………………………68
Fig 7. Change of CXCL10 level in culture medium of EBV transformed B cells after IFN-γ and TNF-α stimulation………………………………………...69
Fig 8. The representative figures of three experiments of luciferase assay at 24 hours post IFN-γ (200 IU/mL) treatment………………………………….70
Fig 9. The representative figures of 6 experiments of luciferase assay at 24 hours post IFN-γ (500 IU/mL) and TNF-α (50ng/mL) treatment ….……71
Fig 10. Relative CXCL10 promoter activity in (A) A549 and (B) HMEC-1 cells by luciferase assay……………………………………………………….…….72
Fig 11. Relative luciferase activity ….using pGL3 plasmids containing repeated sequence of IP10(-930~-945) …………………………………………….73
Fig 12. Relative luciferase activity …..using pGL3-IP10-230 plasmids containing repeated sequence of IP10(-930~-945) ……………………………..….74
Fig 13. Relative luciferase activities of the two polymorphic alleles of pGL3-IP-10(C-996T) co-transfected with pcDNA3.1 expression constructs of MZF, YY1, mGATA-1……………………………………….75
Fig 14. Relative luciferase activities of pGL3-IP10 plasmids containing various
5’ deletion of human CXCL10 promoter while cotransfected with pcDNA3.1 expression constructs of YY-1………………………………..76
Fig 15. Electrophoretic mobility shift assay with nuclear extract from cell lines and 100-bp probes of CXCL10(-899~ -996) …………………………….77
Fig 16. EMSA analysis of CXCL10(C-938T) SNP with THP-1 cell nuclear proteins………………………………………………………………………78
Fig 17. EMSA analysis of nuclear extracts collected from IFN-γ (200IU/mL) treated THP-1 cells with (A) CXCL10(-938C), (B) CXCL10(-938C) probes and competitors…………………………………………………….……….79
Fig 18. Supershift analysis with antibodies against putative TFs in EMSA…...80
Fig 19. EMSA analysis of YY-1 protein with CXCL10(C-938T)……………….81
Fig 20. Analysis of CXCL10 (-928~-948) probes bound nuclear proteins by ultra violet light cross-linking and SDS-PAGE. ………………………..……….82
Fig 21. EMSA analysis of nuclear extract proteins from THP-1 with CXCL10(C-938T) probes in binding buffer with various concentration of NaCl…………………………………………………………………………..83
Fig 22. EMSA analysis of nuclear proteins THP-1 cells with allele T of CXCL10(-938) probe and competitors…………………………………………..………….84
Fig 23. EMSA analysis of DNA bait (CXCL10-938C or CXCL10-938T) captured nuclear proteins with 32P-labeled CXCL10-938C or CXCL10-938T probes…………………………………………………………..…….……….85
Fig 24. 2D IEF/SDS/PAGE analysis of the probe, CXCL10(-928~-948), bound nuclear protein………………………………………………………………..86
dc.language.isoen
dc.subject嚴重呼吸道症候群zh_TW
dc.subject人類干擾素γ誘發蛋白10zh_TW
dc.subject啟動子zh_TW
dc.subject多型性zh_TW
dc.subjectpolymorphismen
dc.subjectSARSen
dc.subjectpromoteren
dc.subjectIP-10/CXCL10en
dc.title對於人類干擾素γ誘發蛋白10啟動子上基因位置 -938多型性的研究zh_TW
dc.titleAnalysis of human interferon-gamma-inducible protein 10 (IP-10)/CXCL10 promoter polymorphism at position -938en
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree博士
dc.contributor.advisor-orcid,金傳春(a1234567@ntu.edu.tw)
dc.contributor.oralexamcommittee廖楓(Fang Liao),張久瑗(Jeou-Yuan Chen),于明暉(MingWhei Yu)
dc.subject.keyword人類干擾素γ誘發蛋白10,啟動子,多型性,嚴重呼吸道症候群,zh_TW
dc.subject.keywordIP-10/CXCL10,promoter,polymorphism,SARS,en
dc.relation.page93
dc.rights.note有償授權
dc.date.accepted2007-09-03
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept流行病學研究所zh_TW
顯示於系所單位:流行病學與預防醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
1.56 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved